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Abstract. In analogy to the analysis of minimal conditions for the formation

of diffusion driven instabilities in the sense of Turing, in this paper minimal
conditions for a class of kinetic equations with mass conservation are discussed,

whose solutions show patterns with a characteristic wavelength. The related

linearized systems are analyzed, and the minimal number of equations is de-
rived, which is needed for specific patterns to occur.

1. Introduction. Pattern formation is ubiquitous in biological and chemical sys-
tems. Being able to distinguish between the possible underlying mechanisms driving
these patterns and their related function, is an important aim for a better under-
standing and for experimental control. Patterns generated by diffusive instabilities
are quite well understood. In his pioneering work (cf. [27]) Turing proved, that for
chemical reactions diffusion can drive an otherwise stable system towards pattern
formation with a characteristic wavelength or characteristic time period. This idea
of diffusive morphogens, has later been applied to many pattern forming biological
systems (cf. [12], [18], [19]), only to name a few of the many references on this
topic.

A main part of Turing’s analysis was devoted to linearized reaction-diffusion
systems. This is often sufficient in order to obtain estimates on the basic quanti-
tative features of the observed patterns, like their characteristic wavelength; or in
the case of dynamic patterns, their speed of propagation. The linear analysis, of
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course, only predicts exponential growth of the chemical, respectively morphogen
concentrations.

There are, however, structure forming processes in biology, where diffusive signals
do not seem to play the major role. An example for this are the counter migrating
rippling waves in populations of myxobacteria which occur before their final aggre-
gation and fruiting body formation, [6]. These waves are assumed to result from a
local, i.e. cell-cell contact induced, exchange of a so-called C-signal. Also in a num-
ber of other signaling processes, e.g. within cellular tissues a localized/non-diffusive
exchange of signals between cells seems to play an important role. This is one
main reason to have a closer look at the pattern forming behavior of such systems.
Further, the aggregation process of myxobacteria happens during a state without
cell division, so mass is conserved. Interestingly it is not obvious how to obtain
nontrivial patterns for the resulting type of models, in particular if no delay terms
are included into the equations. These systems differ from the before mentioned
reaction-diffusion systems and their approximations. The systems considered in the
present paper have a dispersion relation which asymptotically is a horizontal line
in the complex plane for large wavenumbers. So the fastest growing mode could in
principle be infinity. To find patterns in our case, we start from a situation where
the most unstable branch of the dispersion relation is a line with constant real part
in the complex plane. Then we perturb suitably - which is not trivial - such, that
the slowest rate of growth in the dispersion relation happens for small and for large
values of the wavenumber, i.e. the maximal rate of growth is achieved for a finite,
positive wavenumber. With such arguments we do not only obtain a positive real
part for the wavelength but also a maximum which is not infinity.

From a mathematical point of view examples for systems, where pattern for-
mation results from non-diffusive signaling, are kinetic equations of the following
type

∂tf (t, x, c) + U (c) · ∂xf (t, x, c) + ∂c [K [f (t, x, c)]] = 0. (1)

Here {c} denotes a set of internal variables characterizing the state of the cells.
Further the total mass of the cells is conserved. For cell movement in one spatial
dimension {c} would also include the direction of motion (right or left), in higher
spatial dimensions the cell orientations. Variables like chemical concentrations and
the fraction of occupied cell surface receptors could also be included. The set {c}
can be continuous or discrete. In the discrete case the operator ∂c must be replaced
by a suitable “discrete divergence operator”, which we will specify later.

The function f (t, x, c) can be thought of as the cell density, and K [f (t, x, c)]
is an additive or an integral operator, in general non-linear, which describes the
transitions of the cells w.r.t. the internal variables {c}. This operator acts on the
densities f (t, x, ·) locally, i.e. K [f (t, x, ·)] depends on f (t, x, ·) at point x only.
Examples for equations of type (1) as models for pattern formation in biology can
be found for instance in [8], [9], [10], [11], [15], [17], [20], and [23].

As we have indicated above, model (1) is quite different from the parabolic sys-
tems considered by Turing. Further, linearization around a homogeneous state
does not provide any specific wavelength, in case {c} contains only two elements
(cf. [17])). Systems close to, but more general than (1), which do yield specific
wavelengths on the linearized level have been discussed in the literature. In [14]
systems with a structure similar to (1) are considered, which contain additional
diffusion for the cell densities and which exhibit nontrivial patterns. Further, the
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cell states are characterized by a continuous variable in this case, which is addi-
tionally affected by a noise term. In [2] examples are discussed, where next to the
terms like in (1), an additional delay term occurs, which also produces nontrivial
patterns near homogeneous states. It is natural to ask, if there exist examples for
systems of type (1), which yield non trivial patterns near homogeneous solutions,
where neither diffusion nor explicit delays are responsible for pattern formation.

In this paper we will provide sufficient conditions for examples of equations of
type (1), such that suitable linearizations show an instability with a characteristic
wavelength. In order to obtain the onset of nontrivial patterns on the linearized
level a minimal complexity of the model is needed. In case of Turing’s systems at
least two different species are necessary. In our case at least three equations are
needed.

A paper close to our setting is [13], where

at + Γax = M (b− a) +
1

2
f (a+ b) , bt − Γbx = M (a− b) +

1

2
f (a+ b) (2)

was studied, with a = (α1, α2)
t
, b = (β1, β2)

t
, f (u) = (f1(u1, u2), f2(u1, u2))

t
and

diagonal matrices Γ, M with diagonal entries γ1, γ2 and µ1, µ2. A key feature of (2)
is that the reactions between the species generally change the total concentration∫ ∑2

i=1 (αi + βi) dx.
This is different in (1) where

∫ ∫
f (t, x, c) dxdc is preserved. This crucially influ-

ences the dispersion relation.
In [13] a number of instabilities for (2) are considered. Among them a kind

of hyperbolic version of Turing’s instability. For an intuitive explanation of this
consider ‖M‖ → ∞ , ‖Γ‖ → ∞ , Γ2/(2M)→ D̃, where ‖ · ‖ denotes a matrix norm

and D̃ is a diagonal matrix with diagonal entries d̃1, d̃2 > 0. Formally, solutions
which have a characteristic wavelength larger than 1/

√
‖M‖ can be approximated

by solutions of the parabolic system

ut = D̃uxx + f (u) with u = a+ b . (3)

Solutions of a linearization of this model near a homogeneous steady state yield
pattern formation with a specific wavelength of order one. So for large enough
wavelengths and under suitable assumptions on M and D̃ one can expect analo-
gous instabilities for (2) as the ones obtained by Turing for (3) even though the
dispersion relations associated to (2) are different from the ones for (3) for very
large wavelengths, due to the change of character of the problem from hyperbolic
to parabolic.
The instabilities considered in this paper for conservation laws of type (1) differ from
this and the resulting patterns are traveling waves with a characteristic wavelength
and wave velocity.

Further, in [13] sets of parameters are studied which yield Hopf bifurcations for
(2). A characteristic wavelength for solutions associated to such bifurcations has
still to be proved.

The plan of this paper is as follows. In Section 2 we give a precise definition
of what we call a pattern forming system in the present context. In Section 3
we briefly discuss some of Turing’s results. In Section 4 we study the pattern
forming properties of equations of type (1). In Subsection 4.1 we recall a situation
for which pattern formation can not be decided by linear analysis. In Subsection
4.2 and the following subsections, necessary conditions for patterns with a defined
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wavelength on the linearized level are given. In Section 5 minimal models for rippling
of myxobacteria are discussed, without assuming the existence of an internal clock
or of delays. Further on, the validity of this model is checked by means of a biological
test experiment and interpreted.

2. Pattern forming equations. We will restrict our analysis to linearized equa-
tions. So we are interested in problems of the form

ut = Bu , (4)

where B is a linear operator, invariant under translations,
i.e. B[u(·+ a)] = B[u](·+ a), a ∈ RN .

The function y → u (y, t) maps RN into a suitable function space X, describing
the variables needed to characterize a “macroscopic” region [y, y + dy]. Typically
X will include chemical concentrations, internal cell variables, cell orientations and
others. It is well known that this type of operators can be analyzed by Fourier
analysis. This amounts to consider the action of B on modes exp(ikx) for k ∈ RN
i.e.

B
(
eikyV

)
=
[
B̃ (k)V

]
eiky , V ∈ X ,

where B̃ (k) is a linear operator acting on X. We can then look for solutions of (4)
of the form u = eωt+ikyV , where V is a eigenfunction of

ωV = B̃ (k) · V . (5)

Under some general compactness assumptions, the eigenvalues of (5) are a discrete
set {ω1 (k) , ω2 (k) , ...} for each k ∈ RN . For a perturbation u (y, 0) = u0 (y) =
V0e

iky with wavenumber k we aim to calculate its corresponding growth rate. The
shortest way to do so is to calculate

Ω (k) ≡ max
j
{Re (ωj (k))} . (6)

So we use the following definition for a pattern generating system:

Definition 2.1. Equation (4) is said to generate patterns, if Ω = Ω(k) in (6)
achieves a global maximum at a finite number of nonzero values k0,i, i = 1, ..., `. In
this case solutions of (4) with suitable initial data develop patterns with wavelength
λi = 2π

k0,i
.

If Im (ωj (k0,i)) 6= 0 for some i ∈ {1, ..., `}, then we will say that (4) generates oscil-
latory patterns.
If Im (ωj (k0,i)) = 0 for every i ∈ {1, ..., `} we will say that (4) generates stationary
patterns.
If for every δ > 0, Ω(k) achieves a global maximum in RN \Bδ(0) at a finite number
of points, then we will say that equation (4) generates patterns for wavelengths
smaller than 2π/δ.

3. Turing’s instabilities. Let us briefly recall the instability results derived by
Turing in [27] for reaction-diffusion systems within the above mentioned framework.
Here we restrict ourselves to one dimension. For this case in [27] the pattern-forming
properties of equations of type

∂tu = D̃∂2
xu+Au . (7)
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were studied, where u = u (x, t) has values in RN and D̃, A ∈MN (R) which is the

set of real N ×N matrices, D̃ is a diagonal matrix with diagonal entries D̃i > 0 for
i = 1, ..., N , and A = (aij)i,j . System (7) can be obtained from the linearization of
a reaction-diffusion system without cross-diffusion terms near a homogeneous state.

Theorem 3.1. (Turing, cf. [27]).

• For N = 1 equation (7) does not generate patterns for any A ∈ R in the sense
of Definition 2.1.

• For N = 2, system (7) generates stationary patterns in the sense of Definition
2.1 if

a11 + a22 < 0 , detA > 0 , a11D̃2 + a22D̃1 > 2

√
D̃1D̃2detA > 0 . (8)

On the other hand, (7) does not generate oscillatory patterns for any choice
of A ∈M2 (R) in the sense of Definition 2.1.

• For N = 3 there exists an open set of matrices A ∈ M3 (R) such that (7)
generates oscillatory patterns in the sense of Definition 2.1.

Remark 1. Several results for Turing-type instabilities, also by Turing himself,
were derived for bounded domains with periodic or with Neumann boundary con-
ditions. Here we consider the whole space. Thus the discrete character of the
spectrum of the operators does not have to be taken into account.

This means, that linear reaction-diffusion equations can generate nontrivial pat-
terns with specific wavelengths, if at least two species are involved. Moreover,
patterns in the sense of Definition 2.1 with nontrivial characteristic length and time
scales can be generated, if at least three species are involved. It is well known
that conditions (8) can be interpreted as the interplay between a short range acting
chemical activator and a long range acting chemical inhibitor, with the diffusion
coefficient of the inhibitor being larger than the one of the activator, cf. [12].

4. Patterns without diffusive interaction. First we define the general frame-
work for our analysis, since to our opinion there are more interesting points to
explore in the future for the given setting, than we can present here. Later we will
deal with specific cases, some of which are also relevant for biological applications.
The equations we are finally dealing with in this paper are of type (14), (15).

