Pattern forming instabilities driven by non-diffusive interactions

  • Received: 01 January 2012 Revised: 01 March 2013
  • Primary: 35L45, 35P20, 35B20, 35B36; Secondary: 92C15, 92C17.

  • In analogy to the analysis of minimal conditions for the formation of diffusion driven instabilities in the sense of Turing, in this paper minimal conditions for a class of kinetic equations with mass conservation are discussed, whose solutions show patterns with a characteristic wavelength. The related linearized systems are analyzed, and the minimal number of equations is derived, which is needed for specific patterns to occur.

    Citation: Ivano Primi, Angela Stevens, Juan J. L. Velázquez. Pattern forming instabilities driven by non-diffusive interactions[J]. Networks and Heterogeneous Media, 2013, 8(1): 397-432. doi: 10.3934/nhm.2013.8.397

    Related Papers:

    [1] Ivano Primi, Angela Stevens, Juan J. L. Velázquez . Pattern forming instabilities driven by non-diffusive interactions. Networks and Heterogeneous Media, 2013, 8(1): 397-432. doi: 10.3934/nhm.2013.8.397
    [2] Yimamu Maimaiti, Zunyou Lv, Ahmadjan Muhammadhaji, Wang Zhang . Analyzing vegetation pattern formation through a time-ordered fractional vegetation-sand model: A spatiotemporal dynamic approach. Networks and Heterogeneous Media, 2024, 19(3): 1286-1308. doi: 10.3934/nhm.2024055
    [3] Simone Fagioli, Yahya Jaafra . Multiple patterns formation for an aggregation/diffusion predator-prey system. Networks and Heterogeneous Media, 2021, 16(3): 377-411. doi: 10.3934/nhm.2021010
    [4] Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory . An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks and Heterogeneous Media, 2011, 6(3): 401-423. doi: 10.3934/nhm.2011.6.401
    [5] Steinar Evje, Kenneth H. Karlsen . Hyperbolic-elliptic models for well-reservoir flow. Networks and Heterogeneous Media, 2006, 1(4): 639-673. doi: 10.3934/nhm.2006.1.639
    [6] Toshiyuki Ogawa, Takashi Okuda . Oscillatory dynamics in a reaction-diffusion system in the presence of 0:1:2 resonance. Networks and Heterogeneous Media, 2012, 7(4): 893-926. doi: 10.3934/nhm.2012.7.893
    [7] Laura Caravenna, Laura V. Spinolo . New interaction estimates for the Baiti-Jenssen system. Networks and Heterogeneous Media, 2016, 11(2): 263-280. doi: 10.3934/nhm.2016.11.263
    [8] Riccardo Bonetto, Hildeberto Jardón Kojakhmetov . Nonlinear diffusion on networks: Perturbations and consensus dynamics. Networks and Heterogeneous Media, 2024, 19(3): 1344-1380. doi: 10.3934/nhm.2024058
    [9] Marie Henry . Singular limit of an activator-inhibitor type model. Networks and Heterogeneous Media, 2012, 7(4): 781-803. doi: 10.3934/nhm.2012.7.781
    [10] Kota Ikeda . The existence and uniqueness of unstable eigenvalues for stripe patterns in the Gierer-Meinhardt system. Networks and Heterogeneous Media, 2013, 8(1): 291-325. doi: 10.3934/nhm.2013.8.291
  • In analogy to the analysis of minimal conditions for the formation of diffusion driven instabilities in the sense of Turing, in this paper minimal conditions for a class of kinetic equations with mass conservation are discussed, whose solutions show patterns with a characteristic wavelength. The related linearized systems are analyzed, and the minimal number of equations is derived, which is needed for specific patterns to occur.


