[1]
|
M. Fila, J. R. King, M. Winkler and E. Yanagida, Optimal lower bound of the grow-up rate for a supercritical parabolic equation, J. Differ. Equations, 228 (2006), 339-356. doi: 10.1016/j.jde.2006.01.019
|
[2]
|
M. Fila, J. R. King, M. Winkler and E. Yanagida, Grow-up rate of solutions of a semilinear parabolic equation with a critical exponent, Adv. Differ. Equations, 12 (2007), 1-26.
|
[3]
|
M. Fila, J. R. King, M. Winkler and E. Yanagida, Very slow grow-up of solutions of a semi-linear parabolic equation, Proc. Edinb. Math. Soc., 53 (2011), 1-20. doi: 10.1017/S0013091509001497
|
[4]
|
M. Fila, H. Matano and P. Poláčik, Immediate regularization after blow-up, SIAM J. Math. Anal., 37 (2005), 752-776. doi: 10.1137/040613299
|
[5]
|
M. Fila and M. Winkler, Rate of convergence to a singular steady state of a supercritical parabolic equation, J. Evol. Equations, 8 (2008), 673-692. doi: 10.1007/s00028-008-0400-9
|
[6]
|
M. Fila, M. Winkler and E. Yanagida, Grow-up rate of solutions for a supercritical semilinear diffusion equation, J. Differ. Equations, 205 (2004), 365-389. doi: 10.1016/j.jde.2004.03.009
|
[7]
|
M. Fila, M. Winkler and E. Yanagida, Convergence rate for a parabolic equation with supercritical nonlinearity, J. Dynam. Differ. Equations, 17 (2005), 249-269. doi: 10.1007/s10884-005-5405-2
|
[8]
|
M. Fila, M. Winkler and E. Yanagida, Slow convergence to zero for a parabolic equation with supercritical nonlinearity, Math. Annalen, 340 (2008), 477-496. doi: 10.1007/s00208-007-0148-5
|
[9]
|
H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha} $, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124.
|
[10]
|
V. A. Galaktionov and J. R. King, Composite structure of global unbounded solutions of nonlinear heat equations with critical Sobolev exponents, J. Differ. Equations, 189 (2003), 199-233. doi: 10.1016/S0022-0396(02)00151-1
|
[11]
|
V. Galaktionov and J. L. Vázquez, Continuation of blow-up solutions of nonlinear heat equations in several space dimensions, Comm. Pure Applied Math., 50 (1997), 1-67. doi: 10.1002/(SICI)1097-0312(199701)50:1<1::AID-CPA1>3.3.CO;2-R
|
[12]
|
C. Gui, W.-M. Ni and X. Wang, On the stability and instability of positive steady states of a semilinear heat equation in $\mathbbR^n$, Comm. Pure Appl. Math., 45 (1992), 1153-1181. doi: 10.1002/cpa.3160450906
|
[13]
|
C. Gui, W.-M. Ni and X. Wang, Further study on a nonlinear heat equation, J. Differ. Equations, 169 (2001), 588-613. doi: 10.1006/jdeq.2000.3909
|
[14]
|
M. Hoshino and E. Yanagida, Sharp estimates of the convergence rate for a semilinear parabolic equation with supercritical nonlinearity, Nonlin. Anal. TMA, 69 (2008), 3136-3152. doi: 10.1016/j.na.2007.09.007
|
[15]
|
R. Ikehata, M. Ishiwata and T. Suzuki, Semilinear parabolic equation in $R^N$ associated with critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 69 (2010), 877-900. doi: 10.1016/j.anihpc.2010.01.002
|
[16]
|
M. Ishiwata, On the asymptotic behavior of unbounded radial solutions for semilinear parabolic problems involving critical Sobolev exponent, J. Differ. Equations, 249 (2010), 1466-1482. doi: 10.1016/j.jde.2010.06.024
|
[17]
|
O. Kavian, Remarks on the large time behaviour of a nonlinear diffusion equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), 423-452.
|
[18]
|
T. Kawanago, Asymptotic behavior of solutions of a semilinear heat equation with subcritical nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 1-15.
|
[19]
|
H. Matano and F. Merle, Classification of type I and type II behaviors for a supercritical nonlinear heat equation, J. Funct. Anal., 256 (2009), 992-1064. doi: 10.1016/j.jfa.2008.05.021
|
[20]
|
H. Matano and F. Merle, Threshold and generic type I behaviors for a supercritical nonlinear heat equation, J. Funct. Anal., 261 (2011), 716-748. doi: 10.1016/j.jfa.2011.02.025
|
[21]
|
N. Mizoguchi, On the behavior of solutions for a semilinear parabolic equation with supercritical nonlinearity, Math. Z., 239 (2002), 215-219. doi: 10.1007/s002090100292
|
[22]
|
N. Mizoguchi, Boundedness of global solutions for a supercritical semilinear heat equation and its applications, Indiana Univ. Math. J., 54 (2005), 1047-1059. doi: 10.1512/iumj.2005.54.2694
|
[23]
|
W.-M. Ni, P. E. Sacks and J. Tavantzis, On the asymptotic behavior of solutions of certain quasilinear parabolic equations, J. Differ. Equations, 54 (1984), 97-120. doi: 10.1016/0022-0396(84)90145-1
|
[24]
|
P. Poláčik and P. Quittner, Asymptotic behavior of threshold and sub-threshold solutions of a semilinear heat equation, Asymptotic Analysis, 57 (2008), 125-141.
|
[25]
|
P. Poláčik and E. Yanagida, On bounded and unbounded global solutions of a supercritical semilinear heat equation, Math. Annalen, 327 (2003), 745-771. doi: 10.1007/s00208-003-0469-y
|
[26]
|
P. Poláčik and E. Yanagida, Nonstabilizing solutions and grow-up set for a supercritical semilinear diffusion equation, Diff. Int. Equations, 17 (2004), 535-548.
|
[27]
|
P. Quittner, The decay of global solutions of a semilinear heat equation, Discrete Contin. Dynam. Systems A, 21 (2008), 307-318. doi: 10.3934/dcds.2008.21.307
|
[28]
|
P. Quittner and P. Souplet, "Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States," Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2007.
|
[29]
|
Ph. Souplet, Sur l'asymptotique des solutions globales pour une équation de la chaleur semi-linéaire dans des domaines non bornés, C. R. Acad. Sci. Paris Sér. I Math., 323 (1996), 877-882.
|
[30]
|
C. Stinner, Very slow convergence to zero for a supercritical semilinear parabolic equation, Adv. Differ. Equations, 14 (2009), 1085-1106.
|
[31]
|
C. Stinner, Very slow convergence rates in a semilinear parabolic equation, NoDEA, 17 (2010), 213-227. doi: 10.1007/s00030-009-0050-9
|
[32]
|
C. Stinner, The convergence rate for a semilinear parabolic equation with a critical exponent, Appl. Math. Letters, 24 (2011), 454-459. doi: 10.1016/j.aml.2010.10.041
|
[33]
|
X. Wang, On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., 337 (1993), 549-589. doi: 10.2307/2154232
|