We suggest to study the pattern forming properties of linear equations of type

∂tf (t, x, c) + U (c) · ∂xf (t, x, c) + ∂c [L [f ]] (t, x, c) = 0 , (9)

where f is the concentration of “cells” in the state {c} at a given time t at point x ∈
R, which in this section is one-dimensional, and where L is the linearization of K,
acting on f as explained in the introduction. Let the space of states be measurable
and µ (·) be the related measure. Equations of type (9) naturally arise when systems
of type (1) are linearized around a spatially homogeneous (patternless) state. If the
set {c} is discrete, then the differential operator ∂c has to be replaced by a suitable
discrete derivative. In general, we will assume that the operator ∂c is a flux in the
space of states, which means

∂cg (t, x, c) = −
∫
F (c, c′) g (t, x, c′) dµ (c′) +

∫
F (c′, c) g (t, x, c) dµ (c′) .
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In the discrete case such operators reduce to finite sums. Their most relevant
property is∫

∂cg (t, x, c) dµ (c) =−
∫ ∫

F (c, c′) g (t, x, c′) dµ (c′) dµ (c)

+

∫ ∫
F (c′, c) g (t, x, c) dµ (c′) dµ (c) = 0 .

Therefore, these interactions locally conserve
∫
f (t, x, c) dµ (c). As an example

suppose that the space of internal states {c} is the real line and let µ be the Lebesgue
measure dµ (c) = dc. Let

F (c, c′) = δ0 (c− c′ − h) /h ,

where δ0 is the Dirac measure in order to describe transition rates, which transfer
state c to state c+ h. Then

∂cg (t, x, c) = [−g (t, x, c− h) + g (t, x, c)] /h .

Let L [f ] (t, x, c) = a (c) f (t, x, c) (10)

for a suitable function a (c) and

∂c (L [f ] (t, x, c)) = [−a (c− h) f (t, x, c− h) + a (c) f (t, x, c)] /h .

For h→ 0 we obtain

∂cg (t, x, c) =
∂

∂c

[
a (c) f (t, x, c)

]
.

Therefore (9) becomes

∂tf (t, x, c) + U (c) · ∂xf (t, x, c) +
∂

∂c
[a (c) f (t, x, c)] = 0 .

This equation naturally arises, when studying stage structured population models
with spatial dynamics. See for instance in [7], [8]. Some general references for
modeling and analysis of stage/age structured populations are e.g. [4], [5] [21], [26],
and [24].

Another typical choice of internal variables is a discrete set
{c} = {s1, s2, s3, ..., sN}. Define the shift operator: τ+ (sk) = sk+1 for

k = 1, ..., N with sN+1 := s1 and τ− analogously. The discrete derivative ∂̃c de-
scribes the sequential change between states and is defined by

∂̃cg (x, c) ≡ g(x, c)− g
(
x, τ−(c)

)
. (11)

With L [f ] given as in (10) equation (9) becomes

∂tf (t, x, c) + U (c) · ∂xf (t, x, c) + a (τ+ (c)) f (t, x, τ+ (c))− a (c) f (t, x, c) = 0 .

This is a finite dimensional system for N variables, namely
f (t, x, s1) , f (t, x, s2) , ..., f (t, x, sN ). Equations of type (1) and (9) arise for in-
stance when modeling systems of cells which interact with each other via direct
cell-cell contact and not by means of any diffusive chemical. The transport of infor-
mation in space in this context is purely due to motion/drift of the cells themselves.
An interesting example for pattern formation due to such processes are the rippling
patterns of myxobacteria which we will discuss in the last section of the paper.

Also in [13] equations without diffusive interactions were studied, where mass
was not conserved and stationary patterns were obtained. In our present context
additionally the number of “cells” which are involved is preserved. Therefore pattern
formation occurs solely due to cell interaction and transitions between cell states,
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and does not related to natural growth and death processes. Due to this assumption
the dispersion relation becomes crucially different.

4.1. A case without pattern formation. First we relate some of the results
in [17] to the case N = 1 in Theorem 3.1. Consider a system with two internal
variables {c} denoted by + and −. To connect with the notation in [17], let

f (x,+, t) = u+ (x, t) , f (x,−, t) = u− (x, t) , U (+) = U+ , U (−) = U− .

The most general local operator L [f ] in (9) and the “discrete derivative” operator
(11) then read(

L [f ]+
L [f ]−

)
=

(
a1,1 a1,2

a2,1 a2,2

)(
u+

u−

)
,

(
(∂cg)+

(∂cg)−

)
=

(
(g)+ − (g)−
(g)− − (g)+

)
.

with ai,j ∈ R for i, j ∈ {1, 2}. Therefore, (9) reduces to(
∂tu+

∂tu−

)
+

(
U+∂xu+

U−∂xu−

)
=

(
a11u+ + a12u− − (a21u+ + a22u−)
a21u+ + a22u− − (a11u+ + a12u−)

)
(12)

With the change of variables x → x − U++U−
2 t, we can assume w.l.o.g. that

U+ = −U− =: U . This transformation does not change the non-pattern or pat-
tern forming behavior of the system. Also, the characteristic wavelength of the
patterns, if existent, does not change. However, any standing pattern could change
to a traveling wave type of pattern or vice versa. Systems of type (12) were obtained
in [17] from(

∂tu+

∂tu−

)
+

(
U∂xu+

−U∂xu−

)
=

(
−λ (u+, u−)u+ + λ (u−, u+)u−
−λ (u−, u+)u− + λ (u+, u−)u+

)
(13)

for general functions λ by linearization around homogeneous stationary solutions.
Let us restate some results obtained in [17] in the above given terminology.

Theorem 4.1. ([17]) The linear system (12) with U+ = −U− ≡ U does not gener-
ate patterns in the sense of Definition 2.1 for any choice of U ∈ R,
T = −a11 + a21, S = −a22 + a12.

Proof. W.l.o.g. assume U 6= 0, otherwise ω = ω (k) in (6) is independent on k. The
dispersion relation associated to (12) with U+ = −U− ≡ U can be computed by

det

(
ω + ikU + T −S

−T ω − ikU + S

)
= 0 .

Then ω± =
1

2

[
− (T + S)±

[
(T + S)

2 − 4
(
ikU (S − T ) + k2U2

)] 1
2

]
.

The behavior of Ω (k) = max {Re (ω+ (k)) ,Re (ω− (k))} is analyzed by studying

h (k) ≡ Re

{[
(T + S)

2 − 4
(
ikU (S − T ) + k2U2

)] 1
2

}
= Re

√
(a2 − b2k2) + cik

with a2 ≡ (T + S)
2
, b2 ≡ 4U2, c = −4U (S − T ) = 4U (T − S), and

√
· being the

complex root with positive real part. By symmetry h (k) = h (−k). Now we show
that h (k) is monotone in [0,∞). Using again symmetry, we can restrict our analysis
to the case c ≥ 0. Since U 6= 0 we have b2 > 0 and

h (k) =
4

√
(a2 − b2k2)

2
+ c2k2

√[
1 + cos

(
arctan

(
ck

(a2 − b2k2)

))]/
2 ≥ 0 ,
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where arctan (·) ∈ [0, π], cos (·) ∈ [0, π]. After some computations we obtain

h (k) =
1√
2

√
H (k) , where H (k) ≡

√
(a2 − b2k2)

2
+ c2k2 +

(
a2 − b2k2

)
.

We have that

dH (k)

dk
=

k
(
c2 − 2b2H (k)

)√
(a2 − b2k2)

2
+ c2k2

, and H (0) = 2a2 .

So H (k) is increasing if 4a2b2 < c2, and decreasing if 4a2b2 > c2. If 4a2b2 = c2,
H (k) is constant. Thus H (·) and h (k) are monotone, and our theorem follows.

4.2. The pattern forming case. Here and in the following we study a particular
class of equations of type (9), namely

∂tf + U · ∂xf +DAf = 0 , where (14)

D =


1 0 ... −1
−1 1 ... 0

... ...
0 ... −1 1

 , U =


U1 0 ... 0
0 U2 ... 0

... ...
0 ... 0 UN

 . (15)

Here D describes the transition from state to state analogous to (11), and A is
a square matrix in MN (R). The space of “internal cell states” {c} is the set
{1, 2, ..., N}. First we begin our analysis with a generic matrix A. The disper-
sion relation associated to (14) solves

zw + ikU · w +DAw = 0 (16)

Here and in the following we often omit the identity matrix in arithmetic expressions
with scalar quantities and matrices.

In the subsequent arguments the following properties of the matrix DA will be
relevant.

Proposition 1. Let D be given as in (15). Then, the matrix DA has a zero
eigenvalue. Moreover

b := (1, · · · , 1)
t

(17)

is an element of the kernel of (DA)
t
, which is the transposed matrix of DA.

Proof. We have det (DA) = det (D) det (A) = 0 since detD = 0. Therefore 0 is an
element of the spectrum of DA. Since Dtb = 0,

(DA)
t
b = AtDtb = At (0) = 0 . (18)

Thus b ∈ ker ((DA)t).

4.3. Nondegenerate U , non-symmetric A.

Definition 4.2. We call U in (15) nondegenerate, if Ui 6= Uj for any i 6= j.

In this subsection we show how to obtain a class of matrices A for which (14)
exhibits nontrivial patterns when U is nondegenerate. The key idea is to choose
A = A0 + εM , where A0 yields a “hyperbolic” dispersion relation for (14). By this
we mean that the most unstable part of the spectrum of A0 lies on the imaginary
axis. Notice, that for a pure transport equation/first order hyperbolic equation the
spectrum is the imaginary axis. The matrix εM will then be chosen as a small
perturbation of A0 that will deform that part of the spectrum into a curve which
yields pattern formation in the sense of Definition 2.1. So pattern forming solutions
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bifurcate from the non-pattern forming state ε = 0.
More precisely, we assume

Assumption 1. The set of eigenvectors of DA0 with zero eigenvalue is the linear
subspace generated by e1 = (1, 0, · · · , 0)

t ∈ RN . Moreover U1 6= 0.

As a consequence, the spectrum of the set of solutions of the family of eigenvalue
problems

zw + ikU · w +DA0w = 0 , k ∈ R (19)

contains the line {z = −ikU1}, i.e. the spectrum associated to A0 is “hyperbolic”.

Assumption 2. All solutions of (19) which are different from −ikU1 are located
in the half-plane {Re (z) < −ν0} for some ν0 > 0.

Remark 2. For convenience we have chosen e1 as a distinguished eigenvector for
DA0. But e1 cannot be rotated without modifying the matrix U . Thus we do
not consider the most general choice of matrices A0 yielding hyperbolic behavior.
But the main goal of this paper is to find examples for instabilities. It would be
interesting though to classify the matrices A0 in general, which yield hyperbolic
behavior for the spectrum. A first attempt to do so is given in the Diploma-thesis
by Julian Scheuer [25].
The condition U1 6= 0 is essential, since without a characteristic speed it would not
be possible to obtain a characteristic wavelength. W.l.o.g. let U1 > 0.

Now we analyze the dispersion relation associated to (14) for A = A0 +εM where
ε > 0 is small. The spectrum of (16) can be computed in a perturbative manner
and the following lemma yields a preliminary estimate of its location.

Lemma 4.3. Let A0 satisfy Assumptions 1 and 2. Let A = A0 + εM . Then, there
exist positive constants C = C (A0,M), β and ε0, independent of ε, such that for
each k ∈ R and |ε| ≤ ε0 the spectrum associated to (16) consists of

(i) an eigenvalue z1 = z1 (k) satisfying |Re (z1)| ≤ Cεβ .
(ii) and (N − 1) eigenvalues, counted with multiplicity, which are located

in the half-plane
{

Re (z) ≤ −ν02 + Cεβ
}

.

Proof. Let |ε| < ε0 < 1. Then if |z| > |k|‖U‖ + ‖D‖‖A0‖ + ‖D‖‖M‖ we have
det(zI + ikU +DA) = det(zI + ikU +DA0 + εDM) 6= 0. Therefore we can assume
that |z| ≤ |k|‖U‖+ ‖D‖‖A0‖+ ‖D‖‖M‖ and then

‖Adj(zI + ikU +DA0)‖ ≤ C(|k|N−1 + 1) ,

where C is a constant depending only on D,A0 and M .
Let ζ1 = −ikU1, ζ2, . . . , ζN ∈ C be the eigenvalues of −ikU −DA0, then

det(zI + ikU +DA0) =

N∏
k=1

(z − ζk) = (z + ikU1)

N∏
k=2

(z − ζk) .