    [1] M. S. Alber, M. A. Kiskowski and Y. Jing, Lattice gas cellular automaton model for rippling and aggregation in myxobacteria, Physica D, 191 (2004), 343-358.
    [2] U. Börner and M. Bär, Pattern formation in a reaction-advection model with delay: A continuum approach to myxobacterial rippling, Annalen der Physik, 13 (2004), 432-441. doi: 10.1002/andp.200410086
    [3] U. Börner, A. Deutsch, H. Reichenbach and M. Bär, Rippling patterns in aggregates of myxobacteria arise from cell-cell collisions, Physical Review Letters, 89 (2002), 078101.
    [4] O. Diekmann, M. Gyllenberg, J. A. J. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models I. Linear Theory, J. Math. Biol., 36 (1998), 349-388. doi: 10.1007/s002850050104
    [5] O. Diekmann, M. Gyllenberg, H. Huang, M. Kirkilionis, J. A. J. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models II. Nonlinear theory, J. Math. Biol., 43 (2001), 157-189. doi: 10.1007/s002850170002
    [6] M. Dworkin and D. Kaiser eds., "Myxobacteria II," American Society for Microbiology (AMS) Press, 1993.
    [7] R. Erban and H. J. Hwang, Global existence results for complex hyperbolic models of bacterial chemotaxis, DCDS-B, 6 (2006), 1239-1260. doi: 10.3934/dcdsb.2006.6.1239
    [8] R. Erban and H. Othmer, From signal transduction to spatial pattern formation in E.coli : A paradigm for multi-scale modeling in biology, Multiscale Modeling and Simulation, 3 (2005), 362-394. doi: 10.1137/040603565
    [9] E. Geigant, "Nichtlineare Integro-Differential-Gleichungen zur Modellierung interaktiver Musterbildungsprozesse auf $S^{1}$," (German) [Nonlinear Integro-Differential Equations for the Modelling of Interactive Pattern Formation Processes on $S^{1}$], Bonner Mathematische Schriften 323 Ph.D thesis, University of Bonn, 1999.
    [10] E. Geigant, On peak and periodic solutions of an integro-differential equation on $S^1$, in "Geometric Analysis and Nonlinear Partial Differential Equations", Springer-Verlag, Berlin, (2003), 463-474.
    [11] E. Geigant and M. Stoll, Bifurcation analysis of an orientational aggregation model, J. Math. Biol., 46 (2003), 537-563. doi: 10.1007/s00285-002-0187-1
    [12] A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12, (1972), 30-39. doi: 10.1007/BF00289234
    [13] T. Hillen, A Turing model with correlated random walk, J. Math. Biol., 35 (1996), 49-72. doi: 10.1007/s002850050042
    [14] O. Igoshin, J. Neu and G. Oster, Developmental waves in Myxobacteria: A novel pattern formation mechanism, Phys. Rev. E, 7 (2004), 1-11.
    [15] K. Kang, B. Perthame, A. Stevens and J. J. L. Velázquez, An Integro-differential equation model for alignment and orientational aggregation, J. of Differential Equations, 246 (2009), 1387-1421. doi: 10.1016/j.jde.2008.11.006
    [16] T. Kato, "Perturbation Theory for Linear Operators," Springer-Verlag, Berlin, 1980. doi: 10.1007/978-3-642-66282-9
    [17] F. Lutscher and A. Stevens, Emerging patterns in a hyperbolic model for locally interacting cell systems, J. Nonlinear Science, 12 (2002), 619-640. doi: 10.1007/s00332-002-0510-4
    [18] H. Meinhardt, Morphogenesis of lines and nets, Differentiation, 6 (1976), 117-123.
    [19] J. D. Murray, "Mathematical Biology I and II," Interdisciplinary Applied Mathematics 17 and 18, Springer-Verlag, New York, 2002/03.
    [20] H. Othmer, S. Dunbar and W. Alt, Models of dispersal in biological systems, J. Math. Biol., 26 (1988), 263-298. doi: 10.1007/BF00277392
    [21] B. Perthame, "Transport Equations in Biology," Frontiers in Mathematics, Birkhäuser-Verlag, Basel, 2007.
    [22] B. Pfistner, "Ein Eindimensionales Modell Zum Schwarmverhalten der Myxobakterien Unter Besonderer Berücksichtigung der Randzonenentwicklung," (German) [A one-dimensional model on the swarming behavior of Myxobacteria, with special consideration of the development of the boundary zone], Ph.D thesis, University of Bonn, 1992.
    [23] I. Primi, A. Stevens and J. J. L. Velázquez, Mass-selection in alignment models with non-deterministic effects, Communication in PDE, 34 (2009), 419-456. doi: 10.1080/03605300902797171
    [24] M. Rotenberg, Transport theory for growing cell populations, J. Theor. Biology, 103 (1983), 181-199. doi: 10.1016/0022-5193(83)90024-3
    [25] J. Scheuer, "Pattern Formation in Reaction-Drift and Diffusion Systems," Diploma thesis, University of Heidelberg, 2009.
    [26] H. R. Thieme, "Mathematics in Population Biology," Princeton Series in Theoretical and Computational Biology, Princeton University Press, Princeton, NJ, 2003.
    [27] A. M. Turing, The chemical basis of morphogenesis, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 237 (1952), 37-72.
  • This article has been cited by:

    1. Angelika Manhart, Counter-propagating wave patterns in a swarm model with memory, 2019, 78, 0303-6812, 655, 10.1007/s00285-018-1287-x
    2. Arnd Scheel, Angela Stevens, Wavenumber selection in coupled transport equations, 2017, 75, 0303-6812, 1047, 10.1007/s00285-017-1107-8
    3. Kyungkeun Kang, Arnd Scheel, Angela Stevens, Global phase diagrams of run-and-tumble dynamics: equidistribution, waves, and blowup, 2019, 32, 0951-7715, 2128, 10.1088/1361-6544/ab046d
    4. Narek Hovsepyan, Juan L. Velázquez, Hopf bifurcation in structural population models, 2016, 39, 01704214, 5258, 10.1002/mma.3913
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3377) PDF downloads(95) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog