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Abstract. This paper investigates equilibrium solutions for data flows on a

network. We consider a fluid dynamic model based on conservation laws. The
dynamics at nodes is solved by FIFO policy combined with through flux max-
imization. We first link the dimension of the equilibria space to topological
properties of the graph associated to the network. Then we focus on regular
plane tilings with square or triangular cells. For various networks, we com-
pletely determine the characteristics of periodic equilibria and, in some cases,
of all equilibria. The obtained results are expected to play a role both in the
analysis of asymptotic behavior of network load and for security issues in case
of node failures.

1. Introduction. In this paper we consider the problem of identifying equilibrium
solutions of flows on data networks. Our analysis is based on a fluid dynamic model,
introduced in [12], for the data flow, encoded in packets, and is motivated by three
main scopes.

• The set of equilibrium solutions play a role in understanding the asymptotic
behavior of every solution.

• The analysis of equilibria allows comparisons of the fluid dynamic model with
other models.

• To investigate security issues, one method is to study the dynamics stemming
from node failures of an equilibrium solution.

The main results we obtain in this paper are the followings.

- We determine the dimension of the equilibria space and link it to the topo-
logical properties of the network.

- We give an explicit description of the equilibrium solutions for square and
triangular networks.

- For square and triangular networks we give a map assigning a unique equilib-
rium for each set of inflows of the network.

Looking at intermediate time scales, the model of [12], on a single arc of the
network, consists of a single conservation law:

ρt + f(ρ)x = 0, ρ ∈ [0, ρmax],

where ρ represents the packets density, ρmax its maximal value, while the flux f
is determined by a loss probability function and is usually assumed to be concave.
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Then, the dynamics at nodes is determined assuming a FIFO policy and maximiza-
tion of the through flux, see section 2 for details.

Such model was inspired by similar ones, used in car traffic, and is useful for un-
derstanding the formation of congestions and their propagation along the network.
On the other side the model is limited, in its description capacity, by the absence
of stochastic sources and the possibility of strong packets redirections.

There are many alternative models for data flows, in particular for Internet. A
complete account of the existing literature is beyond the scope of the paper, however
some overview can be found, for instance, in [1, 5, 16].

The study of asymptotic behavior for conservation laws deserved much attention.
For instance, Liu [18] studied the decay of solutions to the so called N-waves. On
the other side, the scalar case, on a single line, is quite well understood, see [21].

Similar studies appear to be much harder in case of networks and, to our knowl-
edge, this is the first paper addressing the issue of equilibria on networks.

Our definition of equilibrium is that of a solution, on the whole network, which is
constant in time. We assume that the flux f admits a unique maximum σ ∈ [0, ρmax]
and vanishes at extreme points, i.e. f(0) = f(ρmax) = 0. A consequence is that
there exist shocks with sonic, i.e. zero, velocity. Thus an equilibrium may well
exhibit an infinite number of shocks inside each line. Still we are interested in the
flux and density values that equilibria takes at nodes. The former are, in fact,
constant on each line and the latter are called the equilibria values.

Each network is represented by a collection of lines, modeled by real intervals,
and nodes at which lines intersect. It is then natural to associate to each network
a topological graph. Also, by means of well established graph theory results, such
topological graphs can be embedded in manifolds in a unique way once we fix a
rotation system. The latter consists in a cyclic order of lines at each node.

To determine the set of equilibria values, we consider the space of flux values as
variables. Thus we have one unknown for each line, while to be in equilibrium the
set of unknowns must satisfy a linear relation at each node. The dimension of the
space of equilibria values is readily computed, see proposition 3. Moreover, such
dimension can be related to the number of faces of the embedded topological graph,
see proposition 4.

To each vector of equilibria values, it corresponds at least one equilibrium solu-
tion. However, we are more interested in those solutions, whose density is constant
along each line. To have this property, an equilibrium should also respect some
rules at nodes. More precisely, one defines bad and good values for incoming and
outgoing lines at a node depending if the density is lower or greater than the value
σ (of maximum flux), see definition 2. Then, only some combinations of bad and
good values at a node are possible.

Most of the paper then focuses on the analysis of equilibrium solutions, with
constant densities along lines, for graphs giving a regular square or triangular tes-
sellation of the plane. More precisely, we consider a Manhattan type tiling and
three different networks: one, called “Oriented”, with oriented lines and data flow-
ing always up and right, the second, called “Circular”, with oriented lines but flow
in any direction, finally the “Full” Manhattan with non-oriented flows (modeled by
a couple of lines for each edge of the tiling.) Then we deal with triangular tilings
for the Oriented and Circular case.

The analysis of equilibria is carried out in the following way. First, we determine
the possible types of equilibria at each node, depending on the combination of good
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and bad values at the incident lines. Then, we deduce the types for subnetworks
consisting of four or nine nodes, which are considered the building blocks of the
whole network. Each building block is connected to another one by horizontal
(resp. vertical) superposition of a column (resp. row) of nodes.

Such compositions are represented by means of other graphs, where the vertices
are types for lines and rows, while an arc is drawn each time two lines or rows can
form a building block. Such representation is advantageous, in fact solutions along
horizontal or vertical stripes correspond to paths along these new graphs. Also,
periodic solutions correspond to cycles in the new graphs, see theorem 2.

For the Oriented Manhattan, the graphs presents 48 vertices and 65 edges. There
are some periodic solutions for horizontal and vertical stripe. However, such stripes
do not combine to form a whole equilibrium except trivial cases. More precisely,
there exist only two periodic equilibrium types, whose node types are in fact con-
stant on the whole network, see theorem 3.

Then we analyze the Circular Manhattan case. In this case the graphs are even
larger (with hundreds of nodes.) However, it is possible to make a direct analysis
of building blocks combinations, without explicitly constructing the graphs. As a
result, not only we are able to show the existence of only two periodic equilibrium
types (with constant node type), but also to prove that all equilibrium types are
periodic, see theorem 4. Therefore there exist only two equilibrium types. Finally,
we can apply the same strategy to the Full Manhattan case getting an entirely
similar result, see theorem 5.

Then triangular tilings are addressed. For the oriented case, we have to construct
the two graphs. The set of paths on each graph is reacher than in the Manhattan
case (see bold arcs and diamond shape nodes in figures 6 and 7). However, the set
of periodic equilibrium types is still comprised of two elements with constant node
type, see theorem 6.

Finally, for the Circular Triangular case, we drive the same conclusions as for
the Circular Manhattan case, see theorem 7.

The paper is organized as follows. In section 2, we introduce the model and
give basic definition and results for equilibrium solutions. Section 3 links the set
of equilibria with the topological properties of the graph linked to a network. In
section 4 we illustrate the plane tilings we consider in the paper and the main tools
to investigate equilibria. Then section 5 deals with the Manhattan tilings and,
finally, section 6 deals with the Triangular ones. In section 7 we use the results of
sections 5 and 6 to refine the results of section 3 on the space of equilibria solutions.

2. Basics. A network is formed by a finite collection of transmission lines and nodes
(or routers), each packet is seen as a particle on the network and it is assumed that
each packet travels on the network with fixed speed and assigned final destination.
Moreover it is assumed that routers receive, process and then forward packets.
Packets may be lost but, in this case, they are resent by the router. Then we
look at an intermediate time scale and assume conservation of packets and get the
following simple model consisting of a single conservation law:

ρt + f (ρ)x = 0, (1)

where ρ is the packet density, v is the velocity and f(ρ) = vρ is the flux.
We model a telecommunication network by a finite set of intervals Ii = [ai, bi] ⊂

R, i = 1, ..., L, ai < bi, on which we consider the equation (1). Hence the datum is
given by a finite set of functions ρi defined on [0,+∞[× Ii.
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We assume that the transmission lines are connected by some nodes. Each node
J is given by a finite number of incoming transmission lines and a finite number of
outgoing transmission lines, thus we identify J with ((i1, ..., im) , (j1, ...jn)) where
the first m-tuple indicates the set of incoming transmission lines and the second n-
tuple indicates the set of outgoing transmission lines. Each transmission line can be
incoming transmission line at most for one node and outgoing at most for one node.
Hence the complete model is given by a couple (I,J ), where I = {Ii : i = 1, ..., L}
is the collection of transmission lines and J is the collection of nodes. We set N to
be the cardinality of J .

In order to consider complex networks, one needs a way of solving dynamics at
nodes in which many lines (backbones) intersect. For this, we follow the strategy
proposed by [12], and consider the routing algorithm:

RA Packets are processed by arrival time and are sent to outgoing lines in order
to maximize the flux.

A key role is played by Cauchy problems with initial data constant on each trans-
mission line called Riemann problems at the node. In order to determine unique
solutions to Riemann problems, some additional parameters are introduced, called
respectively priority parameters and traffic distribution parameters. The theory for
this model is developed in [12].

On each line Ii the evolution is given by equation (1) and we assume that the
flux f is a strictly concave function (with f(0) = f(ρmax) = 0), thus there exists a
unique σ ∈ [0, ρmax] such that f ′(σ) = 0 and is the maximum of f over [0, ρmax].
For notational simplicity, we assume, without loss of generality, that ρmax = 1.

Definition 1. We let τ : [0, 1] → [0, 1] be the map such that f(ρ) = f(τ(ρ)) and
τ(ρ) 6= ρ if ρ 6= σ. Thus τ sends ρ to the other density value with the same flux
(and τ(σ) = σ.)

For a simple network formed of a single node with m incoming and n outgoing
lines, once the packet quantities flowing from initial to final nodes are assigned, the
final equilibrium as function of the traffic distribution (and priority) parameters can
be computed as follows.