Due to Assumption 2, ζ2, . . . , ζN lie in the half-plane Re(z) < −ν02 < 0. Therefore
there exists a constant C = C(ν0) such that

|det(zI + ikU +DA0)| ≥ C(ν0) |z + ikU1|
for all z ∈ C with Re(z) ≥ −ν0. Then for all z ∈ C with Re(z) ≥ −ν02 and
|z| ≤ |k|‖U‖+ ‖D‖‖A0‖+ ‖D‖‖M‖ we can write

‖(zI + ikU +DA0)−1‖ =

∥∥∥∥Adj(zI + ikU +DA0)

det(zI + ikU +DA0)

∥∥∥∥ ≤ C |k|N−1 + 1

|z + ikU1|
,
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where C = C(D,A0,M, ν0) > 0.
Now let z ∈ C with |z| ≤ |k|‖U‖+ ‖D‖‖A0‖+ ‖D‖‖M‖ and either

Re(z) > Q|ε|β or −ν02 +Q|ε|β < Re(z) < −Q|ε|β , with β = 1/N ∈ (0, 1) and Q ≥ 1
to be determined.

Up to a change of ε0, it is always possible to assume that −ν02 +Q|ε|β < −Q|ε|β .
From the previous inequality it follows that zI + ikU +DA0 is invertible and

‖(zI + ikU +DA0)−1‖ ≤ C(|k|N−1 + 1)|ε|−β . (20)

By Neumann series we have that (zI + ikU +DA)−1 equals( ∞∑
n=0

(−1)n
[
ε(zI + ikU +DA0)−1DM

]n)
(zI + ikU +DA0)−1

thus det(zI + ikU + DA) 6= 0 if ‖ε(zI + ikU + DA0)−1DM‖ < 1. In view of
(20), this is true if C‖DM‖ (|k|N−1 + 1)|ε|1−β < 1. Up to choosing ε0 smaller, we
have C‖DM‖ |ε|1−β < 1/2. Therefore we obtain the simpler sufficient condition
C‖DM‖ |k|N−1 |ε|1−β < 1/2. Now we distinguish two cases.

If C‖DM‖ |k|N−1 |ε|1−β < 1/2 i.e. |k| <
(
2C ‖DM‖|ε|1−β

) −1
N−1

then det(zI + ikU +DA) 6= 0.

If |k| ≥
(
2C ‖DM‖|ε|1−β

) −1
N−1

then, up to choosing ε0 very small, we have |k| � 1 and it is sufficient to study the
eigenvalue problem

Uw +
1

ik
DAw = λw w 6= 0 , λ = − z

ik

as a perturbation of the eigenvalue problem for U . The eigenvalues U1, . . . , UN of U
are all semisimple and, according to [16], Theorem 2.3, page 82, if Uj is an eigenvalue
with multiplicity mj and eigenprojection Pj , one can compute the corrections of Uj
to order 1/|k| by computing the spectrum of PjDAPj with respect to the invariant
subspace Pj(RN ). This gives a mj×mj matrix whose eigenvalues are the first order
corrections we wanted to obtain. Thus

det(zI + ikU +DA) = 0 ⇒ −z
ik

= Uj +
λj(DA)

ik
+O

(
1

k2

)
for some j ∈ {1, ..., N}, where λj(DA) is an eigenvalue of PjDAPj w.r.t. the invari-
ant subspace Pj(RN ). We have PjDAPj = PjDA0Pj + εPjDMPj and λj(DA) =
λj(DA0) +O(εγ) with γ ≥ 1/mj ≥ 1/N = β. From

−z
ik

= Uj +
λj(DA)

ik
+O

(
1

k2

)
it follows that z = −ikUj − λj(DA0) +O (εγ) +O (1/|k|) . For ε = 0 we obtain an
approximation for the solution of det(zI + ikU +DA0) = 0 in the neighborhood of
−ikUj . Due to Assumption 2, it follows that either λj(DA0) = 0, which is the case
for j = 1, or

Re (−ikUj − λj(DA0) +O (1/|k|)) < −ν0 .
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Since β = 1/N we have 1−β
N−1 = β and |k|−1 ≤ O

(
|ε|β
)
. Therefore for ε 6= 0 if

det(zI + ikU +DA) = 0

⇒ z = −ikUj − λj(DA0) +O (εγ) +O
(

1
|k|

)
for some j ∈ {1, . . . , N}

⇒ Re(z) = Re
(
−ikUj − λj(DA0) +O

(
1
|k|

))
+O (εγ)+O

(
1
|k|

)
⇒ Re(z) ≤ −ν0 +O(|ε|β) or |Re(z)| ≤ O(|ε|β)

Here |O(|ε|β)| ≤ G|ε|β with G = G(D,M). Up to choosing Q = G(D,M), det(zI+
ikU + D(A)) = 0 implies that |Re(z)| ≤ Q|ε|β or Re(z) ≤ −ν0 + Q|ε|β for any
ε ∈ (−ε0, ε0), which is a contradiction.

Due to Lemma 4.3 we have, for small ε, that the only eigenvalue relevant for the
pattern forming properties of (14) is contained in the strip |Re (z1)| ≤ Cεβ . This
eigenvalue can be obtained as a perturbation of the eigenvalue z = −ikU1 of problem
(16). To compute its asymptotics for ε → 0 we will use classical perturbation
methods for eigenvalue problems, cf. [16].

First we introduce some notation. Let 〈·, ·〉 denote the scalar product in RN ,
let Bt denote the transposed matrix of B and let span {a, b, ..., z} denote the linear
subspace of RN generated by the vectors a, b, ..., z.

Lemma 4.4. Let A0 satisfy Assumptions 1 and 2. Then, for each k ∈ R there
exists a unique vector eT1 = eT1 (k) ∈ CN , which solves the linear system[

−ikU1 + ikU + (DA0)
t
]
eT1 = 0 (21)

and fulfills
〈
eT1 , e1

〉
= 1 . (22)

Proof. Assumption 1 and since U is not degenerate imply that for each k ∈ R we
have ker (−ikU1 + ikU +D0) = span (e1). Therefore

rank (−ikU1 + ikU +DA0) = rank
(
−ikU1 + ikU + (DA0)

t
)

= N − 1 ,

and there exists w = w (k) ∈ CN with ker
(
−ikU1 + ikU + (DA0)

t
)

= span (w). To

obtain a unique eT1 solving (21), (22) with eT1 = Cw for some C ∈ R and 〈w, e1〉 6= 0,
we notice due to Assumption 1 that −ikU1 +ikU+DA0 is a matrix with coefficients
ti,j = ti,j (k), where t11 = t21 = ... = tN1 = 0. Since ker (−ikU1 + ikU +DA0) =
span (e1) the characteristic polynomial of this matrix has a simple root at ζ = 0.
Therefore

det(tij)i,j=2,...,N 6= 0 . (23)

Thus when solving
[
−ikU1 + ikU + (DA0)

t
]
w = 0 the first component of w can

be chosen as a free parameter w1. In particular, for w1 = 1 and eT1 = w we obtain
the desired solution of problem (21), (22).

Now we can compute the asymptotics of the eigenvalues of (16) as a perturbation
of z = −ikU1.

Proposition 2. Let A0 satisfy Assumptions 1 and 2. Let A = A0 + εM and eT1 =
eT1 (k) be as in Lemma 4.4. Then, there exist positive constants C, ε0 which depend
on ‖A0‖ , ‖M‖ but are independent of k and ε, such that for each 0 ≤ ε ≤ ε0 the
spectrum associated to problem (16) consists of one eigenvalue z1 = z1 (k) satisfying∣∣z1 + ikU1 + ε

〈
eT1 , DMe1

〉∣∣ ≤ Cε2/(1 + |k|) (24)
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and (N − 1) eigenvalues, counted with multiplicity, which are contained in the half-
plane Re (z) ≤ −ν0/4 .

Proof. The last estimate is a consequence of Lemma 4.3, (ii). To obtain (24) suppose
that |k| ≤ R for some constant R > 0. General perturbation theory for eigenvalues
of matrices ensures that

z = −ikU1 + θ , w = e1 + r , (25)

where θ = θ (k, ε) and r = r (k, ε) are small for ε→ 0. Plugging this into (16) and
using Assumption 1 we obtain

− ikU1r + θe1 + θr + ikUr +DA0r + εDMe1 + εDMr = 0 . (26)

Assume, w.l.o.g. that the eigenvector w satisfies
〈
eT1 , w

〉
= 1. Then (22) and (25)

yield that
〈
eT1 , r

〉
= 0 . Therefore, multiplying (26) by eT1 and using (21) it follows

that

θ + ε
〈
eT1 , DMe1

〉
+ ε

〈
eT1 , DMr

〉
= 0. (27)

Neglecting quadratic terms we obtain the following approximation

θ ∼ −ε
〈
eT1 , DMe1

〉
as ε→ 0 . (28)

This gives the leading order term in the asymptotic expansion of (24). The error
term for |k| ≤ R can be obtained by classical perturbation theory for eigenvalue
problems (cf. [16]). To obtain (24) for |k| ≥ R we rewrite (16) as

z

ik
w +

(
U +

DA0

ik

)
· w +

ε

ik
DM · w = 0 . (29)

The correction of the eigenvalue of problem (29) for ε = 0, z
ik = −U1 can be

computed perturbatively, similar as above. Arguing like in the proof of Lemma 4.3
it follows that

z

ik
= −U1 −

ε

ik

〈
eT1 , DMe1

〉
+O

(
ε2

|k|2

)
for ε→ 0, uniformly for |k| ≥ 1. Thus (24) follows.

To understand the pattern forming properties of (14) for A = A0 + εM with
small ε we use Proposition 2 and study η (k) ≡ −

〈
eT1 , DMe1

〉
. To prove pattern

formation in the sense of Definition 2.1, we show that η (k) reaches its maximum at a
discrete set of values k0,i 6= 0. Since η (k) is analytic, this property is a consequence
of

Proposition 3. Let Assumptions 1 and 2 hold. Then the asymptotics of η (k) ≡
−
〈
eT1 , DMe1

〉
with eT1 as in Lemma 4.4 are given by

η (k) ∼ −〈e1, DMe1〉 for |k| → ∞ (30)

η (k) ∼ −ik 〈ψ0, DMe1〉 − k2 〈ψ1, DMe1〉+ ... for |k| → 0. (31)

Here ψ0 and ψ1 are unique solutions of

(U − U1) b+ (DA0)
t
ψ0 = 0 , 〈ψ0, e1〉 = 0 (32)

− (U − U1)ψ0 + (DA0)
t
ψ1 = 0 , 〈ψ1, e1〉 = 0 (33)

with b as in (17).
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Proof. The problem reduces to deriving the asymptotics for eT1 . To show (30) we
can approximate the solutions of (21), (22) by the solutions of

[−iU1 + iU ] eT1 = 0 ,
〈
eT1 , e1

〉
= 1 , (34)

since under suitable normalization conditions solutions of linear systems of equations
depend continuously on their parameters. Since U is diagonal and nondegenerate,
both equations in (34) are solved for eT1 = e1. Therefore lim|k|→∞ eT1 = e1 and (30)
follows.

For k → 0 the asymptotics of η (k) can again be computed by perturbative

methods. Consider (21), (22) as perturbation of (DA0)
t
eT1 = 0 ,

〈
eT1 , e1

〉
= 1,

which are solved, due to (18), by eT1 = b. Assume

eT1 = b+ ikψ0 + k2ψ1 + ... with 〈ψ0, e1〉 = 〈ψ1, e1〉 = ... = 0 (35)

where ψ0, ψ1, ... will be determined later. Plugging (35) into (21) and separating
terms with the same powers of k we obtain

(DA0)
t
ψ0 + (U − U1) b = 0 , (DA0)

t
ψ1 − (U − U1)ψ0 = 0 . (36)

Equations (36) combined with the normalization conditions in (35) can be solved due
to (23) and because 〈b, (U − U1)e1〉 = 0. Plugging (35) into η (k) ≡ −

〈
eT1 , DMe1

〉
we obtain (31), since Dtb = 0. Therefore

〈b,DMe1〉 =
〈
Dtb,Me1

〉
= 0 . (37)

The convergence of the series in (35) can be shown by using (23) and standard
perturbation theory, [16]

Now we can formulate the main result of this subsection.

Theorem 4.5. Let A0 satisfy Assumptions 1 and 2. Let A = A0 + εM with
M ∈MN (R) satisfying

〈e1, DMe1〉 ≥ 0 , 〈ψ1, DMe1〉 < 0 , (38)

where ψ1 is as in (32), (33). Then, for ε > 0 small enough, system (14) generates
oscillatory patterns in the sense of Definition 2.1.