We have only m priority parameters p ∈ ]0, 1[ and n traffic distribution pa-
rameters α ∈ ]0, 1[. We denote with ρϕ(t, x), ϕ = 1, . . . ,m, and ρψ(t, x), ψ =
m + 1, . . . ,m + n, the traffic densities, respectively, on the incoming transmission
lines and on the outgoing ones and by (ρϕ,0, ρψ,0) the initial data. Since the speed
of waves must be negative on incoming lines and positive on outgoing ones, we want
to determine a unique (m+ n)-tuple (ρ̂1, ..., ρ̂m+n) ∈ [0, 1]m+n such that

ρ̂ϕ ∈

{
{ρϕ,0} ∪ ]τ(ρϕ,0), 1] , if 0 ≤ ρϕ,0 < σ,
[σ, 1] , if σ ≤ ρϕ,0 ≤ 1,

(2)

ϕ = 1, ...,m, and

ρ̂ψ ∈

{
[0, σ], if 0 ≤ ρψ,0 ≤ σ,
{ρψ,0} ∪ [0, τ(ρψ,0)[ , if σ < ρψ,0 ≤ 1,

(3)

ψ = m+1, ...,m+n, and on each incoming line Iϕ, ϕ = 1, ...,m, the solution consists
of the single wave (ρϕ,0, ρ̂ϕ), while on each outgoing line Iψ, ψ = m+ 1, ...,m+ n,
the solution consists of the single wave (ρ̂ψ, ρψ,0).
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Define γmax
ϕ and γmax

ψ as follows:

γmax
ϕ =

{
f(ρϕ,0), if ρϕ,0 ∈ [0, σ[,
f(σ), if ρϕ,0 ∈ [σ, 1] ,

ϕ = 1, . . . ,m, (4)

and

γmax
ψ =

{
f(σ), if ρψ,0 ∈ [0, σ],
f(ρψ,0), if ρψ,0 ∈ ]σ, 1] ,

ψ = m+ 1, . . . ,m+ n. (5)

The quantities γmax
ϕ and γmax

ψ represent the maximum flux that can be obtained by
a single wave solution on each transmission line. In order to maximize the number
of packets through the node over incoming and outgoing lines we define

Γ = min {Γin,Γout} ,

where Γin =
∑m

ϕ=1 γ
max
ϕ and Γout =

∑m+n
ψ=m+1 γ

max
ψ . One can easily see that, to solve

the Riemann problem, it is enough to determine the fluxes γ̂ϕ = f(ρ̂ϕ), ϕ = 1, . . . ,m,
and γ̂ψ = f(ρ̂ψ), ψ = m + 1, . . . ,m + n. Let us determine γ̂ϕ, ϕ = 1, . . . ,m. We
have to distinguish two cases:

I: Γin = Γ,
II: Γin > Γ.

In the first case we set γ̂ϕ = γmax
ϕ , ϕ = 1, . . . ,m. Let us analyze the second case in

which we use the priority parameters p1, . . . , pm where 0 < pϕ < 1 and
∑m

ϕ=1 pϕ =
1. Not all packets can enter the node, so let C be the amount of packets that can
go through. Then pϕC packets come from the ϕ–st incoming line. Consider the
space (γ1, . . . , γm) and denote by P the point with coordinates γϕ = pϕΓ. Now the
final fluxes should belong to the region:

Ω =
{
(γ1, . . . , γm) : 0 ≤ γϕ ≤ γmax

ϕ , ϕ = 1, . . . ,m
}
.

We distinguish two cases:

a) P belongs to Ω,
b) P is outside Ω.

In the first case we set (γ̂1, . . . , γ̂m) = P , while in the second case we set
(γ̂1, . . . , γ̂m) = Q, with Q = proj(P ) where proj is some projection on Ω. From the
choice of this projection the analysis and the choice of the parameters p1, . . . , pm
can be very different. The most natural projection to take is the projection on a
convex set (see [19]).

Let us now determine γ̂ψ, ψ = m+1, . . . ,m+n. As for the incoming transmission
lines we have to distinguish two cases :

I: Γout = Γ,
II: Γout > Γ.

In the first case γ̂ψ = γmax
ψ , ψ = m + 1, . . . ,m + n. Let us determine γ̂ψ in the

second case in which we use the traffic distribution parameters αm+1, . . . , αm+n

where αψ ∈]0, 1[ and
∑n

ψ=m+1 αψ = 1. Since not all packets can go on the outgoing
transmission lines, we let C be the amount that goes through. Then αψC packets
go on the outgoing line Iψ . Consider the space (γm+1, . . . , γm+n) and denote by P
the point with coordinates: γψ = αψΓ.

Now the final fluxes should belong to the region:

Ω =
{
(γm+1, . . . , γm+n) : 0 ≤ γψ ≤ γmax

ψ , ψ = m+ 1, . . . ,m+ n
}
.

We distinguish two cases:

a) P belongs to Ω
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b) P is outside Ω.

In the first case we set (γ̂m+1, . . . , γ̂m+n) = P , while in the second case we set
(γ̂m+1, . . . , γ̂m+n) = Q, where Q = proj(P ).

The solution to the Riemann Problem ((ρ̂1, . . . , ρ̂m), (ρ̂m+1, . . . , ρ̂m+n)) is com-
puted from the equilibria fluxes ((γ̂1, . . . , γ̂m), (γ̂m+1, . . . , γ̂m+n)) by taking the
unique solution of equations γ̂ϕ = f(ρ̂ϕ), ϕ = 1, . . . ,m and γ̂ψ = f(ρ̂ψ), ψ =
m+ 1, . . . ,m+ n such that conditions (2) and (3) are satisfied.

Definition 2. A component of the solution at one node, ρ̂ϕ, ϕ = 1, . . . ,m, is

bad: if ρ̂ϕ ∈ [0, σ[;
good: if ρ̂ϕ ∈ [σ, 1];

and a component of the solution, ρ̂ψ, ψ = m+ 1, . . . ,m+ n is

bad: if ρ̂ψ ∈]σ, 1];
good: if ρ̂ψ ∈ [0, σ].

Remark. We notice that if there exists one index ϕ̄ for which ρ̂ϕ̄ is good then, for all
ψ = m+1, . . . ,m+n, it must be ρ̂ψ bad. Indeed ρ̂ϕ̄ good means that Γin > Γ = Γout
and γ̂ϕ̄ < γmaxϕ̄ . Therefore, for all ψ, γ̂ψ = γmaxψ and ρ̂ψ is bad.

The viceversa also holds: if an index ψ̄ exists such that ρ̂ψ̄ is good then, for all
ϕ = 1, . . . ,m, it must be that ρ̂ϕ bad.

We are now interested in solutions over the whole network (I,J ), not only on
solutions at one single node. More precisely we are interested in equilibrium solu-
tions.

Definition 3. An equilibrium is a solution ρ(t, x) = (ρ1, . . . , ρL) (recall that L
is the cardinality of I), which is constant in time. We also assume that ρ(t, ·) is
BV, thus we can define, for every i = 1, . . . , L, the values ρ−i = limx→ai ρ(t, x) and
ρ+
i = limx→bi ρ(t, x).

Since ρ is a solution then

m∑

ϕ=1

f(ρjϕ) =

m+n∑

ψ=m+1

f(ρjψ ), (6)

is satisfied at each node Jj ∈ J , j = 1, . . . , N . In (6) we have denoted by
ρj1 , . . . , ρjm , ρjm+1

, . . . , ρjm+n
the densities along the m incoming lines Ij1 , . . . , Ijm

and the n outgoing lines Ijm+1
, . . . , Ijm+n

at node Jj .
We distinguish two cases

i: there exists i = 1, . . . , L, such that ρ−i 6= ρ+
i . In this case, ρ+

i = τ(ρ−i ) and the
fluxes γi = f(ρ±i ), are anyhow constant in time and along the whole line Ii;

ii: for all i = 1, . . . , L, ρ+
i = ρ−i and we call this value ρi.

Definition 4. Let ρ = (ρ1, . . . , ρL) be an equilibrium for the network (I,J ), sat-
isfying ii. We say that ρ1, . . . , ρL are the values of the equilibrium. Moreover, if
ρi is of type τi, with τi ∈ {bad, good}, then we say that T = (τ1, . . . , τL) is the
equilibrium type.

In section 3 we give a brief description of the system that one has to solve to
find possible equilibria values over the whole network, while, in sections 5 and 6,
we describe all admissible equilibrium types.
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We then consider an equilibrium at one node, which is a m + n–vector, and
describe componentwise its type good or bad. We then have that the possible equi-
librium types at one node are one among the followings (we use the short notations
b for bad and g for good):

I: ((b, . . . , b), (b, . . . , b))
II0: ((b, . . . , b), (g, . . . , g))
II1.h: ((b, . . . , b), (g, . . . , b, . . . , g)) (there is only one bad in the m+ h position).
II2.h1.h2: ((b, . . . , b), (g, . . . , b, . . . , b, . . . , g)) (there are two bads in the m + h1

and m+ h2 positions).
...

II(n− 1).h1. · · · .hn−1: ((b, . . . , b), (b, . . . , g, . . . , b)) (there are n− 1 bads in the
m+ h1, . . . ,m+ hn−1 positions).

III0: ((g, . . . , g), (b, . . . , b))
III1.h: ((g, . . . , b, . . . , g), (b, . . . , b)) (there is only one bad in the h position).
III2.h1.h2: ((g, . . . , b, . . . , b, . . . , g), (b, . . . , b)) (there are two bads in the h1 and
h2 positions).
...

III(m− 1).h1. · · · .hm−1: ((b, . . . , g, . . . , b), (b, . . . , b)) (there are m − 1 bads in
the h1, . . . , hm−1 positions).

Definition 5. We denote by M =
{I, II0, II1.h, . . . II(n−1).h1. · · · .hn−1, III0, III1.h, . . . III(m−1).h1. · · · .hm−1},
the set of all possible equilibria types at one node.

The following proposition trivially holds

Proposition 1. The cardinality of M is

M = 1 + 2 +

(
n

1

)
+ · · · +

(
n

n− 1

)
+

(
m

1

)
+ · · · +

(
m

m− 1

)
= 2m + 2n − 1.

Consider now a network comprised of N nodes J1, . . . , JN . For simplicity we
assume that each node has m incoming and n outgoing lines.

Definition 6. We denote by

N̂ = {(j1, . . . , jN ), j1, . . . , jN ∈ M} = MN ,

the set of all possible equilibria types over the whole network.

Clearly the cardinality of N̂ is MN . However, as it will be more clear in a while,

not all the elements of N̂ may arise.
Indeed, by definition 3, two kinds of equilibria over the whole network may be
considered. In case ii the following compatibility rule must be satisfied:

H: if a line Ii is incoming for some node J1 and outgoing for some other node
J2 then the following holds. Whenever ρ̂i is of type bad for J1 then it must
be of type good for J2 and viceversa.

Rule H gives rise to a compatibility relation among equilibria at adjacent nodes.

Such compatibility relation in turns determines the subset N ⊂ N̂ of admissible
equilibrium states for the whole network.

This fact does not hold for case i.. Indeed a shock wave along the line Ii may
transform the density ρ̂i into τ(ρ̂i) while keeping constant the flux γ̂i. Therefore ρ̂i
of type good or bad as incoming for J1 does not influence the type of ρ̂i as outgoing
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density for J2. No compatibility relation among adjacent nodes can be deduced

hence the set of possible equilibrium states for the whole network is N = N̂ .
We have shown the following:

Proposition 2. In case we consider equilibria i. then N = N̂ . If otherwise we

consider equilibria ii. then N ⊂
6= N̂ .

In the rest of the paper we will consider the equilibria ii. and give a characteri-
zation of N .

3. Equilibria solutions. In this paper we consider networks (I,J ) with N the
cardinality of J and L the cardinality of I.

The following holds.

Proposition 3. The set of equilibrium values is a N − L dimensional subspace of
R
L.

Proof. At the equilibrium, on each line I ∈ I there is a density ρ̂ among two
adjacent nodes which is constant in time and along the line I. Moreover, at each
node J ∈ J the constraint (6) is satisfied, i.e. at J the total flux incoming from
incoming lines, must be equal to the total flux departing through the outgoing lines.
Therefore the equilibrium value ρ = (ρ1, . . . , ρL) must satisfy one constraint (6) for
each node J ∈ J , for a total of N constraints, i.e. the equilibrium is given by
solving a system of N equations in L variables.

Now, the degree of freedom L−N of the system described above is strictly related
to the topological structure of the network.

Indeed a network (I,J ) can be seen as an oriented graph where I is the set
of edges and J is the set of vertices. Moreover a graph can be endowed with
a topological structure consisting of a Hausdorff space X and a closed discrete
subspace X0. A point of X0 is called a vertex of X . The complementary set X \X0

is a disjoint union of open subsets ei. Every ei is homeomorphic to an open interval
I ⊂ R and is called an edge of X .

An embedding i : X → M of a graph X into a surface M is a 1 − 1 continuous
map of the topological space X into the topological space M . Two embeddings
i1 and i2 of X into a surface M are equivalent if there exists a homeomorphism
h : M → M such that h ◦ i1 = i2 (in other words, h brings the image i1(X) to the
image i2(X)).
Two graphs X1 and X2 are equivalent if there exist two embeddings i1 : X1 → M ,
i2 : X2 →M and a homeomorphism h : M →M such that h ◦ i1(X1) = i2(X2).

An orientable surface is described by a genus g ≥ 0 which counts the number of
handles glued into the plane. Then, the genus of a graph is the minimum number of
handles that must be added to the plane to embed the graph without any crossings.
A graph is planar if it can be drawn in a plane without graph edges crossing (i.e.,
it has graph genus 0). A graph with genus g is then a graph that can be drawn on
a surface of genus g without edges crossings.

If one takes an embedding i : X →M of a connected graph X into M , then the
set M\i(X) is a union of open regions fm. Each fm is called face of X . Clearly,
gluing up handles to each fm, it is possible to obtain embeddings of X into the
surfaces of an arbitrary high genus. An embedding i : X → M is called 2-cell (or
cellular), if all open regions fm are homeomorphic to an open disc. Further we
consider both cellular embeddings or not.
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For a graph X of genus g the Euler formula 2− 2g = V −E + F holds where V,
E, and F are respectively the numbers of vertices, edges and faces of the graph X .
The number χ = 2 − 2g is known as Euler characteristic.

A local rotation of a vertex v is an oriented cyclic order (defined up to the cyclic
permutations) of all edges incident to v. (Local rotation of 1-valent vertices is
uniquely defined and is called trivial.) A rotation system R (or, simply, a rotation)
of a graph X is a union of all local rotations over all vertices of X . Rotations give
rise to a certain system of faces (≡ cycles) on X .

The following face tracing algorithm allows to determine all faces of a graph X
corresponding to rotation R. Take an arbitrary vertex v1 ∈ V (X) and an edge av1 ,
incident to v1. Let v2 be a vertex of X , connected with v1 by the edge av2 and let
bv2 be an edge of the vertex v2, which lies to the right ∗ in the cyclic order from av1 .
Moving along the edge bv2 to a vertex v3, we shall define an edge cv3 , which lies
to the right from bv2 . Proceeding inductively, we stop the process at an edge zvn
if two forthcoming edges will be again av1 and bv2 . Hereby a cycle av1 , bv2 , ..., zvn
of a length n, which defines a face f1 on X , will be traced. For tracing a next face
f2 one should start with an edge which lies to the right of any edge of the face f1
and such, that a corner between them did not occur in f1 – and apply the above
construction. All faces f1, f2, ..., fm on X will be traced, when it remains no unused
corners.

Theorem 1. ([14]) Let X be a finite graph endowed with a rotation system R.
Then there exists a 2-cell embedding of X into an orientable surface M such that
one of two rotations, induced by this embedding, coincides with R. Moreover, two
embeddings are equivalent if and only if they have equivalent rotation systems.

Each embedding i : X →M induces a pair of rotation systems R and R∗, where
R∗ is a mirror image of R (i.e can be obtained from R by reversing of the cyclic
order of all local rotations ). The corresponding embeddings i(X) and i∗(X) are
conjugate by a homeomorphism h : M → M , which is not close to idM . Then we
can always endow (I,J ) with a rotation system and, by theorem 1, identify our
network with a cellular graph.

In particular, in this paper, we assume that the network (I,J ) is planar, i.e. has
genus 0. Since the number of nodes is N and the number of lines is L, by Euler
formula, we get that the number of faces of the network is F − 2 = L−N .

Hence the following holds.

Proposition 4. The set of equilibrium values is a F − 2 dimensional subspace of
R
L where F is the number of faces of the network.

Proof. By proposition 3 the set of equilibria values over the whole network, is a
L − N–dimensional space in R

L, hence, by Euler formula, an F − 2–dimensional
space in R

L.

4. Plane tilings. Consider now a plane graph X and an embedding i : X → R
2.

The image i(X) is a tiling of the plane. If a plane tiling is regular then the faces are
all equal to either triangles, squares or hexagons. For triangular tilings we have 6
lines incident at each node, for square tilings we have 4 lines incident at each node
and, finally for hexagonal tilings we have 3 lines incident at each node. See [15] for
a simple introduction to the theory of tilings.

∗For the 1-valent vertices vi with the edge ei, the edge lying to the right of ei will be again ei.
In other words, such rotation is trivial.
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Definition 7. We will say that a planar network (I,J ) is Triangular, Square or
Hexagonal if an embedding on the plane exists such that its image gives rise to a
triangular, square or hexagonal tiling respectively of a limited region of the plane.

Recall that the network is actually an oriented graph. In this paper we will treat
the cases of Triangular and Square networks with orientations as in the pictures
1 which we call respectively (from left to right and from top to bottom) Oriented
Triangular, Circular Triangular, Oriented Manhattan, Circular Manhattan and Full
Manhattan.

Notice that we use the term Manhattan instead of “Square” since it models the
urban structure of Manhattan quarter. The term Oriented suggests that informa-
tions flows from one initial node to a final one without the possibility of going back
to the source. The oriented graph well models the unidirectional flows from a set
of sources to a set of destinations, while the circular graph better models the urban
traffic network. Finally the Full Manhattan Network represents a graph in which
informations can pass from one node to an adjacent one in both directions (namely
it is a non–oriented graph). We represent each edge by two edges with opposite
orientations. It results in a graph where each node has 4 incoming and 4 outgoing
lines.

Our aim is to determine the set N of equilibria types (in short equilibria) over the
whole network and the subset of N of ’periodic’ (in a sense that will be clear later)
equilibria. Since for small networks the problem of determining the set of equilibria
N is relatively simple, we will represent the whole network (I,J ) as concatenation
of building blocks, i.e. small subnetworks. Then we determine the set of equilibria
for the building blocks and we will solve the global problem of finding the set N of
possible equilibria over the whole network by studying the gluing of equilibria over
the small building blocks.

Due to the regularity of the networks we are considering, the nodes of the whole
network can be seen as if they were the nodes of a square tiling and number them
in a matricial way, J11, . . . , J1t, . . . , Js1, . . . , Jst. Given a s × t matrix it can be
decomposed in submatrices. Each submatrix is associated to one building block
whose nodes are numbered as the elements of the corresponding submatrix. More-
over, we can choose our building blocks (seen as graphs) to be all equivalent and
corresponding to square submatrices of order 2 or 3 (see figures 2 and 3).

Since the building blocks are all equal it is sufficient to determine the set N0 of
possible equilibria for a single building block. Once we have found N0 we connect
together a fixed number of building blocks to get the set N of equilibria over the
whole network. We can have two kind of connections:

LEGO: connection of the building blocks by overlapping: a building block and
its adjacent have either one row or one column of nodes in common;

DOMINO: connection of the building blocks by gluing: there is no intersection
among the nodes of two adjacent building blocks.

In both connections two building blocks can be vertically (horizontally) connected
if a certain compatibility relation holds. Such compatibility relation is different in
the two cases.

LEGO: the equilibria types at the nodes of the last row (column) of the first
building block must coincide with the equilibria types at the nodes of the first
row (column) of the second building block;
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Figure 1. From left to right and from top to bottom. Figure1.1.
The network with triangular tiling and directions such that the
overall flow goes from north to south and from west to east. Figure
1.2. The network with triangular tiling and alternated directions
so that circular paths are possible. Figure 1.3. The network with
square tiling and directions such that the overall flow goes from
north to south and from west to east. Figure 1.4. The network
with square tiling and alternated directions so that circular paths
are possible. Figure 1.5. The network with square tiling. The flow
among two adjacent nodes is possible in both directions.

DOMINO: the last row (column) of the first building block and the first row
(column) of the second building block must form another building block.