Proof. The asymptotics (30), (31) as well as (38) imply that Re (η (k)) has a global
maximum in R for some bounded set of values k0,i ∈ R\ {0}. Further, η (k) is ana-
lytic w.r.t. k and therefore the set of points where Re (η (k)) achieves its maximum
is finite. With (24), it follows that Re (z1 (k)) reaches its maximum for some set

of values k̃0,i ∈ R\ {0}, if ε > 0 is small enough. Since z1 (k) is contained in the
set of zeros of an analytic function, this maximum is achieved in a finite number of

points. Since for such a point k̃0,i 6= 0, it follows from (24) that Im
(
z1

(
k̃0,i

))
6= 0,

if ε is small enough. Thus the result follows.

The key problem now is to show the existence of matrices A0, M which satisfy
the properties of Theorem 4.5.
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The case N = 3. First we describe the assumptions for 3 × 3 matrices U, A0, M
in Theorem 4.5 when the set of internal variables contains three elements. Let the
diagonal entries of U all be different, let D be like in (15), and let A0 = (aij)i,j and
M = (mij)i,j . Calculate DA0, then the assumption DA0e1 = 0 implies that

a11 − a31 = a11 − a21 = a21 − a31 = 0 , thus a11 = a21 = a31 . (39)

In order to fulfill the second condition of Assumption 1 the sub-matrix

B =

(
−a12 + a22 −a13 + a23

−a22 + a32 −a23 + a33

)
(40)

of DA0 must be diagonalizable. A sufficient condition for this is that B has different
eigenvalues. This is the case if

(a12 + a23 − a22 − a33)
2

−4 (a12a23 − a12a33 − a23a32 + a22a33 − a13a22 + a13a32) 6= 0 (41)

a12a23 − a12a33 − a23a32 + a22a33 − a13a22 + a13a32 6= 0 (42)

Therefore, Assumption 1 reduces to (39), (41), (42). Assumption 2 reduces to the
following. Let B be given as in (40). Then

the roots of det

(
zI + ik

(
U2 0
0 U3

)
+B

)
= 0 are located

in the half-plane {Re (z) ≤ −ν0} for some ν0 > 0. (43)

Choose M such that (37), (38) hold. Due to (35) we have ψ1 = (0, ψ12, ψ13)
t

for
suitable numbers ψ12, ψ13. Calculate DM , then (38) reduces to

m11 −m31 ≥ 0 and (44)

〈ψ1, DMe1〉 = [ψ12 − ψ13] (m21 −m11) + ψ13 (m31 −m11) < 0 .

In order to show the existence of a matrix M satisfying conditions (44), we only
need to have ψ12 6= ψ13. The vector ψ1 is defined by (35), (36) and can be expressed
in terms of the matrices U and A. The result is not giving too much insight though.
Therefore it is more convenient to look for specific values of U, A0 and M satisfying
(39), (41), (42), (43), (44).

Let D be given as before, U1 = 1, U2 = 2, U3 = 3 and for arbitrary a > 0 let

A0 =

 a 1 0
a 2 1
a 0 2

 , then DA0 =

 0 1 −2
0 1 1
0 −2 1

 (45)

and (36) reduces to(
1 −2
1 1

)(
ψ02

ψ03

)
+

(
1
2

)
= 0 =

(
1 −2
1 1

)(
ψ12

ψ13

)
−
(

ψ02

2ψ03

)
.

Therefore

(ψ02, ψ03) = (−5/3,−1/3) , (ψ12, ψ13) = (−1, 1/3) . (46)

Using (44) these conditions further reduce to 4 (m11 −m21) < (m11 −m31) and
m11 −m31 ≥ 0. There are infinitely many choices for M which yield these inequal-
ities.
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If A0 is given by (45), then the characteristic polynomial of B equals P (x) =
x2 − 2x + 3. Therefore (41) and (42) are satisfied. It remains to check (43). We
have

det

(
z

(
1 0
0 1

)
+ ik

(
2 0
0 3

)
+

(
1 1
−2 1

))
= z2 + 2z − 6k2 + 3 + i (5zk + 5k) ≡ Q (z, k)

and the roots of Q (z, k) are given byz = −1− 5
2 ik ±

1
2

√
(−8− k2) with real parts

−1. Thus we obtain (43). Let

M =

 2 0 0
1.95 0 0

1 0 0

 (47)

Then the dispersion relation consists in finding the roots of the polynomial

det(z + ikU +DA) = 0 (48)

for D as in (15), U,A0 as in (45) with a = 0.5, and A = A0 +εM for ε = 0.01. These
are calculated numerically for given k ∈ R w.r.t. the variable z. Figure 1 shows the
branch with the largest real part. All other roots have negative real parts.

–6

–4

–2

0

2

4

6

–0.01 –0.008 –0.006 –0.004 –0.002

Figure 1. Root with largest real part of (48) for D as in (15),
U,A0 as in (45), a = 0.5, M as in (47), A = A0 + εM , ε = 0.01.
Horizontal: Re(z(k)), vertical: Im(z(k)).

The case N = 2. In this case Assumptions 1 and 2 as well as (38) cannot be satisfied
as expected from the results in [17], (cf. Theorem 4.1). To obtain DA0e1 = 0, we
need that a11 = a21. Conditions (38) imply that m11 −m21 ≥ 0 and

(U2 − U1)2(a12 − a22)−2(m11 −m21) < 0

by using (32), (33). Therefore, (m11 −m21) < 0, which is a contradiction. Thus
the inequalities required impose a minimal degree of complexity on system (14), or,
more precisely, the need for at least three different state variables.

4.4. Reflection-symmetry, nondegenerate matrix U . Here we study systems
of type (14) which fulfill some symmetry properties, which naturally arise in models
for pattern formation in myxobacteria, as we will discuss later. Assume that N = 2n
and that f in (14) is of the form

f =

(
ϕ
ψ

)
=: (ϕ,ψ)

t
, ϕ, ψ ∈ Rn .
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Further assume that system (14) is invariant under the transformation

(x, ϕ, ψ)→ (−x, ψ, ϕ) (49)

Due to this invariance and by explicit calculations we can see that

U =

(
V 0
0 −V

)
and A =

(
Y1 Z1

Z2 Y2

)
=

(
Y Z
Z Y

)
(50)

where V, Y1, Y2, Y, Z1, Z2, Z are n× n matrices and V is a diagonal matrix. To see
the last formula, let D be as in (15) and use

I :=

(
0 I
I 0

)
, I

(
ψ
ϕ

)
=

(
ϕ
ψ

)
, IU = −UI (51)

I
(
Y1 Z1

Z2 Y2

)
=

(
Y2 Z2

Z1 Y1

)
I , (52)

We can rewrite D as

D =

(
σ λ
λ σ

)
(53)

where σ = (σij)i,j and λ = (λij)i,j are n × n matrices with σ11 = ... = σnn = 1,
σ21 = σ32 = ... = σn(n−1) = −1, just λ1n = −1 and all other σij , λij being zero.
Then

ID = I
(
σ λ
λ σ

)
=

(
σ λ
λ σ

)
I = DI . (54)

Applying transformation (49) to system (14) and then multiplying the obtained
formula by I and using (51)-(54) we get

∂t

(
ϕ
ψ

)
+

(
V 0
0 −V

)
· ∂x

(
ϕ
ψ

)
+D

(
Y2 Z2

Z1 Y1

)(
ϕ
ψ

)
= 0 .

This equation is equivalent to (14) if

D

(
Y1 Z1

Z2 Y2

)
= D

(
Y2 Z2

Z1 Y1

)
,

respectively Y2 = Y1 +G, Z2 = Z1 +H, where

D

(
G H
−H −G

)
=

(
σ λ
λ σ

)(
G H
−H −G

)
= 0 .

Since under this assumption the matrices G and H do not appear in the equation,
we can assume Y2 = Y1 ≡ Y , Z2 = Z1 ≡ Z, which yields the second equation of
(50). Further on, we assume in this subsection that the matrix V is non degenerate.
Under the symmetry assumptions (16) reduces to

z

(
w1

w2

)
+ ik

(
V 0
0 −V

)(
w1

w2

)
+

(
P Q
Q P

)(
w1

w2

)
= 0 , (55)

where P = σY + λZ , Q = σZ + λY . Our goal is to study the eigenvalue problem
(55) as a perturbation of a problem which is “as hyperbolic as possible”. Let

A = A0 + εM , M =

(
m n
n m

)
,

(
Θ Λ
Λ Θ

)
= DM (56)

A0 =

(
Y0 Z0

Z0 Y0

)
,

(
P0 Q0

Q0 P0

)
= DA0 .
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For ε = 0, (55) reads

z

(
w1

w2

)
+ ik

(
V 0
0 −V

)(
w1

w2

)
+

(
P0 Q0

Q0 P0

)(
w1

w2

)
= 0 . (57)

Notice that Assumptions 1 and 2 in Subsection 4.3 cannot be satisfied for the eigen-
value problem (57), since due to the symmetry assumptions, some of the eigenvalues
are degenerate. Indeed, suppose that DA0 has an eigenvector with eigenvalue zero,
namely (e1, 0)

t
, or equivalently P0e1 = 0, Q0e1 = 0. Due to the symmetry of DA0

we haveDA0 (0, e1)
t

= 0. So the kernel of DA0 has at least dimension 2. There-
fore, if A satisfies the symmetry conditions above, the assumptions defining the
“hyperbolic” character of problem (14) with A = A0 have to be modified. Instead
of Assumptions 1 and 2 we need in this case

Assumption 3. The kernel of DA0 is the subspace generated by the vectors (e1, 0)
t
,

(0, e1)
t
. In particular P0e1 = Q0e1 = 0.

As a consequence the set of solutions of the eigenvalue problem (57) contains the
lines {z = −ikV1 , z = ikV1 , k ∈ R}.

Assumption 4. All other solutions of the eigenvalue problem (57) are included in
the half-plane {Re (z) ≤ −ν0} for some ν0 > 0.

Now we can study the spectrum of (57). Then the analog of Lemma 4.3 is

Lemma 4.6. Let A0 satisfy Assumptions 3 and 4. Let A, M be given by (56).
Then there exist positive constants C = C (A0,M) , β and ε0 independent of ε such
that for each k ∈ R and |ε| ≤ ε0 the spectrum associated to problem (55) consists of

(i) Two eigenvalues z1 = z1 (k) , z2 = z2 (k) satisfying |Re (z1)| ≤ Cεβ.
(ii) and (N − 2) eigenvalues, counted with multiplicity, contained in the half-

plane
{

Re (z) < −ν0 + Cεβ
}

.

Proof. The proof is the same as for Lemma 4.3, since the arguments given there do
not use the non-degeneracy of the matrix U .

Using perturbative methods, we now compute the changes of the part of the
spectrum of (57) contained in the lines {z = −ikV1 , z = ikV1 , k ∈ R} for ε →
0. Due to the multiplicity of these eigenvalues for k = 0, this computation has
to be done slightly different in comparison to the case for matrices with multiple
eigenvalues for k = 0. The following analog of Lemma 4.4 holds

Lemma 4.7. Let A0 satisfies Assumptions 3 and 4. Then, for each k ∈ R there
exist vectors vT1 (k), vT2 (k) solving the adjoint problems[

z + ik

(
V 0
0 −V

)
+

(
P t0 Qt0
Qt0 P t0

)]
vTl (k) = 0, l = 1, 2 (58)

z = −ikV1

and satisfying the normalization conditions〈
vT1 (k) , (e1, 0)

t
〉

=
〈
vT2 (k) , (0, e1)

t
〉

= 1 . (59)

Proof. The proof is similar to the one of Lemma 4.4. The only essential difference
is, that for k = 0 the subspace of solutions that solve the eigenvalue problem (57)
with z = 0 is of dimension two. Therefore, the solution of the adjoint problem is
two dimensional, and with arguments as in Lemma 4.4, the basis of eigenfunctions
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vT1 (0) , vT2 (0) can be chosen such that they satisfy the normalization conditions
(59).

Arguing as in the proof of Proposition 2, we can now compute the changes of the
eigenvalues {z = ±ikV1}.

Proposition 4. Let A0 satisfy Assumptions 3 and 4. Let A be given as in (56)
and vT1 (k), vT2 (k) be given as in Lemma 4.4. Let |k| ≥ δ > 0. Then, there exist
positive constants C, ε0 depending on ‖A0‖, ‖M‖, δ but independent of k and ε,
such that for each 0 ≤ ε ≤ ε0 the spectrum associated to problem (55) consists of
two eigenvalues z1 = z1 (k) , z2 = z2 (k) satisfying

|z1 + ikV1 − εθ1|+ |z2 − ikV1 − εθ2| ≤ Cε2(1 + |k|)−1 , (60)

where θl = −
〈
vTl (k) , DM El

〉
, l = 1, 2 , (61)

with E1 = (e1, 0)t and E2 = (0, e1)t , (62)

and (N − 2) eigenvalues, counted with multiplicity, which are contained in the half-
plane Re (z) ≤ −ν02 .