We will use the LEGO connection since the corresponding compatibility relations
can be graphically represented by means of two graphs. Each vertex of the graph
represents the equilibrium at the nodes of one row (column). An oriented edge from
one vertex to another exists if the two vertices are part of one equilibrium of the
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Figure 2. Two building blocks of the Oriented Manhattan Net-
work (comprised of 4 nodes each) can be vertically connected by
overlapping the first row of the second block over the second row
of the first block. Indeed the nodes are all of the same type (one
incoming lines from north and one incoming line from west and one
outgoing line to south and one outgoing line to east).

building block. A path on the graph represents a sequence of building blocks that
can be vertically or horizontally connected and an equilibrium over the so obtained
network.

The graphical representation by means of graphs is not only intuitive. Indeed it
allows to extract another fundamental information: the periodic equilibria over the
whole network. Indeed assume that a closed path of length n exists. This means
that n building blocks can be connected vertically (horizontally) and that the last
row (column) of the chain is equal to the first row (column), thus the chain of
building blocks can be repeated until forming a vertical (horizontal) stripe.

In general we have the following:

Definition 8. Let (I,J ) be a Triangular or Square Network with N = s× t nodes.
Let also N be the set of admissible equilibria types for (I,J ) which is comprised
of vectors of MN . An equilibrium type ω ∈ N of (I,J ) is said to be periodic of
order p if the following holds.
There exists a Triangular or Square subnetwork (I1,J1) with N1 = s1 × t1 nodes
such that:
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Figure 3. Two building blocks of the Circular Manhattan Net-
work (comprised of 9 nodes each) can be vertically connected by
overlapping the first row of the second block over the third row of
the first block. In this way nodes of the same type glue together
(represented by circles, having incoming lines from north and west,
and triangles, having incoming lines from south and west, respec-
tively).

• the vertical (domino) connection of (I1,J1) p1 times gives a vertical stripe
(Iv,J v) of s = p1s1 rows and t1 columns;

• the horizontal (domino) connection of the vertical stripe (Iv,J v) p2 times
gives the network (I,J ) of s = p1s1 rows and t = p2t1 columns;

• p = max{p1, p2}.

Moreover there exists an element ω1 ∈ N1, the set of admissible equilibria for the
subnetwork (I1,J1), such that

• ω1 can be vertically and horizontally connected to itself and

ω =




ω1 · · · ω1

...
...

ω1 · · · ω1





︸ ︷︷ ︸
p2 times




 p1 times

In the following sections we determine periodic equilibrium types of any order
for the Manhattan and the Triangular networks.

5. Manhattan networks. The nodes of the network are numbered J11, . . . , J1t,
. . . , Js1, . . . , Jst. For each node Jij there are incoming and outgoing lines. We
denote by incominglij, outgoing

l
ij with l = 1, . . . , ℓ the type of the densities along

the incoming and outgoing lines. In particular for the Oriented and the Circular
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Manhattan Networks we have two incoming and two outgoing lines (thus ℓ = 2)
while for the Full Manhattan Network we have four incoming and four outgoing
lines (thus ℓ = 4). Therefore in the Oriented and Circular Manhattan Network the
equilibrium type at one node is described by a vector of length 4 while in the Full
Manhattan Network the equilibrium type at one node is described by a vector of
length 8. The first half components describe the types of the densities along the
incoming lines while the second half components describe the types of the densities
along the outgoing ones.

5.1. Oriented Manhattan Networks. Consider now the network represented in
picture 1.3. Recall that M is the set of possible equilibria types at one node. Then,
since in this case we have 2 incoming and 2 outgoing lines for each node of the
network, we have that

M = {I, II0, II1.1, II1.2, III0, III1.1, III1.2}.

Definition 9. A building block of the Oriented Manhattan Networks is given by a
subnetwork (I0,J0) with

J0 = {J11, J12, J21, J22}

and

I0 = {incominglij, outgoing
l
ij, i, j = 1, 2, l = h, v},

where h stands for horizontal and v stands for vertical. We can connect building
blocks vertically and horizontally to obtain the subnetworks stripes (Iv,J v) and
(Ih,J h) with

J v = {J11, J12, . . . , Js1, Js2},

J h = {J11, J21, . . . , J1t, J2t}

and

Iv = {incominglij, outgoing
l
ij, i = 1, . . . s, j = 1, 2, l = 1, . . . , ℓ},

Ih = {incominglij, outgoing
l
ij, i = 1, 2, j = 1, . . . s, l = 1, . . . , ℓ}.

Finally we can horizontally connect vertical stripes or vertically connect horizontal
stripes to obtain the whole network (I,J ).

For each node Jij the vector ((incominghij , incoming
v
ij), (outgoing

h
ij, outgoing

v
ij))

describes the types of the equilibrium densities along the lines as incident lines at
that node and it is an element of M. Now we want to determine N0 for a building
block and this is done by applying rule H.

Rule H can be rewritten as follows:

• incominghij = bad if and only if outgoinghi j−1 = good;
• incomingvij = bad if and only if outgoingvi−1 j = good.

We can now determine the set N0 of admissible configurations of the subnetwork
(I0,J0) as follows.

Algorithm 1. Step 0: Set N0 = ∅.
Step 1: For j11 ∈ M we set J11 to be of type j11. Following rule H we determine

all admissible configurations M12 ⊂ M for node J12 and M21 ⊂ M for node
J21.
: For j12 ∈ M12 and for j21 ∈ M21, following rule H we determine all

admissible configuration M22 ⊂ M for node J22.
: For j22 ∈ M22 set N0 = N0 ∪ {(j11, j12, j21, j22)}.
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Following the above procedure we obtain the set N0 which is reported in the
Appendix (section 8). The cardinality of N0 is 73 however many among the elements
of N0 are in symmetry relation with respect to the main diagonal of the network.
More precisely we consider the following permutation on the network:

• nodes J11 and nodes J22 remain unvaried while J12 ↔ J21 (the two nodes are
exchanged);

• incoming and outgoing lines are exchanged as follows:
{
incominghij ↔ incomingvij
outgoinghij ↔ outgoingvij

i = j ∈ {1, 2}
{
incominghij ↔ incomingvji
outgoinghij ↔ outgoingvji

i 6= j i, j ∈ {1, 2}.

This permutation induce the following mapping on M:

S :






I ↔ I
II0 ↔ II0
II1.1 ↔ II1.2
III0 ↔ III0
III1.1 ↔ III1.2

and consequently on N0 we have the induced action (which we still denote by S):

S : (j1, j2, j3, j4) 7→ (S(j1), S(j3), S(j2), S(j4)).

Trivially, we have the following:

Proposition 5. If j ∈ N0 then S(j) ∈ N0.

With the symmetry relation S the elements of N0 reduce to the set N0/S which
is reported in the Appendix (section 8) and whose cardinality is 42.

Now we consider the vertical and horizontal connections of building blocks which
gives a vertical stripe (Iv,J v) and a horizontal stripe (Ih,J h). We next compute
what are N v and N h from vertical and horizontal admissible concatenation of
elements of N0.

Definition 10. A concatenation of 2 elements of N0, j
1 = (j111, j

1
12, j

1
21, j

1
22) and

j2 = (j211, j
2
12, j

2
21, j

2
22), with j1, j2 ∈ N0 is vertical admissible if (j121, j

1
22, j

2
11, j

2
12) ∈

N0. A concatenation of 2 elements j1, j2 ∈ N0 is horizontal admissible if (j112, j
2
11,

j122, j
2
21) ∈ N0.

We begin with the vertical concatenations. To determine what are the vertical
admissible concatenations of elements of N0 we build the graph Gv as follows.

Enumeration 1. Consider the mapping

β : {0, 1, . . . , 6} → M,

with β(0) = I, β(1) = II0, β(2) = II1.1, β(3) = II1.2, β(4) = III0, β(5) = III1.1,
β(6) = III1.2. Consider also the mapping

δ : {0, . . . , 48} → {0, 1, . . . , 6} × {0, 1, . . . , 6},

with δ(i) = (n, r), where n and r are such that i ≡ r (mod 7) and i = 7n+ r. For
notation convenience we denote n = δ1(i) and r = δ2(i).
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Figure 4. The graph shows the vertical admissible connections
among building blocks for the Oriented Manhattan Network. Iso-
lated nodes do not appear in the graph.

Definition 11. Let V = {V0, . . . , V48} with

Vi = (β(δ1(i)), β(δ2(i))) ∈ M×M.

We define Gv the graph whose set of vertices is V . Two vertices Vi and Vk, cor-
responding to two pairs (ji1 , ji2), (jk1 , jk2) ∈ M×M respectively, are joined by a
directed edge from Vi to Vk if and only if (ji1 , ji2 , jk1 , jk2) ∈ N0.
Based on the graph Gv we define a second graph, Gh, as follows. The set of vertices
of Gh is V . In Gh two vertices Vi = (ji1 , ji2) and Vk = (jk1 , jk2), with i = 7ni + ri
and k = 7nk + rk, are joined by a directed edge from Vi to Vk if and only if
(ji1 , jk1 , ji2 , jk2) ∈ N0, that is, if and only if, in Gv, there is directed edge from
Vi′ = (ji1 , jk1) to Vk′ = (ji2 , jk2), with i′ = 7ni + nk and k′ = 7ri + rk.

In figure 4 we give a graphical representation of the graph Gv of vertical admis-
sible connections among building blocks of the Oriented Manhattan Network. For
simplifying the picture we avoid to represent isolated nodes. More precisely the
graph Gv shows what are the possible equilibria types j3 and j4 at the nodes J21

and J22 once fixed the equilibria types j1 and j2 at the nodes J11 and J12 (so that
j = (j1, j2, j3, j4) ∈ N0.) The horizontal admissible concatenations, instead, are
shown in the graph Gh. See fig. 5 for the graphical representation of Gh.

By studying the closed loops of the graph Gv and Gh, one can deduce all infor-
mations relative to possible periodic equilibria on the network. Indeed we have the
following:

Theorem 2. To each equilibrium solution, there corresponds a set of paths on the
graphs Gv and Gh. More precisely to each vertical stripe there corresponds a path in
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Figure 5. The graph shows the horizontal admissible connections
among building blocks for the Oriented Manhattan Network. Iso-
lated nodes have been erased from the graph.

Gv and to each horizontal stripe there corresponds a path in Gh. If the equilibrium
is periodic then the paths are closed.

Definition 12. We say that a vertical stripe is periodic of order 0 if all nodes are
of the same type. It can be obtained as vertical concatenation of an element of type
j = (j1, j1, j1, j1) with itself.
A vertical stripe is periodic of order 1 if all nodes Ji1 are of the same type and all
nodes Ji2 are of the same type. It can be obtained as vertical concatenation of an
elements of type j = (j1, j2, j1, j2) with itself.
A vertical stripe is periodic of order n if all nodes Jr+nk,1 and Jr+nk,2, for r =
1, . . . , n and k ∈ ZZ are of the same type.

We immediately have the following.

Proposition 6. Any isolated node of the graph Gv corresponds to a pair of equi-
librium types that can not be part of an equilibrium on the building block.
A loop on a vertex describes an equilibrium with periodicity 1. In particular a loop
on a vertex V , corresponding to a pair of type (j, j), describes an equilibrium with
periodicity 0. In general, closed paths of length n describe the equilibria with peri-
odicity n.

Then from the graph Gv we see that the vertices V8, V9, V12, V18, V32, V39 give the
periodicity 1 on the network. Since a pair of type (j, j) corresponds to a vertex Vi
with i = 7n+r, where n = r, hence with i = 8n, we get that the vertices which give
periodicity 0 are V8 and V32. The closed paths of length 2 are given by the pairs (of
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vertices) (V8, V9), (V12, V18) and (V32, V39). Other closed paths of any length can be
built trivially by composing closed paths of length 2 with loops.

From the graph Gh we get that the vertices V8, V10, V13, V25, V32, V46 give peri-
odicity 1 where, in particular the vertices V8 and V32 give the periodicity 0. Closed
paths of length 2 are given by the pairs (V8, V10), (V13, V25) and (V32, V46).

Now we want to see what are the periodic equilibria over the whole network.

Theorem 3. The periodic structures over the whole network are the following:

• equilibrium of type II0 for each node of the network;
• equilibrium of type III0 for each node of the network.

Proof. To prove the theorem we must analyze which are the periodic vertical struc-
tures that can be repeated horizontally.

The 0–periodic vertical structures are given by the loops in Gv on the vertices
V8 and V32. Since 8 = 7 × 1 + 1 and 32 = 7 × 4 + 4, these vertices correspond to
equilibrium type II0 and III0 at each node. This vertical structures is compatible
with the 0–periodic horizontal structure given by the loops in Gh on the vertices V8

and V32.
Next we see that there are no other periodic vertical structure compatible with

a periodic horizontal one.
We begin with the structure given by loop on the vertex V9 of Gv. Since 9 =

7 × 1 + 2, V9 corresponds to the pair (II0, II1.1). Then we can consider a vertical
stripe where each row is comprised of two nodes the equilibrium type of which is
described by the elements II0, II1.1 of M.

If a horizontal periodic structure was compatible with this vertical one then there
would exists a closed path on Gh beginning in V8 through V16 (since 8 = 7 × 1 + 1
and 16 = 7 × 2 + 2) and going back to V8. But from Gh it is easy to check that
such a closed path does not exists.

The same reasoning applies to the loop on vertex V12. 12 = 7×1+5, therefore a
horizontal periodic structure compatible with this vertical one requires that in Gh

there exists a closed path beginning at V8, through V40 (40 = 7× 5 + 5), and going
back to V8. As before, such a path does not exists.

Concerning the loops on vertices V18 and V39, having a compatible horizontal
periodic structure would mean the existence of closed paths in Gh based at V16 and
V40 respectively, which is false.

Next we consider the closed paths (8, 9), (12, 18) and (32, 29). Horizontal struc-
tures compatible with the above vertical ones exist if and only if in Gh there exist
closed paths based respectively at V8, V9 and V33 and passing respectively through
V9, V39 and V32. Such paths do not exist, then there are no periodic horizontal struc-
tures compatible with the vertical ones except for the trivial ones corresponding to
the loops on vertices V8 and V32.

By rewriting the vertices back to pairs in M×M we get that the vertical (resp.
horizontal) structures with periodicity 0, 1 and 2 are given by vertical (resp. hori-
zontal) concatenation of j with itself where j ∈ S0, j ∈ S1 and j ∈ S2, respectively,
and

S0 = {(II0, II0, II0, II0), (III0, III0, III0, III0)},

S1 = {(II0, II1.1, II0, II1.1), (II0, III1.1, II0, III1.1),
(II1.1, III0, II1.1, III0), (III1.1, III0, III1.1, III0)},
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and

S2 = {(II0, II1.1, II0, II0), (II0, III1.1, II1.1, III0), (III0, III0, III1.1, III0),
(II0, II0, II0, II1.1), (II1.1, III0, II0, III1.1), (III1.1, III0, III0, III0)}.

5.2. Circular Manhattan Network. Consider now the network represented in
picture 1.4. Also in this case we have 2 incoming and 2 outgoing lines for each node
of the network. Hence, as in the previous case,

M = {I, II0, II1.1, II1.2, III0, III1.1, III1.2}.

A building block is now given as in the following:

Definition 13. A building block of the Circular Manhattan Network is given by a
subnetwork (I0,J0) with

J0 = {J11, J12, J13, J21, J22, J23, J31, J32, J33}

and

I0 = {incominglij, outgoing
l
ij, i, j = 1, 2, 3, l = h, v},

where h stands for horizontal and v stands for vertical. We can connect building
blocks vertically and horizontally to obtain the subnetworks stripes (Iv,J v) and
(Ih,J h) with

J v = {J11, J12, J13, . . . , Js1, Js2, Js3},

J h = {J11, J21, J31, . . . , J1t, J2t, J3t}

and

Iv = {incominglij, outgoing
l
ij, i = 1, . . . s, j = 1, 2, 3, l = 1, . . . , ℓ},

Ih = {incominglij, outgoing
l
ij, i = 1, 2, 3, j = 1, . . . s, l = 1, . . . , ℓ}.

Finally we can horizontally connect vertical stripes or vertically connect horizontal
stripes to obtain the whole network (I,J ).

For each node Jij , the vector ((incominghij , incoming
v
ij), (outgoing

h
ij, outgoing

v
ij))

describes the types of the equilibrium densities along the lines as incident lines at
that node and it is an element of M. For determining the set N0 we rewrite rule
H as follows:

• if i is odd and j is odd then
incominghij = bad if and only if outgoinghij−1 = good;
incomingvij = bad if and only if outgoingvi−1 j = good;

• if i is odd and j is even then
incominghij = bad if and only if outgoinghij−1 = good;
incomingvij = bad if and only if outgoingvi+1 j = good;

• if i is even and j is odd then
incominghij = bad if and only if outgoinghij+1 = good;
incomingvij = bad if and only if outgoingvi−1 j = good;

• if i is even and j is even then
incominghij = bad if and only if outgoinghij+1 = good;
incomingvij = bad if and only if outgoingvi+1 j = good.

Following rule H we can determine what is the set N0 of admissible configurations
of the subnetwork (I0,J0) as follows.
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a): Consider node J23. It has one incoming line from J13 and one outgoing line
to J22. These two lines cannot be both good, i.e. outgoingv13 and incomingh22
cannot be both bad. Thus if J22 ∈ {I, II0, II1.1, II1.2, III1.1}, then J13 ∈
{II0, II1.1}. If otherwise J22 ∈ {III0, III1.2} then we have no restriction on
J13 which thus can assume any value in M.

b): The same argument applies to J32. It has one incoming line from J31 and one
outgoing line to J22. These two lines cannot be both good, i.e. outgoingh31 and
incomingv22 cannot be both bad. Thus if J22 ∈ {I, II0, II1.1, II1.2, III1.2},
then J31 ∈ {II0, II1.2}. If otherwise J22 ∈ {III0, III1.1} then we have no
restriction on J31 which thus can assume any value in M.

c): Now assume that J22 ∈ {I, II0, II1.1, II1.2, III1.1} and J13 ∈ {II0, II1.1}.
Since J13 has at least one good outgoing line, it must be incomingh13 = bad
and outgoingh12 = good thus implying J12 ∈ {II0, II1.2}. In turn we get that
incomingv12 = bad and outgoingv22 = good. Then we get J22 ∈ {II0, II1.1}.

d): On the other hand, if we assume that J22 ∈ {I, II0, II1.1, II1.2, III1.2}
and J31 ∈ {II0, II1.2}, since J31 as at least one good outgoing line, it must be
incomingv31 = bad and outgoingv21 = good thus implying J21 ∈ {II0, II1.1}.
In turn we get that incomingh21 = bad and outgoingh22 = good. Then we get
J22 ∈ {II0, II1.1}. Together with c) we obtain that J22 = II0.

e): For J12 ∈ {II0, II1.2} and J21 ∈ {II0, II1.1} it must be outgoingh11 = good
and outgoingv11 = good. Hence J11 = II0.
For J32 = II0 and J23 = II0 it must be incomingh33 = bad and incomingv33 =
bad, hence J33 ∈ {I, II0, II1.1, II1.2}.
If J32 = II0 and J23 = II1.2 then incomingh33 = bad and incomingv33 = good,
hence J33 = III1.1.
If J32 = II1.1 and J23 = II0 then incomingh33 = good and incomingv33 = bad,
hence J33 = III1.2.
Finally, if J32 = II1.1 and J23 = II1.2 then incomingh33 = good and in-
comingv33 = good, hence J33 = III0.

f): If J22 ∈ {III0, III1.2} then incomingv12 = good and incomingh21 = good.
Hence J12 ∈ {III0, III1.1} and J21 ∈ {III0, III1.2}. Then it must be
incomingh13 = good and incomingv31 = good, i.e. J13 ∈ {III0, III1.2} and
J31 ∈ {III0, III1.1}. In turn this gives incomingv23 = good and incomingh32 =
good, i.e. J23 ∈ {III0, III1.1} and J32 ∈ {III0, III1.2}. Finally this
gives incomingv33 = good and incomingh33 = good, incomingh22 = good and
incomingv22 = good, that is J33 = III0 and J22 = III0.
Moreover if J12 = III0 and J21 = III0, since outgoingh11 = bad and outgoingv11
= good then J11 ∈ {I, III0, III1.1, III1.2}.
If otherwise J12 = III1.1 and J21 = III0, since outgoingh11 = good and
outgoingv11 = bad then J11 = II1.2.
If J12 = III0 and J21 = III1.2, since outgoingh11 = bad and outgoingv11 =
good then J11 = II1.1.
If finally J12 = III1.1 and J21 = III1.2, since outgoingh11 = good and
outgoingv11 = good then J11 = II0.