Proof. Consider solutions of (55) in the perturbative form

z1 = −ikV1 + εθ1 + ... , z2 = ikV1 + εθ2 + ...

with eigenvectors v1 = (e1, 0)
t
+εZ1 + ... , v2 = (0, e1)

t
+εZ2 + ... . Plugging these

formulas into (55), using P0e1 = Q0e1 = 0, and neglecting quadratic and higher
order terms w.r.t. ε we obtain

θlEl + (−1)likV1Zl + ikUZl +DA0 Zl +DM El = 0 , l = 1, 2 . (63)

Taking the scalar product of (63) with vT1 , respectively with vT2 , as given in Lemma
4.7, we obtain z1 ∼ −ikV1 + εθ1, z2 ∼ ikV1 + εθ2 with θ1, θ2 as given in (61). This
provides the terms of leading order in (60). The error terms can be estimated as in
the proof of Proposition 2. Finally Re (z) ≤ −ν02 follows from Lemma 4.6.

To obtain sufficient conditions for pattern formation, we analyze the asymptotics
for |k| → 0 and |k| → ∞ for the functions θ1 and θ2. For this we need

Lemma 4.8. Let A0 satisfy Assumption 3. Then, there exists a basis of

ker
(

(DA0)
t
)

given by two vectors {b1, b2}, which satisfy

〈E1, b1〉 = 〈E2, b2〉 = 1 , 〈E1, b2〉 = 〈E2, b1〉 = 0 , b2 = Ib1 (64)

Proof. Assumption 3 implies dim ker
(

(DA0)
t
)

= dim ker (DA0) = 2. The two

unique vectors b1, b2 satisfying (64) can be found like in the proof of Lemma 4.4.
The last identity in (64) follows from(

0 I
I 0

)(
P t0 Qt0
Qt0 P t0

)(
0 I
I 0

)
=

(
P t0 Qt0
Qt0 P t0

)
. (65)

Proposition 5. Under Assumptions 3 and 4 the asymptotics of θ1 (k) and θ2 (k)
defined in (61)

θ1 ∼ −〈e1,Θe1〉 , θ2 ∼ −〈e1,Θe1〉 for |k| → ∞ . (66)
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For k → 0 we have

θ1 = −
〈[
b1 + ikψ1,0 + k2ψ1,1

]
, DM E1

〉
(67)

= −
〈
b1, (Θe1,Λe1)

t
〉
− ik

〈
ψ1,0, (Θe1,Λe1)

t
〉
− k2

〈
ψ1,1, (Θe1,Λe1)

t
〉

+ ...

θ2 = −
〈
b1, (Θe1,Λe1)

t
〉

+ ik
〈
ψ1,0, (Θe1,Λe1)

t
〉
−k2

〈
ψ1,1, (Θe1,Λe1)

t
〉

+ ... (68)

where ψ1,0, and ψ1,1 are the unique solutions of

−V1b1 + Ub1 +

(
P t0 Qt0
Qt0 P t0

)
ψ1,0 = 0 (69)

V1ψ1,0 − Uψ1,0 +

(
P t0 Qt0
Qt0 P t0

)
ψ1,1 = 0 (70)

〈E1, ψ1,0〉 = 〈E2, ψ1,0〉 = 0 (71)

〈E1, ψ1,1〉 = 〈E2, ψ1,1〉 = 0 (72)

and b1 is as in Lemma 4.8.

Proof. Arguing similarly as in the proof of Proposition 3, we obtain

vT1 (k) ∼ (e1, 0)t = E1 for |k| → ∞ , vT2 (k) ∼ (0, e1)t = E2 for |k| → ∞ .

Thus (66) follows. To compute the asymptotics of θ1, θ2 for |k| → 0 we expand
vT1 (k) , vT2 (k) which solve (58) as power series

vT1 (k) = α11b1 + α12b2 + ikψ1,0 + k2ψ1,1 + ... (73)

vT2 (k) = α21b1 + α22b2 + ikψ2,0 + k2ψ2,1 + ... (74)

where the coefficients αij must be determined. Plugging (73) into (58) for l = 1
and using that z = −ikV1 we obtain

− ikV1 (α11b1 + α12b2) + k2V1ψ1,0 + ikU (α11b1 + α12b2)

− k2Uψ1,0 +

(
P t0 Qt0
Qt0 P t0

)(
ikψ1,0 + k2ψ1,1

)
= O

(
k3
)

Separating the terms with powers k and multiplying them by E1, E2 we obtain a
set of compatibility conditions.

−V1 (α11 〈E1, b1〉+ α12 〈E1, b2〉) + (e1, 0) U (α11b1 + α12b2) = 0

−V1 (α11 〈E2, b1〉+ α12 〈E2, b2〉) + (0, e1) U (α11b1 + α12b2) = 0 .

Using the normalization conditions (64) as well as V t = V and V1 6= 0, it follows
that

−α11V1 + V1 〈E1, (α11b1 + α12b2)〉 = −α11V1 + α11V1 = 0

−α12V1 − V1 〈E2, (α11b1 + α12b2)〉 = −α12V1 − α12V1 = 0 .

From the second condition it follows that α12 = 0. Taking the limit k → 0 in (59)
we obtain α11 = 1. Imposing the additional normalization conditions (71) we have
a unique solution for (69). The compatibility conditions required for solving (70)
are satisfied, namely

〈E1, V1ψ1,0 − Uψ1,0〉 = 〈E2, V1ψ1,0 − Uψ1,0〉 = 0 .

Imposing the compatibility conditions (72) we can solve (70) uniquely.
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In a similar manner, plugging (74) into (58) for l = 2 we obtain

V1 [α21b1 + α22b2] + U [α21b1 + α22b2] +

(
P t0 Qt0
Qt0 P t0

)
ψ2,0 = 0 (75)

−V1ψ2,0 − Uψ2,0 +

(
P t0 Qt0
Qt0 P t0

)
ψ2,1 = 0 (76)

Multiplying(75) by (e1, 0)t and using (59) we obtain, as in the previous case, that
α21 = 0, α22 = 1. Thus we can uniquely solve systems (75), (76) by imposing the
normalization conditions〈E1, ψ2,0〉 = 〈E2, ψ2,0〉 = 0, 〈E1, ψ2,1〉 = 〈E2, ψ2,1〉 = 0.
So for |k| → ∞ we obtained the asymptotics (66). Using (61), (73) we obtain the
asymptotics (67) for |k| → 0 and with a similar argument that

θ2 = −
〈[
b2 + ikψ2,0 + k2ψ2,1

]
, DM E2

〉
(77)

= −
〈
b2, (Λe1,Θe1)

t
〉
− ik

〈
ψ2,0, (Λe1,Θe1)

t
〉
− k2

〈
ψ2,1, (Λe1,Θe1)

t
〉

+ ... .

Using b2 = Ib1 we get ψ2,0 = −Iψ1,0 and ψ2,1 = Iψ1,1. With this expression we
can transform (77) into (68).

Remark 3. The crucial difference between the asymptotics (67), (68) in Proposi-
tion 5 and the asymptotics (31) in Proposition 3 is that the zero’s order term in the

expansion (31) vanishes due to (37). In Proposition 5 the term
〈
b1, (Θe1,Λe1)

t
〉

does not necessarily vanish.

Now we can formulate some sufficient conditions for pattern formation under the
symmetry assumption (49).

Theorem 4.9. Let δ > 0. Let U , A satisfy (50) and A0 satisfy Assumptions 3 and
4. Let A be given as in (56) with ε > 0 sufficiently small. Let ψ1,0, ψ1,1 be the
unique solutions of (69)-(72) and b1 be given as in Lemma 4.8. Then, system (14)
has oscillatory patterns with wavelength smaller than 2π

δ in the sense of Definition
2.1, if the following conditions are fulfilled〈

b1, (Θe1,Λe1)
t
〉

= 0 , 〈e1,Θe1〉 ≥ 0 ,
〈
ψ1,1, (Θe1,Λe1)

t
〉
< 0 . (78)

Example: N = 4, n = 2. Consider matrices U , A satisfying (50). Let V be a
diagonal matrix with diagonal entries V1 6= V2. Then also U is a diagonal matrix
with diagonal entries U1 = V1 = −U3, U2 = V2 = −U4. Let D be like in (15) and to
simplify the notation denote the entries of A0 in (56) by yij and zij . Then calculate
DA0. Assumption 3 implies that y11 = y21 = z11 = z21 and therefore the entries of
the matrix DA0 in the first and third row are all zero. Now we can compute b1, b2
as in Lemma 4.8. These vectors solve

(y12 − z22) bi,1 + (−y12 + y22) bi,2 + (z12 − y22) bi,3 + (−z12 + z22) bi,4 = 0

(z12 − y22) bi,1 + (−z12 + z22) bi,2 + (y12 − z22) bi,3 + (−y12 + y22) bi,4 = 0 ,

where bi = (bi,1, bi,2, bi,3, bi,4)t, i = 1, 2. Let

L ≡
(
−y12 + y22 −z12 + z22

−z12 + z22 −y12 + y22

)
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Now (64) yields b1,1 = 1, b1,3 = 0, b2,3 = 1, b2,1 = 0. Further b2,2 = b1,4, b2,4 = b1,2.
So the system of four equations above reduces to two equations

(−y12 + y22) b1,2 + (−z12 + z22) b1,4 = − (y12 − z22) (79)

(−z12 + z22) b1,2 + (−y12 + y22) b1,4 = − (z12 − y22) (80)

In order to solve system (79), (80) we have to assume (−y12 + y22)
2 6= (−z12 + z22)

2
.

Then b1 = (1, b1,2, 0, b1,4)t, b2 = (0, b1,4, 1, b1,2)t. Due to the normalization condi-
tions (71) we have ψ1,0 = (0, ψ1,0,2, 0, ψ1,0,4)t, ψ1,1 = (0, ψ1,1,2, 0, ψ1,1,4) and

L

(
ψ1,0,2

ψ1,0,4

)
+

(
V2 − V1 0

0 − (V1 + V2)

)(
b1,2
b1,4

)
= 0

L

(
ψ1,1,2

ψ1,1,4

)
−
(
V2 − V1 0

0 − (V1 + V2)

)(
ψ1,0,2

ψ1,0,4

)
= 0 .

Let M be as in (56). Calculate

DM =

(
Θ Λ
Λ Θ

)
, then Θe1 =

(
m11 − n21

−m11 +m21

)
, Λe1 =

(
n11 −m21

−n11 + n21

)
.

The sufficient conditions for oscillatory pattern formation, (78), then reduce to

(m11 − n21) + b1,2 (−m11 +m21) + b1,4 (−n11 + n21) = 0 , m11 − n21 ≥ 0

ψ1,1,2 (−m11 +m21) + ψ1,1,4 (−n11 + n21) < 0

Therefore, as in the previous case, we need the linear independence of (b1,2, b1,4)t,
(ψ1,1,2, ψ1,1,4)t. As a specific example we can choose

L =

(
2 −1
−1 2

)
.

So y12 − y22 = −2, z12 − z22 = 1. Let z22 − y12 =: a. Then z12 − y12 = 1 + a,
z12 − y22 = −1 + a. And with V1 = 2, V2 = 1 we have

w =

(
a

1− a

)
, R :=

(
−1 0
0 −3

)
=

(
V2 − V1 0

0 − (V1 + V2)

)
(b1,2, b1,4)

t
= L−1w =

(
1

3
a+

1

3
, −1

3
a+

2

3

)t
(ψ1,1,2, ψ1,1,4)

t
= −L−1RL−1RL−1w =

(
17

27
a− 55

27
,

31

27
a− 86

27

)t
and the desired condition is satisfied.

Assumption 4 requires that the rest of the spectrum of zw+ ikU ·w+DA0w = 0,
k ∈ R is left from a half-plane contained in {Re (z) < 0}. The spectrum consists of
the roots of

det


z + ikV1 y12 − z22 0 z12 − y22

0 −y12 + y22 + (z + ikV2) 0 −z12 + z22

0 z12 − y22 z − ikV1 y12 − z22

0 −z12 + z22 0 −y12 + y22 + (z − ikV2)


= (z + ikV1) (z − ikV1) det

(
y22 − y12 + z + ikV2 z22 − z12

z22 − z12 y22 − y12 + z − ikV2

)
= 0. Therefore we have to solve

(y22 − y12)
2

+ 2 (y22 − y12) z + z2 + k2V 2
2 − (z22 − z12)

2
= 0 ,
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whose solutions are z = − (y22 − y12)±
√

(z22 − z12)
2 − k2V 2

2 . Then, if

|z22 − z12| < (y22 − y12) we obtain the desired condition.
For y22 = 2.5, y12 = 0.5, z22 = 0.5 + a, z12 = 1.5 + a and for a = 0 we obtain

y22 = 2.5 , y12 = 0.5 , z22 = 0.5 , z12 = 1.5 , y11 = y21 = z11 = z21 = c (81)

Then (b1,2, b1,4) = ( 1
3 ,

2
3 ), (ψ1,1,2, ψ1,1,4) = (− 55

27 ,−
86
27 ). And the conditions for m, n

become: m21 = n21−2m11+2n11, 86 (n21 − n11) > −55 (m21 −m11), m11−n21 ≥ 0.
This holds for

m11 = 1.1 , m21 = 2.8 , n11 = 2 , n21 = 1 (82)

with all other entries of M being zero.
The root with the largest real part of (55) for this choice of data and with

ε = 0.001 can be seen in Figure 2

Figure 2. N = 4. Root with largest real part of (55) for U as in
(50), V1 = 2, V2 = 1, D as in (15), A0 as in (81) and M as in (82),
ε = 0.001. Horizontal: Re(z(k)), vertical: Im(z(k)).

5. Rippling dynamics of myxobacteria. In this section we describe a specific
class of models whose linearization yields problems of type (9). These problems
are motivated by the intriguing counter migrating wave-like patterns observed be-
fore the final aggregation of and self-organization of myxobacteria (cf. [6]), which
happens under starvation conditions. During their alignment and before their final
self-organization takes place, the bacteria move in opposite directions in a quasi
one-dimensional fashion and reverse their direction of motion, mainly due to con-
tact and exchange of a so-called C-signal with counter migrating cells. As a result,
counter-migrating population waves with a characteristic wavelength occur. A ma-
jor question is, if the local exchange of C-signal and the resulting change of direction
of motion is the main underlying mechanism for these waves or rather not.
The instabilities we described in the following can of course also arise in other bio-
logical or physical contexts. But here we want to stick with the basic phenomenon
of rippling in myxobacteria.

From [17] we know already, that one cell state for each direction of motion is not
sufficient to decide about pattern formation on the linearized level. Therefore we
introduce 4 states. Consider bacteria, which exist in two different states 1 and 2, Let
ui, vi denote the densities of cells which move towards the right, respectively the left,
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with internal state i = 1, 2. First, the bacteria change their state from 1 to 2, e.g.
from a non-excited state to an excited state. Then, in a second step, they reverse
their direction of motion. So we assume that there exists an intermediate state for
the cells before they reorient. This can be interpreted e.g. by the local transfer of
the so-called C-signal during cell-cell contact, which excites the bacterium and/or
prepares it to switch the location of its molecular motor for movement, before it
reverses its direction. So the four cellular states evolve according to the following
transition: u1 → u2 → v1 → v2 → u1.

Translating the previously described kinetics into a system of differential equa-
tions, we obtain

(u1)t + (u1)x = S2 (u1, u2, v1, v2)− T1 (u1, u2, v1, v2) (83)

(u2)t + (u2)x = T1 (u1, u2, v1, v2)− T2 (u1, u2, v1, v2) (84)

(v1)t − (v1)x = T2 (u1, u2, v1, v2)− S1 (u1, u2, v1, v2) (85)

(v2)t − (v2)x = S1 (u1, u2, v1, v2)− S2 (u1, u2, v1, v2) . (86)

To further simplify, we assume that the system is invariant under the change of vari-
ables (x, ui, vi)→ (−x, vi, ui), i = 1, 2. Therefore Ti (u1, u2, v1, v2) = Si (v1, v2, u1,
u2) for i = 1, 2. And (83)-(86) can be rewritten just in terms of T1, T2 accordingly.
Due to this invariance assumption we study systems of type (9), which are obtained
by linearizing systems of the above given type around a homogeneous equilibrium,
with u1 = v1 and u2 = v2. Thus there exists a solution for the algebraic system

T1 (u1,0, u2,0, u1,0, u2,0) = T2 (u1,0, u2,0, u1,0, u2,0) . (87)

For general functions T1, T2 a curve/continuum of stationary states which solve
(87) is to be expected. This is a major difference in comparison with Turing’s
instabilities. This continuum of steady states relates to the fact that different total
cell densities are allowed. When prescribing σ ≡ (u1 + u2 + v1 + v2) we obtain
u1,0 + u2,0 = σ

2 and the homogeneous steady state can be determined uniquely.
Under our symmetry condition we have

σ = 2 (u1,0 + u2,0) . (88)

If σ is fixed we must solve (87) with the constraint (88). For generic functions
T1, T2 we can expect this problem to have a unique solution, at least locally near
u1,0 = u2,0. The stationary values for u1, u2, v1, v2 are assumed to fulfill u1 =
v1 = u1,0, u2 = v2 = u2,0.

Define T`,j ≡ ∂jT` (u1,0, u2,0, u1,0, u2,0), where j = 1, 2 denotes derivatives with
respect to u1, u2 and j = 3, 4 denotes derivatives with respect to v1, v2. Then the
linearization of (83)-(86), including the invariance condition becomes

(ϕ1)t + (ϕ1)x =
∑2
j=1 (T2,j+1 − T1,j)ϕj + (T2,j − T1,j+2)ψj (89)

(ϕ2)t + (ϕ2)x =
∑2
j=1 (T1,j − T2,j)ϕj + (T1,j+2 − T2,j+2)ψj (90)

(ψ1)t − (ψ1)x =
∑2
j=1 (T2,j − T1,j+2)ϕj + (T2,j+2 − T1,j)ψj (91)

(ψ2)t − (ψ2)x =
∑2
j=1 (T1,j+2 − T2,j+2)ϕj + (T1,j − T2,j)ψj (92)

with ui = ui,0 + ϕi , vi = vi,0 + ψi , i = 1, 2, and |ϕi| << ui,0, |ψi| << vi,0.
Problem (89)-(92) is of type (9), with a point measure dµ (c) containing four ele-
ments {c} ≡ {(1,+)t, (2,+)t, (1,−)t, (2,−)t}. In the following we analyze systems
of type (89)-(92) and respective variations, which yield oscillatory patterns in the
sense of Definition 2.1.
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Systems having some analogies with (83)-(86) but which include time-delays have
been considered in [2], where

(u1)t + (u1)x = fl (x, t)− fl (x− ντ, t− τ) (93)

(u2)t + (u2)x = fl (x− ντ, t− τ)− fr (x, t) (94)

(v1)t − (v1)x = fr (x, t)− fr (x+ ντ, t− τ) (95)

(v2)t − (v2)x = fr (x+ ντ, t− τ)− fl (x, t) (96)

were studied, with suitable functions fl, fr depending on u1, u2, v1, v2. In [2]
it was shown that the linearization of (93)-(96) around an homogeneous solution
generates oscillatory patterns in the sense of Definition 2.1. One major difference
between systems (83)-(86) and (93)-(96) is the delay τ in the second model, that
could be interpreted as an “internal clock” or refractory time. The main result of our
paper is to show that the structure of the nonlinearities in (83)-(86) is rich enough to
generate oscillatory patterns without including delay terms in the equation. Further
mathematical models for pattern formation in myxobacteria can be found in [1], [3],
[14], and in [11], [22], to only name a few references.

Now system (89)-(92) is in the form of (14), (15) with the invariance condition
(49) thus with the symmetry condition (50). In the following subsections we will
first prove that if the bacteria in the excited state move with the same speed as
the non-excited ones, then no solutions with oscillatory patterns bifurcate from
“hyperbolic” matrices. Second we assume that the cells in the excited state move
with slower speed than the non-excited cells. In a third model the excited cells are
not moving at all. Similar pattern forming properties can be derived if the speed of
the excited cells is larger than the speed of the non-excited cells. For this we have
to construct suitable conditions for the nonlinearities, i.e. the specific exchange
between the different cell states, since the combination of both pattern forming
effects is by no means a general effect, but rather specifies the nonlinear behavior
of the model crucially.

5.1. Degenerate U , reflection symmetry, 4D, no pattern. Here we show that
under suitably generic conditions on the coefficients, system (14) with 4×4 matrices
cannot yield oscillatory patterns in the proximity of “hyperbolic” matrices, if U
contains only two opposite velocities and (14) is invariant under the transformation
(x, ϕ, ψ) → (−x, ψ, ϕ). Let A = A0 + εM and M as in (56), where by notational
convenience the entries of A0 are denoted by yij and zij . Let D be like in (15) and
the diagonal matrix U with diagonal entries U1 = U2 = V1 = −U3 = −U4, where
V1 ∈ R, V1 6= 0 and ε > 0 is small. By rescaling we can assume w.l.o.g. that V1 = 1.

First we precise the meaning of a p-hyperbolic matrix.

Definition 5.1. The matrix A0 in (56) is a p-hyperbolic matrix if the vectors

(y11, y21, z11, z21)
t
, (y12, y22, z12, z22)

t
generate a linear subspace of dimension one

and

∆′1(0) 6= 0 , where (97)

∆1(k) ≡ det

 2ik + y11 − z21 y12 − z22 z11 − y21

−y11 + y21 2ik − y12 + y22 −z11 + z21

z11 − y21 z12 − y22 y11 − z21
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+ det

 2ik + y11 − z21 y12 − z22 z12 − y22

−y11 + y21 2ik − y12 + y22 −z12 + z22

−z11 + z21 −z12 + z22 −y12 + y22


The set of matrices fulfilling (97) is open.

Remark 4. (97) is a technical condition which ensures that the dispersion relation
associated to (14) can be computed perturbatively for ε → 0. It is generically
satisfied.

Proposition 6. Let A0 be a p-hyperbolic matrix in the sense of Definition 5.1.
Then there exist α1, α2 ∈ R with (α1)

2
+ (α2)

2 6= 0 and

DA0 (α1, α2, 0, 0)
t

= 0 = DA0 (0, 0, α1, α2)
t

(98)

Here α1, α2 are uniquely determined, up to multiplication by C 6= 0. Moreover, for
each k ∈ R the spectrum of the matrix − (ikU +DA0) contains the eigenvalues −ik
and ik.

Proof. Due Definition 5.1 there exist α1, α2 as stated with

α1 (y11, y21, z11, z21)
t

+ α2 (y12, y22, z12, z22)
t

= 0 . (99)

Now calculate DA0. Formula (98) then follows from (99). Since

U (α1, α2, 0, 0)
t

= (α1, α2, 0, 0)
t

and U (0, 0, α1, α2)
t

= − (0, 0, α1, α2)
t
, the men-

tioned properties about the spectrum of − (ikU +DA0) follow immediately.

So an additional technical assumption on the matrix A0 is needed in order to
obtain the desired pattern forming properties.

Definition 5.2. A matrix A0 is a stable p-hyperbolic matrix, if it is p-hyperbolic
and if for each k ∈ R the spectrum of −ikU − DA0 consists of the eigenvalues
−ik, ik and two more eigenvalues contained in the half-plane Re (z) < 0.

Now we can state the main result of this section

Theorem 5.3. Let A0 be a stable p-hyperbolic matrix in the sense of Definition
5.2. Let A = A0 + εM . Let ∆1 (k) be as in Definition 5.1 and ∆2 (k) ≡

det


2ik + y11 − z21 y12 − z22 z11 − y21 n12 −m22

−y11 + y21 2ik − y12 + y22 −z11 + z21 −n12 + n22

z11 − y21 z12 − y22 y11 − z21 m12 − n22

−z11 + z21 −z12 + z22 −y11 + y21 −m12 +m22



+ det


2ik + y11 − z21 y12 − z22 n11 −m21 z12 − y22

−y11 + y21 2ik − y12 + y22 −n11 + n21 −z12 + z22

z11 − y21 z12 − y22 m11 − n21 y12 − z22

−z11 + z21 −z12 + z22 −m11 +m21 −y12 + y22


Define functions P0 (k, a) , P1 (k, a) by

det ((ik + aε) + ikU +DA0 + εDM) = P0 (k, a) + P1 (k, a) ε+O
(
ε2
)
. (100)

We can write

∆1 (k) = 2ik (µ1ki+ ν1) , ∆2 (k) = 2ik (µ2ki+ ν2) . (101)

Then P0 (k, a) + P1 (k, a) ε = 0 (102)

defines a monotone function r (k) = Re (a) in case µ1, µ2, ν1, ν2 as defined in (101)
satisfy

µ1ν2 − µ2ν1 6= 0 . (103)
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Remark 5. For ε = 0 the dispersion relation contains the solution z = ik. Now the
derivative of z w.r.t. ε is −∆2/∆1. Due to (97) we have ν1 6= 0 and (101) implies
that ∆2(0) = 0. Therefore we obtain that ∆2/∆1 is finite.