Now we consider the vertical and horizontal concatenations of building blocks
which give the whole network (I,J ).

Definition 14. A concatenation of 2 elements of N0, j
1 = (j111, j

1
12, j

1
13, j

1
21, j

1
22, j

1
23,

j131, j
1
32, j

1
33) and j2 = (j211, j

2
12, j

2
13, j

2
21, j

2
22, j

2
23, j

2
31, j

2
32, j

2
33), with j1, j2 ∈ N0 is
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vertical admissible if there exists (j21, j22, j23) such that

(j131, j
1
32, j

1
33, j21, j22, j23, j

2
11, j

2
12, j

2
13) ∈ N0.

A concatenation of 2 elements j1, j2 ∈ N0 is horizontal admissible if there exists
(j12, j22, j32) such that

(j113, j12, j
2
11, j

1
23, j22, j

2
21, j

1
33, j32, j

2
31) ∈ N0.

Now the set N0 is very large. Then we follow a different approach here and use
the informations on N0 given in the above description to directly obtain N , i.e. the
set of equilibria over the whole network. We get the following.

Theorem 4. We have

N = {{Jij = II0, i = 1 . . . , s, j = 1, . . . , t}, {Jij = III0, i = 1 . . . , s, j = 1, . . . , t}}

that is N is comprised of only two equilibria. Moreover, each equilibrium solution
of the Circular Manhattan Network is periodic.

Proof. To prove the theorem we write the following two tables:

II0 II0, II1.2 II0, II1.1

II0, II1.1 II0 II0, II1.2

II0, II1.2 II0, II1.1 J33

J11 III0, III1.1 III0, III1.2

III0, III1.2 III0 III0, III1.1

III0, III1.1 III0, III1.2 III0

.

which indicate which are the possible equilibria at each node Jij , for i = 1, 2, 3 and
j = 1, 2, 3. The generic J33 in the first table and J11 in the second mean that the
equilibrium at those nodes has to be deduced from the equilibrium at the adjacent
nodes along with the descriptions given in e) and f).

From the first table it is clear that to have vertical connections among building
blocks it must be J31 = J11 = II0, J32 = J12 = II0 and J33 = J13 ∈ {II0, II1.1}
from which, by e), J23 = II0. To also have horizontal connections it must be
J21 = J23 = II0 and J33 = J31 = J13 = II0, i.e. Jij = II0 for all i, j = 1, 2, 3.

Analogously, from the second table, we get that it must be J12 = J32 = III0,
J13 = J33 = III0 and J11 = J31 ∈ {III0, III1.1}, from which, by f), J21 = III0.
To also have horizontal connections we get that J31 = J33 = III0, J21 = J23 = III0
and J11 = J13 = III0, i.e. Jij = III0 for all i, j = 1, 2, 3.
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5.3. Full Manhattan Network. Finally we consider the Full Manhattan Network
(see fig. 1.5). In this case we have 4 incoming and 4 outgoing lines from each node
of the network and we denote by incominglij, outgoing

l
ij, with l = 1, 2, 3, 4, the type

of the densities along, respectively, the incoming and the outgoing lines at the node
ij. Then

M = {I, II0, II1.1, II1.2, II1.3, II1.4, II2.1.2, II2.1.3, II2.1.4, II2.2.3, II2.2.4,
II2.3.4, II3.1.2.3, II3.1.2.4, II3.1.3.4, II3.2.3.4,
III0, III1.1, III1.2, III1.3, III1.4, III2.1.2, III2.1.3, III2.1.4, III2.2.3,
III2.2.4, III2.3.4, III3.1.2.3, III3.1.2.4, III3.1.3.4, III3.2.3.4}.

The building blocks can be taken as in definition 9. Rule H is rewritten as follows:

• incoming1
ij = bad if and only if outgoing3

ij−1 = good;

• incoming2
ij = bad if and only if outgoing4

i−1 j = good;

• incoming3
ij = bad if and only if outgoing1

ij+1 = good;

• incoming4
ij = bad if and only if outgoing2

i+1 j = good.

From rule H we get a similar result as for the Circular Manhattan Network.

Theorem 5. We have

N = {{Jij = II0, i = 1 . . . , s, j = 1, . . . , t}, {Jij = III0, i = 1 . . . , s, j = 1, . . . , t}}

that is N is comprised of only two equilibria. Moreover, each equilibrium solution
of the Full Manhattan Network is periodic.

Proof. We first consider a building block (I0,J0) and see what are the possible
equilibria for it.

Assume first that at node J11 the equilibrium is of type I. Then at nodes J12

and J21 the equilibrium is one among the III types, i.e. the outgoing lines from
J12 and J21 are all of type bad. In particular there is one outgoing line for J12 (for
J21) which is incoming for J11 which, by rule H, must be good. But this contradicts
the fact that the equilibrium at J11 is of type I.

Assume now that the equilibrium at node J11 is one among the II types. This
means that there is at least one good outgoing line from J12 and one good outgoing
line from J21, hence the equilibrium at nodes J12 and J21 are also of type II. The
same conclusion holds for J22, since it must have two outgoing lines which are good.
From this argument we extract some more information:

• the outgoing lines from J11 towards J12 and J21 are good,
• the outgoing lines from J12 towards J11 and J22 are good,
• the outgoing lines from J21 towards J11 and J22 are good,
• the outgoing lines from J22 towards J12 and J21 are good.

The same argument can be produced in the case where the equilibrium at node
J11 is of type III. We obtain that the equilibrium at any node of the building block
is of type III and

• the incoming lines at J11 from J12 and J21 are good,
• the incoming lines at J12 from J11 and J22 are good,
• the incoming lines at J21 from J11 and J22 are good,
• the incoming lines at J22 from J12 and J21 are good.

By concatenating building blocks among them both horizontally and vertically
we get that the only possibility is that given in the thesis. Indeed, assuming that
the nodes are all of type II,
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• the equilibria type at J11 must be equal to the equilibria type of both J12 and
J21;

• the equilibria type at J12 must be equal to the equilibria type of both J11 and
J22;

• the equilibria type at J21 must be equal to the equilibria type of both J11 and
J22;

• the equilibria type at J22 must be equal to the equilibria type of both J12 and
J21.

Hence all the densities on the outgoing lines from all the nodes Jij , i, j = 1, 2, must
be of type good. The same argument holds when we assume that the nodes are all
of type III.

6. Triangular networks. By drawing the triangular tiling as in the pictures 1.1
and 1.2 we can look at the nodes as if they were elements of a matrix and number
them Jij , with i = 1, . . . , s and j = 1 . . . , t. For each node there are 3 incoming
and 3 outgoing lines and by incominglij, outgoing

l
ij, with l = h, d, v (for horizontal,

diagonal and vertical respectively), we describe the types of the equilibrium densities
along the lines incident at the node Jij . The equilibrium type at one node can
then be assigned by giving a vector of length 6:

((incominghij , incoming
d
ij, incoming

v
ij), (outgoing

h
ij, outgoing

d
ij, outgoing

v
ij)).

Hence we have:

M = {I, II0, II1.1, II1.2, II1.3, II2.1.2, II2.1.3, II2.2.3,
III0, III1.1, III1.2, III1.3, III2.1.2, III2.1.3, III2.2.3}

6.1. Oriented Triangular Network. A building block (I0,J0) is as in definition
9: it is comprised of the four nodes J11, J12, J21, J22. And the whole network is
obtained by connecting building blocks both horizontally and vertically as in the
Oriented Manhattan case.

Rule H can be rewritten as follows:

• incominghij = bad if and only if incominghij−1 = good;

• incomingdij = bad if and only if incomingdi−1 j−1 = good;
• incomingvij = bad if and only if incomingvi−1 j = good.

Now from rule H one finds the set N0 as described in Algorithm 1. We get that
the cardinality of N0 is 674. Proceeding as in section 5.1 we describe the vertical
and horizontal admissible connections by means of the graphs obtained as follows
(and drawn in figures 6 and 7).

Enumeration 2. Let

β : {0, 1, . . . , 14} → M,

with β(0) = I, β(1) = II0, β(2) = II1.1, β(3) = II1.2, β(4) = II1.3, β(5) =
II2.2.3, β(6) = II2.1.3, β(7) = II2.1.2, β(8) = III0, β(9) = III1.1, β(10) =
III1.2, β(11) = III1.3, β(12) = III2.2.3, β(13) = III2.1.3, β(14) = II2.1.2. Let
also

δ : {0, . . . , 224} → M

with δ(i) = (n, r), where n and r are such that i ≡ r (mod 15) and i = 15n + r.
For notation convenience we denote n = δ1(i) and r = δ2(i).
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Figure 6. The graph shows the vertical admissible connections
among building blocks for the Oriented Triangular Network.

Definition 15. Let V = {V0, . . . , V224} with

Vi = (β(δ1(i)), β(δ2(i))) ∈ M×M.

We denote by Gv the graph whose set of vertices is V . Two vertices Vi and Vk,
corresponding to two pairs (ji1 , ji2), (jk1 , jk2) ∈ M×M respectively, are joined by
a directed edge from Vi to Vk if and only if (ji1 , ji2 , jk1 , jk2) ∈ N0.
From the graph Gv we build the graph Gh. The set of vertices of Gh is V and two
vertices Vi = (ji1 , ji2 ) and Vk = (jk1 , jk2), with i = 15ni+ ri and k = 15nk+ rk, are
joined by a directed edge from Vi to Vk if and only if (ji1 , jk1 , ji2 , jk2) ∈ N0, that
is, if and only if there is directed edge from Vi′ = (ji1 , jk1) to Vk′ = (ji2 , jk2), with
i′ = 15ni + nk and k′ = 15ri + rk, in Gv.

In figures 6 and 7 are represented the graphs Gv and Gh respectively. For sim-
plifying the pictures we have:

• avoided the representation of isolated nodes;
• put in the same circle nodes that have same parents and children;
• drawn a loop on a circle (diamond) containing more than one node with the

meaning that the nodes inside form a complete subgraph (i.e. all nodes are
connected to each other and to themselves).

As for the Oriented Manhattan Network, Gv and Gh show the feasible vertical and
horizontal concatenations respectively and give informations about the admissible
periodic structures of equilibria.
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Figure 7. The graph shows the horizontal admissible connections
among building blocks for the Oriented Triangular Network.

From pictures 6 and 7 it can be seen that graphs Gv and Gh present each:

a: 2 complete subgraphs, i.e. each vertex of the subgraph is connected to itself
and to all other vertices of the subgraph, which are represented by the big
diamonds on top and at the bottom of the graphs, and

b: a subgraph, in the middle of the picture, comprised of the 4 diamond con-
nected by the thick arrows.

The complete subgraphs described in a contain loops and cycles of any order. There-
fore we have periodicities of any order. In particular there are periodicities of order
0 corresponding to the loops (16, 16) and (128, 128). Among the cycles of length 2
we have (16, 18) and (128, 158). Also the subgraph described in b presents loops
and cycles of any order. However, as for the Oriented Manhattan Network, possible
periodic structures for the whole network are very few.

Theorem 6. The periodic structures over the whole network are the following:

• equilibrium of type II0 for each node of the network;
• equilibrium of type III0 for each node of the network.

Proof. To prove the theorem we will show that the only vertical periodicities com-
patible with the horizontal ones are those given by the cycles (16, 16) and (128, 128).
To see what are the vertical periodicities compatible with the horizontal ones it is
sufficient to translate the vertical cycles into horizontal connections and verify if
the so obtained horizontal connections either form a closed path or form a subpath
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of a closed path.

We perform this computation in some cases being the others completely equiva-
lent. Since 16 = 15 × 1 + 1, the vertical loop (16, 16) corresponds to the horizontal
loop (16, 16).
On the other hand the vertical loops (17, 17), (18, 18) and (22, 22) correspond to
the horizontal connections 16 → 32, 16 → 48 and 16 → 112.

The cycles (16, 17) and (16, 22) correspond to the horizontal connections 16 → 17
and 16 → 22 which are not contained in any closed path in Gh. Analogously, the cy-
cles (17, 18), (17, 22) and (18, 22) correspond to the horizontal connections 16 → 33,
16 → 37 and 16 → 49 which are not contained in any closed path in Gh.

The vertical cycle (16, 18) corresponds to the horizontal cycle (16, 18). However,
assume we consider a vertical stripe of type (16, 18, 16). To be horizontally compat-
ible it should be that the vertical connection 18 → 16 corresponds to a horizontal
closed path (or part of it). Instead the vertical 18 → 16 connection corresponds to
the horizontal connection 16 → 46.

A similar analysis can be performed for the closed paths of the subgraph described
in b and in the complete graph at the bottom of Gv.

6.2. Circular Triangular Network. A building block for a Circular Triangular
Network is comprised of the 9 nodes Jij , i = 1, . . . , 3, j = 1, . . . , 3, as described
in definition 13. The whole network is obtained by connecting the building blocks
both vertically and horizontally as it has been done for the Circular Manhattan
Network.

Rule H can now be rewritten as follows:

• if i is odd and j is odd then
incominghij is bad if and only if outgoinghi j−1 is good;
incomingvij is bad if and only if outgoingvi−1 j is good;

incomingdij is bad if and only if outgoingdi−1 j−1 is good;
• if i is odd and j is even then
incominghij is bad if and only if outgoinghi j−1 is good;
incomingvij is bad if and only if outgoingvi+1 j is good;

incomingdij is bad if and only if outgoingdi+1 j+1 is good;
• if i is even and j is odd then
incominghij is bad if and only if outgoinghi j+1 is good;
incomingvij is bad if and only if outgoingvi−1 j is good;

incomingdij is bad if and only if outgoingdi+1 j+1 is good;
• if i is even and j is even then
incominghij is bad if and only if outgoinghi j+1 is good;
incomingvij is bad if and only if outgoingvi+1 j is good;

incomingdij is bad if and only if outgoingdi−1 j−1 is good.

Using rule H we determine the set N0 of admissible configurations of the building
block as follows.

a): Consider node J23. It has one incoming line from J13 and one outgoing line
to J22. Since these two lines cannot be both good, it must be that outgoingv13
and incomingh22 cannot be both bad. Thus, if

J22 ∈ {I, II0, II1.1, II1.2, II1.3, II2.2.3, II2.1.3, II2.1.2, III1.1, III2.1.3, III2.1.2}
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then J13 ∈ {II0, II1.1, II1.2, II2.1.2}. If otherwise

J22 ∈ {III0, III1.2, III1.3, III2.2.3},

then J13 can be of any type in M.
b): The same argument applies to J32. It has one incoming line from J31 and

one outgoing line to J22. Since these two lines cannot be both good, it must
be that outgoingh31 and incomingv22 cannot be both bad. Thus, if

J22 ∈ {I, II0, II1.1, II1.2, II1.3, II2.2.3, II2.1.3, II2.1.2, III1.3, III2.2.3, III2.1.3}

then J31 ∈ {II0, II1.2, II1.3, II2.2.3}. If otherwise

J22 ∈ {III0, III1.1, III1.2, III2.1.2},

then J31 can be of any type in M.
c): Now if

J22 ∈ {I, II0, II1.1, II1.2, II1.3, II2.2.3, II2.1.3, II2.1.2, III1.1, III2.1.3, III2.1.2}

then, by a), J13 ∈ {II0, II1.1, II1.2, II2.1.2} with outgoingv13 = good,
hence J12 ∈ {II0, II1.2, II1.3, II2.2.3} with outgoingh12 = good,
J22 ∈ {II0, II1.1, II1.2, II2.1.2} with outgoingv22 = good
and J23 ∈ {II0, II1.3} with outgoingd23 = good and outgoingh23 = good.

d): On the other hand, if we assume that

J22 ∈ {I, II0, II1.1, II1.2, II1.3, II2.2.3, II2.1.3, II2.1.2, III1.3, III2.2.3, III2.1.3}

then, by b), J31 ∈ {II0, II1.2, II1.3, II2.2.3} with outgoingh31 = good,
hence J21 ∈ {II0, II1.1, II1.2, II2.1.2} with outgoingv21 = good,
J22 ∈ {II0, II1.2, II1.3, II2.2.3} with outgoingh22 = good
and J32 ∈ {II0, II1.1} with outgoingd32 = good and outgoingv32 = good.

e): From c) and d) we get that J22 ∈ {II0, II1.2} and J11 = II0.
f): Now, if J22 = II0, J23 = II0, J32 = II0 then

J33 ∈ {I, II0, II1.1, II1.2, II1.3, II2.2.3, II2.1.3, II2.1.2},

if J22 = II0, J23 = II0, J32 = II1.1 then J33 = III2.2.3,
if J22 = II0, J23 = II1.3, J32 = II0 then J33 = III2.1.2,
if J22 = II1.2, J23 = II0, J32 = II0 then J33 = III2.1.3,
if J22 = II0, J23 = II1.3, J32 = II1.1 then J33 = III1.2,
if J22 = II1.2, J23 = II0, J32 = II1.1 then J33 = III1.3,
if J22 = II1.2, J23 = II1.3, J32 = II0 then J33 = III1.1,
if J22 = II1.2, J23 = II1.3, J32 = II1.1 then J33 = III0.

g): If otherwise

J22 ∈ {III0, III1.2, III1.3, III2.2.3},

then incomingv12 = good, incomingd33 = good and incomingh21 = good. It fol-
lows that incomingh13 = good and incomingv23 = good from which incomingd12
= good and incomingv33 = good, i.e. J12, J33 ∈ {III0, III1.1}, while J13 ∈
{III0, III1.2, III1.3, III2.2.3} and J23 ∈ {III0, III1.1, III1.2, III2.1.2}. It
also follows that incomingv31 = good hence incomingh32 = good from which
incomingd21 = good, incomingv22 = good and incomingh33 = good, i.e. J31 ∈
{III0, III1.1, III1.2, III2.1.2}, J32 ∈ {III0, III1.2, III1.3, III2.2.3}, J21 ∈
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{III0, III1.3}, J22 ∈ {III0, III1.2} and J33 = III0.
Finally, if J21 = III0, J22 = III0 and J12 = III0 then

J11 ∈ {III0, III1.1, III1.2, III1.3, III2.2.3, III2.1.3, III2.1.2},

if J21 = III1.3, J22 = III0 and J12 = III0 then J11 = II2.1.2,
if J21 = III0, J22 = III1.2 and J12 = III0 then J11 = II2.1.3,
if J21 = III0, J22 = III0 and J12 = III1.1 then J11 = II2.2.3,
if J21 = III0, J22 = III1.2 and J12 = III1.1 then J11 = II2.3,
if J21 = III1.3, J22 = III0 and J12 = III1.1 then J11 = II2.2,
if J21 = III1.3, J22 = III1.2 and J12 = III0 then J11 = II2.1.

Clearly the set N0 is very large. As in section 5.2, for the Circular Manhattan
case we use the informations on N0 to directly describe the set N of equilibria over
the whole network. We also obtain a similar result:

Theorem 7.

N = {{Jij = II0, i = 1 . . . , s, j = 1, . . . , t}, {Jij = III0, i = 1 . . . , s, j = 1, . . . , t}}

that is, N is comprised of only two equilibria. Moreover, each equilibrium solution
of the Circular Triangular Network is periodic.