Remark 6. The function ζ = ik + aε with a = a (k) defined by (102) provides a
linear approximation in ε of the eigenvalue z = z (k, ε) of

(z + ikU +DA0 + εDM) v = 0 , (104)

such that z = ik for ε = 0. The monotonicity of r (k) does not imply monotonicity
of Re (z (k, ε)), because classical perturbation theory for eigenvalue problems (cf.
[16]) just implies z (k, ε) = ik + aε + O

(
ε2
)

as ε → 0. The uniformity of this
approximation breaks down in general for k → 0, since z (0, 0) is a double eigenvalue.
Some care is required to show uniformity of the approximation as k →∞. Therefore,
from Theorem 5.3 we can only conclude that for the eigenvalue problem (104)
patterns with wavelengths of order one for ε small are absent, if condition (103)
holds. However, this Theorem does not rule out the onset of patterns with very
large wavelengths for ε→ 0 under condition (103). Moreover, if (103) does not hold,
there could be patterns with wavelengths of order one arising from quadratic terms
in ε. The analysis of such higher order pattern would require methods different
from the ones presented here.

Proof. The left hand side of (100) can be expanded as

det

(
2ikI + E F

F E

)
+O

(
ε2
)
, where (105)

E =

(
y11 − z21 + εm11 − εn21 + aε y12 − z22 + εm12 − εn22

−y11 + y21 − εm11 + εm21 −y12 + y22 − εm12 + εm22 + aε

)
F =

(
z11 − y21 + εn11 − εm21 z12 − y22 + εn12 − εm22

−z11 + z21 − εn11 + εn21 −z12 + z22 − εn12 + εn22

)
.

The first term in (105) can be expanded w.r.t. ε. Arguing as in the proof of
Proposition 6 it follows that if ε = 0 the last two columns of the matrix in (105)
are linearly dependent, so the determinant vanishes. Using the multilinearity of
the determinant we can rewrite P0 (k, a) = 0, P1 (k, a) = ∆1 (k) a + ∆2 (k). Then,
the solution of (102) yields a = −∆2/∆1. Formulas (101) are a consequence of the

linear dependence of the vectors (y11, y21, z11, z21)
t
, (y12, y22, z12, z22)

t
. Due to (97)

we have ν1 6= 0 and to the leading order

a = − (µ2ki+ ν2) /(µ1ki+ ν1) and Re (a) = (α2 + β2k
2)/(α1 + β1k

2) (106)

for some α1, β1, α2, β2 ∈ R , α1 6= 0. The right hand side of (106) is monotone w.r.t.
k, if (103) is satisfied. Thus our theorem follows.

5.2. Reduced motility of bacteria in the excited state. Here we need that
the diagonal matrix U contains more than two opposite velocities, so we assume

U1 = 2 , U2 = 1 , U3 = −2 , U4 = −1 (107)

We obtain (14) by linearizing (83)-(86) with A given by

A =


T1,1 T1,2 T1,3 T1,4

T2,1 T2,2 T2,3 T2,4

T1,3 T1,4 T1,1 T1,2

T2,3 T2,4 T2,1 T2,2

 = A0 + εM .
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Further, we will make the following assumptions

T1 = T1 (u1 + u2 + v1 + v2, u1, v1 + v2) , T2 = T2 (u2) . (108)

The bacteria change through the states in the following way: u1 → u2 → v1 →
v2 . Thus cells of non-excited type u1 get excited (i.e. prepare for turning) in
dependence of the total cell density, the collisions with counter-migrating cells and
by the cell density of their own kind. Turning is then automatic and depends on
the distribution u2 itself. Assume, as above, that the eigenvector associated to the
eigenvalue (−2ik) for the unperturbed problem z + ikU + DA0 = 0 is (1, 0, 0, 0)t.
Then, again denoting the entries of the matrix A0 in (56) by yij , zij , we have
y11 = y21 = z11 = z21 = c, (cf. Assumption 3), for some constant c ∈ R. In order
to obtain a particular example which fulfills the constraints (108) we choose c = 0
and z1,2 = z2,2 = 0. Then, due to (108) we must have

A0 =


0 y12 0 0
0 y22 0 0
0 0 0 y12

0 0 0 y22

 , M =


m11 m12 n11 n11

0 m22 0 0
n11 n11 m11 m12

0 0 0 m22

 .

Since we are interested in A = A0 + εM the values of m12, m22 can be absorbed
in the respective entries in A0, namely in y12, y22. So we chose m12 = m22 = 0.
The corresponding dispersion relation associated to (14) can then be computed by
solving det (z + ikU +DA0 + εDM) = 0. We compute solutions of this equation
near the “hyperbolic line” z = −2ik perturbatively. To do so we take an expansion,
which is uniform on the whole line k ∈ R, i.e. z = −2ik + aε + ... . Keeping only
terms of linear order in ε we obtain

a = −m11
iy22y12 − 5y22k + 4ik2 + y12k − iy2

22

5y12k − iy2
12 − 5y22k + 4ik2 − iy2

22 + 2iy22y12
.

To have the remaining part of the spectrum in the region Re(z) < 0 we need
y12 − y22 < 0. Then we get the following asymptotics

Re (a) ∼ (m11 − n11)
y22

y12 − y22
− m11y12 − 9n11y22

(y12 − y22)
3 k2 + ...

for k → 0 and limk→∞ a = −m11. The following conditions ensure oscillatory
pattern formation for (14) in sense of Definition 2.1

m11 = n11 , m11y12 − 9n11y22 > 0 , m11 > 0 .

W.l.o.g. assume that m11 = n11 = 1. Taking into account y12−y22 < 0, a sufficient
condition for oscillatory pattern formation for small ε > 0 is

y12 − 9y22 > 0 , y22 − y12 > 0 .

One possible choice for A0 is taking y12 = −1 , y22 = −0.5, for M taking m11 =
n11 = n12 = 1 and all other entries being zero. Then with ε > 0 we obtain oscillatory
patterns for (14). The root with the largest real part corresponding to the dispersion
relation for this choice of matrices is shown in Figure 3. To summarize

Theorem 5.4. The differential equation (14) with A = A0 + εM where y12 = −1,
y22 = −0.5, m11 = n11 = n12 = 1 and all other entries are zero, with U as in (107)
and ε > 0 sufficiently small generates oscillatory patterns in the sense of Definition
2.1.
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Figure 3. Root with the largest real part of the dispersion rela-
tion for the situation in Theorem 5.4 with ε = 0.001. Horizontal:
Re(z(k)), vertical: Im(z(k)).

The roles of the entries 1 and 2 in U can be exchanged with the same conclusion,
including the signs of the coefficients. In all situations found, the functions show
an inhibitory character for some interactions, which is untypical for the behavior
known of myxobacteria.

5.3. Bacteria in the excited state do not move. For the diagonal matrix U
we now assume

U1 = 1 = −U3 , U2 = U4 = 0 . (109)

In this case it is not possible to obtain oscillatory patterns with functional depen-
dences as given in (108) for the transition functions. But with different dependencies
for T2 we can obtain oscillatory pattern formation without inhibitory effects, which
is more realistic in the context of movement of myxobacteria. A first natural gen-
eralization of the previous case, namely T1 = T1 (u1 + u2 + v1 + v2, u1, v1 + v2),
T2 = T2 (u1 + u2 + v1 + v2, u2) does not give oscillatory patters at the linearized
level for ε. Instead we assume

T1 = T1 (u1 + u2 + v1 + v2, u1, v1, v2) , T2 = T2 (u1 + u2 + v1 + v2) .

A set of matrices A0, M , A = A0 + εM consistent with this are

A0 with constant entries c everywhere, apart from y12 and z12 , (110)

M with zero entries everywhere, apart from m11 and n11 . (111)

We then solve

det (z + ikU +DA0 + εDM) = 0 (112)

near the line of hyperbolicity z = −ik, i.e. we expand z = −ik + aε + ... . The
solution of order ε yields

a = −k n11c+m11y12 −m11c− n11z12 + im11k

−2ck + 2iy12c+ iz2
12 + ik2 + 2y12k − iy2

12 − 2iz12c
.

Then we have the following asymptotic formula

Re (a) ∼ −1

(2cy12 + z2
12 − y2

12 − 2z12c)
2

(
−2m11cy12 +m11z

2
12 +m11y

2
12

−2m11z12c+ 2n11cy12 − 2n11c
2 + 2m11c

2 − 2n11z12y12 + 2n11z12c
)
k2
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for k → 0, and limk→∞ a = −m11. The part of the spectrum of − (ikU +DA0) not
contained in the line Re (z) = 0 is given by z = y12 − 2c + z12 , z = −z12 + y12.
Therefore the following conditions ensure the existence of oscillatory patterns in the
sense of Definition 2.1 for ε > 0 sufficiently small

−2m11y12c+m11z
2
12 +m11y

2
12 − 2m11z12c+ 2n11y12c− 2n11c

2

+2m11c
2 − 2n11z12y12 + 2n11z12c < 0

m11 > 0 , y12 − 2c+ z12 < 0 , −z12 + y12 < 0

With the following choice in (111) all these inequalities are satisfied

c = 1.5 , y12 = 0.5 , z12 = 1 , m11 = 1 , n11 = 2 . (113)

The form of the root of the dispersion relation with largest real part for this choice
of matrices is given in Figure 4. In summary we have

–20

–15

–10

–5

0

–0.001 –0.0008 –0.0006 –0.0004 –0.0002

Figure 4. Root with largest real part of (112) with conditions as
given in Theorem 5.5 for ε = 0.01. Horizontal: Re(z(k)), vertical:
Im(z(k)).

Theorem 5.5. The differential equation (14) with A = A0 + εM , and A0, M
as given in (111) with coefficients as in (113), U given as in (109), and ε > 0
sufficiently small, generates oscillatory patterns in the sense of Definition 2.1.

5.4. A symmetric 6×6 System with degenerate U . We have seen before that a
generic 4×4 system cannot yield oscillatory patterns near hyperbolic settings if the
matrix U contains only two opposite velocities. In this section we give an example
of a 6×6 system, which is invariant under the transformation (x, ϕ, ψ)→ (−x, ψ, ϕ)
and yields oscillatory pattern formation. Let the diagonal matrix U be such, that

U1 = U2 = U3 = 1 , U4 = U5 = U6 = −1 (114)

and D be like in (15). We consider linearizations of systems like (83)-(86) which
contain two additional variables (u3, v3). Let σ̃ = u1 +u2 +u3 +v1 +v2 +v3. Assume
that the transition functions are

T1 = T1 (u1, v1 + v2 + v3) , T2 = T2 (u2, σ̃) , T3 = T3 (u3) (115)

with Ti > 0 for ui > 0, i = 1, 2, 3. Even after intensive and well designed trials
we were unable to find simpler functional dependencies than (115). In particular



426 IVANO PRIMI, ANGELA STEVENS AND JUAN J. L. VELÁZQUEZ

replacing T2(u2, σ̃) by T2 (u2) is too simple to generate oscillatory patterns with our
method. The linearized matrix A compatible with (115) has the form

A =


y11 0 0 z11 z11 z11

y21 y22 y21 y21 y21 y21

0 0 y33 0 0 0
z11 z11 z11 y11 0 0
y21 y21 y21 y21 y22 y21

0 0 0 0 0 y33

 , (116)

with A = A0 + εM where A0 is “hyperbolic”. We assume a particular form of “hy-
perbolic” behavior, namely DA0 (1, 0, 0, 0, 0, 0)

t
= DA0 (0, 0, 0, 1, 0, 0)

t
= 0, which

is satisfied if y11 = y21 = z11 = 0. Let A0 be a diagonal matrix with

a0,11 = a0,44 = 0 , a0,22 = a0,55 = y22 , a0,33 = a0,66 = y33 (117)

Then A = A0 + εM is of the form (116) in case

M =


m11 0 0 n11 n11 n11

m21 0 m21 m21 m21 m21

0 0 0 0 0 0
n11 n11 n11 m11 0 0
m21 m21 m21 m21 0 m21

0 0 0 0 0 0

 . (118)

The spectrum of − (ikU +DA0) is given by the eigenvalues

{−ik,−ik − y22,−ik − y33, ik, ik − y22, ik − y33} .