Proof. To prove the theorem we write the following two tables:

II0
II0, II1.2,
II1.3, II2.2.3

II0, II1.1,
II1.2, II2.1.2

II0, II1.1,
II1.2, II2.1.2

II0, II1.2 II0, II1.3

II0, II1.2,
II1.3, II2.2.3

II0, II1.1 J33

J11 III0, III1.1
III0, III1.2,
III1.3, III2.2.3

III0, III1.3 III0, III1.2
III0, III1.1,
III1.2, III2.1.2

III0, III1.1,
III1.2, III2.1.2

III0, III1.2,
III1.3, III2.2.3

III0

.

which indicate which are the possible equilibria at each node Jij , for i = 1, 2, 3 and
j = 1, 2, 3. The generic J33 in the first table and J11 in the second mean that the
equilibrium at those nodes has to be deduced from the equilibria at the adjacent
nodes along with the descriptions given in f) and g).
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From the first table it is clear that to have vertical connections among build-
ing blocks it must be J31 = J11 = II0, J32 = J12 = II0 and J33 = J13 ∈
{II0, II1.1, II1.2, II2.1.2}, from which, by f), J22 = II0 and J23 = II0. To also
have horizontal connections it must be J21 = J23 = II0 and J33 = J31 = J13 = II0,
i.e. Jij = II0 for all i, j = 1, 2, 3.

Analogously, from the second table, we get that it must be J12 = J32 = III0,
J13 = J33 = III0 and J11 = J31 ∈ {III0, III1.1, III1.2, III2.1.2}, from which,
by g), J21 = J22 = III0. To also have horizontal connections we get that J31 =
J33 = III0, J21 = J23 = III0 and J11 = J13 = III0, i.e. Jij = III0 for all
i, j = 1, 2, 3.

7. Qualitative versus quantitative equilibria. In this section, we add some
details to the analysis done in section 3 about the equilibria set. Combining propo-
sition 3 with theorems 3, 4, 5, 6 and 7 we get the followings.

Corollary 1. The space of periodic equilibria for an Oriented Network is a (L −
nN)–dimensional space, where n = 2 for the Square Networks and n = 3 for the
Triangular Networks.

Proof. From theorems 3 and 6 we have that the periodic structures over the oriented
(both Square and Triangular) Networks are given by either the equilibrium of type
II0 for each node or by the equilibrium of type III0 for each node. Assume that
at each node of the network the equilibrium is of type II0. This means that the
incoming flows at each node are of type bad and the outgoing flows at each node are
of type good. Therefore the outgoing flows are such that γψ < γmaxψ and γψ = αψΓ,

where αψ are the traffic distribution parameters, with
∑
αψ = 1, and Γ = Γin.

Analogously, if at each node of the network the equilibrium is of type III0, the
incoming flows are all of type good with γϕ < γmaxϕ . Then we have γϕ = pϕΓ,
where pϕ are the priority parameters, with

∑
pϕ = 1 and Γ = Γout. Finally, in

both cases, we get n− 1 constraints for each node in addition to the constraint (6).
Combining this result with proposition 3 we get that the space of equilibria is a
L− nN dimensional space.

Corollary 2. The equilibria for a Circular Network or for the Full Manhattan
Network is a (L − nN)–dimensional space, where n = 2 for the Circular Manhat-
tan Network, n = 3 for the Circular Triangular Network and n = 4 for the Full
Manhattan Network.

Proof. From theorems 4, 5 and 7, we have that the only equilibria structures over the
Circular (both Square and Triangular) Networks and over the Full Square Network
are given by either the equilibrium of type II0 at each node or by the equilibrium
of type III0 at each node. Similarly to the proof of corollary 1 we get a system of
nN constraints in L variables and the proof is finalized.

Now we compute the cardinality L of the set I of lines of the network. For an
Oriented or Circular Manhattan Network with N = s× t nodes, we have that

L = (s+ 1)t+ (t+ 1)s = 2st+ s+ t = 2N + s+ t;

for a Full Manhattan Network we have that

L = 2(s+ 1)t+ 2(t+ 1)s = 4st+ 2s+ 2t = 4N + 2s+ 2t;
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for a Triangular Network we have that

L = (s+ 1)t+ (t+ 1)s+ st+ s+ t− 1 = 3st+ 2s+ 2t− 1 = 3N + 2s+ 2t− 1.

Definition 16. We call in–line a line of the network which is incoming for some
node and outgoing for none. We call out–line a line of the network which is outgoing
for some node and incoming for none. Furthermore we call in–flow the flux on an
in–line and out–flow the flux on an out–line.

A simple computation gives the following.

Proposition 7. The number w of in–lines for a network is

• w = s+ t, for the Oriented and the Circular Manhattan Networks;
• w = 2s+ st, for the Full Manhattan Network;
• w = 2s+ 2t− 1, for the Oriented and the Circular Triangular Networks.

Finally, by computing L− nN we get the followings.

Corollary 3. The set of periodic equilibria for an Oriented Network is a w–
dimensional space.

Corollary 4. The set of equilibria for a Circular Network or for the Full Manhattan
Network is a w–dimensional space.

In other words, from the above corollaries 3 and 4 we finally get our main result:

Theorem 8. Consider the initial–boundary value problem for an oriented (resp.
circular or full) square or triangular network, with Dirichlet conditions at the in–
lines and Neumann conditions at the out–lines. Assume that a set of w constant
boundary data for the in–flows are fixed. Then there exists a unique equilibrium
(periodic equilibrium) solution on the network.

8. Appendix. The set of admissible equilibria for the building block (I0,J0) of
the Oriented Manhattan Network is:
N0 = {[I, III0, III0, III0], [I, III0, III1.1, III0], [I, III1.2, III0, III0],
[I, III1.2, III1.1, III0],

[II0, I, I, III0], [II0, I, II0, III1.1], [II0, I, II1.1, III0],
[II0, I, II1.2, III1.1], [II0, I, III1.2, III0],
[II0, II0, I, III1.2], [II0, II0, II0, I], [II0, II0, II0, II0],
[II0, II0, II0, II1.1], [II0, II0, II0, II1.2], [II0, II0, II1.1, III1.2],
[II0, II0, II1.2, I], [II0, II0, II1.2, II0], [II0, II0, II1.2, II1.1],
[II0, II0, II1.2, II1.2], [II0, II0, III1.2, III1.2],
[II0, II1.1, I, III1.2], [II0, II1.1, II0, I], [II0, II1.1, II0, II0],
[II0, II1.1, II0, II1.1], [II0, II1.1, II0, II1.2], [II0, II1.1, II1.1, III1.2],
[II0, II1.1, II1.2, I], [II0, II1.1, II1.2, II0], [II0, II1.1, II1.2, II1.1],
[II0, II1.1, II1.2, II1.2], [II0, II1.1, III1.2, III1.2],
[II0, II1.2, I, III0], [II0, II1.2, II0, III1.1], [II0, II1.2, II1.1, III0],
[II0, II1.2, II1.2, III1.1], [II0, II1.2, III1.2, III0],
[II0, III1.1, I, III0], [II0, III1.1, II0, III1.1], [II0, III1.1, II1.1, III0],
[II0, III1.1, II1.2, III1.1], [II0, III1.1, III1.2, III0],

[II1.1, III0, I, III0], [II1.1, III0, II0, III1.1], [II1.1, III0, II1.1, III0],
[II1.1, III0, II1.2, III1.1], [II1.1, III0, III1.2, III0],
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[II1.1, III1.2, I, III0], [II1.1, III1.2, II0, III1.1], [II1.1, III1.2, II1.1, III0],
[II1.1, III1.2, II1.2, III1.1], [II1.1, III1.2, III1.2, III0],

[II1.2, I, III0, III0], [II1.2, I, III1.1, III0],
[II1.2, II0, III0, III1.2], [II1.2, II0, III1.1, III1.2],
[II1.2, II1.1, III0, III1.2], [II1.2, II1.1, III1.1, III1.2],
[II1.2, II1.2, III0, III0], [II1.2, II1.2, III1.1, III0],
[II1.2, III1.1, III0, III0], [II1.2, III1.1, III1.1, III0],

[III0, III0, III0, III0], [III0, III0, III1.1, III0],
[III0, III1.2, III0, III0], [III0, III1.2, III1.1, III0],

[III1.1, III0, III0, III0], [III1.1, III0, III1.1, III0],
[III1.1, III1.2, III0, III0], [III1.1, III1.2, III1.1, III0],

[III1.2, III0, III0, III0], [III1.2, III0, III1.1, III0],
[III1.2, III1.2, III0, III0], [III1.2, III1.2, III1.1, III0]}.

The set N0 of equilibria for the building block of the Oriented Manhattan Net-
work, up to the symmetry relation S is the following:
N0/S = {[I, III0, III0, III0], [I, III0, III1.1, III0],
[I, III1.2, III1.1, III0],

[II0, I, I, III0], [II0, I, II0, III1.1], [II0, I, II1.1, III0],
[II0, I, II1.2, III1.1], [II0, I, III1.2, III0],
[II0, II0, II0, I], [II0, II0, II0, II0],
[II0, II0, II0, II1.1], [II0, II0, II1.1, III1.2],
[II0, II0, II1.2, I], [II0, II0, II1.2, II0], [II0, II0, II1.2, II1.1],
[II0, II0, II1.2, II1.2], [II0, II0, III1.2, III1.2],
[II0, II1.1, II1.1, III1.2],
[II0, II1.1, II1.2, I], [II0, II1.1, II1.2, II0], [II0, II1.1, II1.2, II1.1],
[II0, II1.1, III1.2, III1.2],
[II0, II1.2, II1.1, III0],
[II0, II1.2, III1.2, III0],
[II0, III1.1, III1.2, III0],

[II1.1, III0, I, III0], [II1.1, III0, II0, III1.1], [II1.1, III0, II1.1, III0],
[II1.1, III0, II1.2, III1.1], [II1.1, III0, III1.2, III0],
[II1.1, III1.2, I, III0], [II1.1, III1.2, II0, III1.1], [II1.1, III1.2, II1.1, III0],
[II1.1, III1.2, II1.2, III1.1], [II1.1, III1.2, III1.2, III0],

[III0, III0, III0, III0], [III0, III0, III1.1, III0],
[III0, III1.2, III1.1, III0],

[III1.1, III0, III0, III0], [III1.1, III0, III1.1, III0],
[III1.1, III1.2, III0, III0], [III1.1, III1.2, III1.1, III0]},
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