Therefore, to obtain that the most unstable branch of the dispersion relation for
small ε is a perturbation of ±ik we have to assume y2,2 > 0, y3,3 > 0. As before,
the dispersion relation associated to (14) is given by the roots of

det (z + ikU +DA0 + εDM) = 0 , (119)

and we can look for perturbative solutions of (119) of the form z = ik + aε + ... .
Solving (119) to the leading order in ε we obtain

a = −2km11(y33 + y22) + iy22y33(n11 −m11) + 4ik2m11 − 2km21y33

−iy22y33 + 2ky22 + 2ky33 + 4ik2
.

The real part of a has the following asymptotics

Re(a (k)) ∼ (n11 −m11)

− 4
(n11 −m21)y22y33 + n11y

2
22 + (n11 −m21)y2

33

y2
22y

2
33

k2 + ... .

for k → 0 and a (k) → −m1,1 for k → ∞. A sufficient condition for oscillatory
patterns in the sense of Definition 2.1 is then

n11 = m11 > 0 , −4
(n11 −m21)y22y33 + (n11 −m21)y2

33 + n11y
2
22

y2
22y

2
33

> 0 .

A variety of coefficients yij , nij satisfy these inequalities, e.g.

m11 = n11 = 1 , y22 = y33 = 1 , m21 = 4 . (120)

The form of the most unstable branch of the dispersion relation associated to these
coefficients is given in Figure 5. To summarize
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Figure 5. Root of (119) with the largest real part for conditions
as given in Theorem 5.6 with ε = 0.001. Horizontal: Re(z(k)),
vertical: Im(z(k)).

Theorem 5.6. The differential equation (14) with A = A0 + εM, and A0, M as in
(117), (118), (120), U as in (114) and ε > 0 sufficiently small, generates oscillatory
patterns in the sense of Definition 2.1.

5.5. Test of the model - wildtype and mutants. Pattern formation in biology
often relates to certain functional mechanisms. In myxobacteria there is a peculiar
phenomenon, that allows to test models for rippling on their reliability. There
exist mutants which can be mixed with wildtype populations, moving the way
the wildtype does, but which do not produce the C-signal, which upon contact
with counter-migrating bacteria make these bacteria change their orientation. The
mutants themselves can receive the signal and thus turn, but they do not send the
signal and thus cannot induce turning for other bacteria. When mixing these two
types of bacteria still rippling patterns occur, but with an increasing fraction of
mutants the wavelength of the ripples increases too. For a large enough fraction of
mutants in the total population, the rippling pattern is finally lost.

We can see all these effects of rippling, increasing of the wavelength of the rip-
pling pattern, and the loss of the rippling phenomenon in the following basic 6× 6
model for the wildtype and its naturally extended version for the wildtype-mutant
situation. In the wildtype and mutant system a critical value of the mutant fraction
exists, at which the pattern is lost. For this to happen, we need to exchange the roles
of the dependencies of T1 and T2, in comparison to the model discussed before. We
intentionally introduced both dependencies in this paper to stress, that oscillatory
patterns in this model do not occur generically, but need peculiar nonlinearities.

Assume that the bacteria are given in 3 states which can move in opposite spatial
directions. So we have the sequence of states

u1 → u2 → u3 → v1 → v2 → v3 → u1 .

Then the following set of transition functions (if mutants are absent) can gener-
ate oscillatory patterns as before and additionally is able to produce the desired
bifurcations in the population, when mutants are present

T1 = T1 (σ̃, u1) , T2 = λ2 (v1 + v2 + v3)u2 , T3 = λ3u3 , (121)

So the right moving bacteria of type 1 become excited at rate T1/u1, respectively
become able to receive or send the C-signal to induce turning in other bacteria - in
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dependence of the total cell density and their own density, for instance, when the
total population density is high enough. The bacteria of type 2 receive the C-signal
upon contact with counter migrating cells vi, i = 1, 2, 3 at rate λ2(v1 +v2 +v3). The
bacteria of type 3 then turn with rate λ3. These dependencies and their biological
interpretation fit very well to what is known about myxobacteria and C-signaling.

For the model with mutants and wildtype cells we have the following. Since
the counter-migrating mutants do not produce the signal, they do not occur in
the collision term associated to T2. Only wildtype cells produce the C-signal upon
collision, which makes the counter-migrating cells, which receive the signal, turn.
Here and in the following we define

σ = u1 + u2 + u3 + v1 + v2 + v3 + ū1 + ū2 + ū3 + v̄1 + v̄2 + v̄3 ,

where ūi, v̄i denote the corresponding concentrations of mutants. Let
q = v1 +v2 +v3 and let us further assume T1 = T1 (σ, u1), T2 = λ2 (q)u2, T3 = λ3u3

as before, and T̄1 = T1 (σ, ū1), T̄2 = λ2 (q) ū2, T̄3 = λ3ū3. Given that T1 and T̄1 are
the transition functions we need

T1(σ, 0) = T̄1(σ, 0) = 0 . (122)

This also guarantees, that this larger model reduces to the smaller wildtype only
model, in case the mutants are absent.
Using our usual approach to derive coefficients, which yield bifurcations near “hy-
perbolic” matrices, for functional dependences as in (121), we obtain the following
choice of coefficients

T1,σ + T1,u = εm11, T1,σ = εm12, T2,u = y22, T3,u = y33, T2,ξ = εn12. (123)

We obtain oscillatory patterns for the following choice of coefficients

m1,2 = m1,1 = 1 (124)

−y22y33 + n21y33y22 + n21y
2
33 − y2

22 − y2
33 > 0 , y22 > 0 , y33 > 0 (125)

and ε sufficiently small.
The fraction of wildtype cells in the total population will now be denoted by α,

which means α = 1 in the previous considerations.
Condition (124) is not strictly needed to generate oscillatory patterns. However,

it is convenient, because with this choice the most unstable branch of the dispersion
relation associated to the linearization of (121) contains the origin for k = 0 to the
leading order in ε and for arbitrary values of α. Therefore, with the choice in (124)
the analysis of the bifurcation w.r.t. α reduces to proving that a local minimum for
the dispersion relation at k = 0 becomes a local maximum for changing α.

If we assume (123) and (124) to hold in an open subset of {(ui, vi, ūi, v̄i), i =
1, 2, 3} which intersects ({u1 = 0} ∪ {ū1 = 0}) we obtain T1,u = 0. This contradicts
(122).

In order to avoid this problem we will assume that T1,u = 0 = T̄1,ū only holds
approximatively in case u1, ū1 are sufficiently large. For this to hold we will assume
that T1 = λ1 (σ) Ψ

(
u1/σ

β
)
, where the total cell concentration σ is large and 0 <

β < 1. We assume that λ1(σ) is a function of order one and that Ψ(ξ) ∼ ξ for ξ → 0
and Ψ(ξ) ∼ 1 for ξ → ∞ and similar laws for T̄1. Then the approximation T1,u

only holds for u1 >> σβ . For generic T1, T2, T3 and under our assumptions (123),
(124) we have that u1, ū1 are of order σ and our approximation conditions would
be justified. The concentration of mutants will be of order (1− α)σ and then, the
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function T1 will approximately be given by

T1 = λ1 (σ) for (1− α) >> σβ−1 . (126)

In case (1 − α) is small, also u1 is small and we would need to compute T1 =
λ1(σ)Ψ(u1/σ

β). This would result in steady state concentrations remaining positive
for all α. The bifurcation phenomenon for α also happens in this case. But from here
on will restrict our analysis to the situation (126). The homogeneous equilibria for
the concentrations of wildtype cells and mutants are characterized by T1 = T2 = T3,
T̄1 = T̄2 = T̄3, and ui = vi, ūi = v̄i for i = 1, 2, 3, and u1 + u2 + u3 = ασ/2,
ū1+ū2+ū3 = (1− α)σ/2. The solutions of these equations under the approximation
(126) are

u2 =
λ1 (σ)

λ2

(
ασ
2

) , u3 =
λ1 (σ)

λ3
, ū2 =

λ1 (σ)

λ2

(
ασ
2

) , ū3 =
λ1 (σ)

λ3

u1 =
ασ

2
− (u2 + u3) =

ασ

2
− λ1 (σ)

λ2

(
ασ
2

) − λ1 (σ)

λ3

ū1 =
(1− α)σ

2
− (ū2 + ū3) =

(1− α)σ

2
− λ1 (σ)

λ2

(
ασ
2

) − λ1 (σ)

λ3
.

The linearized problem near the homogeneous states is of the form

∂tf +

(
U 0
0 U

)
∂xf +

(
D 0
0 D

)
Af = 0 , (127)

where for the diagonal matrix U we have U1 = U2 = U3 = 1, U4 = U5 = U6 = −1,
D is like in (15) and

A =


A1 A2 A3 A3

A2 A1 A3 A3

Ā3 Ā2 Ā1 Ā3

Ā2 Ā3 Ā3 Ā1

 with A1 =

 T1,σ T1,σ T1,σ

0 T2,u 0
0 0 T3,u



A2 =

 T1,σ T1,σ T1,σ

T2,ξ T2,ξ T2,ξ

0 0 0

 , A3 =

 T1,σ T1,σ T1,σ

0 0 0
0 0 0


and Ā1, Ā2, Ā3 analogously with the respective T̄i,q instead of Ti,q. Using the tran-
sition functions (121), (126) we obtain the following linearized coefficients at the
homogeneous states

T1,σ = T̄1,σ = T 0
1,σ , T1,u = T̄1,u = 0 , T3,u = T̄3,u = T 0

3,u

T2,u = T̄2,u =
λ2 (ασ/2)

λ2 (σ/2)
T 0

2,u , T2,ξ = T̄2,ξ =
λ′2 (ασ/2)

λ′2 (σ/2)

λ2 (σ/2)

λ2 (ασ/2)
T 0

2,ξ .

Where T 0
i,w denotes Ti,w for α = 1 and σ being fixed.

The transition between functions, which yield oscillatory patterns, and functions
which do not, is characterized by (−y22y33 + n21y33y22 + n21y

2
33 − y2

22 − y2
33) < 0 in

difference to (125). To obtain such a switch we choose

λ2 (ασ/2)
/
λ2 (σ/2) = φ (α) with φ (α) = eα

2−1 .

The superexponential growth of φ seems to be crucial to obtain the desired
bifurcation with this scheme. Such type of superexponential growth is known e.g.
in chemical reactions and can result for instance from a threshold activation energy
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Figure 6. α = 0.7
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Figure 8. Magnified scale in comparison with figures 6, 7. α = 0.6
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Figure 9. Magnified scale in comparison with figures 6, 7. α = 0.61

that is able to produce exponential dependences. With this functional choices we
have

T1,σ = T̄1,σ = T 0
1,σ , T1,u = T̄1,u = 0 , T3,u = T̄3,u = T 0

3,u ,

T2,u = T̄2,u = eα
2−1T 0

2,u , T2,ξ = T̄2,ξ = αeα
2−1T2,ξ/e

α2−1
0

= αT 0
2,ξ .

We choose the coefficients for “small” mutant concentrations as in (123).
The figures show the branch with the root with the largest real part for the

dispersion relation corresponding to (127) for different values of α. For arbitrary
α it contains a “neutral” bifurcation branch given by the values z = ±ik, k ∈ R.
Calculating the dispersion relation reduces to solving a polynomial equation of
degree ten. Figures 6, ..., 9 show the parametrization of the most unstable branch
for α = 0.7, 0.5 and in a magnified scale near the bifurcation value for α = 0.6, 0.61.

With this we have obtained a model for the one-dimensional motion of myxobac-
teria which shows the following behavior. The model for the wildtype population
shows rippling patterns with a defined wavelength. The same is true for the natural
extension of the model for mixtures of wildtype and mutants, only the wavelength of
the rippling pattern increases with an increasing fraction of mutants. If the fraction
of mutants within the population is too large, the rippling pattern vanishes, as it is
observed in experiments. So the model passes the known experimental tests so far.
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