Grow up and slow decay in the critical Sobolev case

  • Received: 01 January 2012 Revised: 01 May 2012
  • Primary: 35K57; Secondary: 35B40, 35B33.

  • We present conjectures on asymptotic behaviour of threshold solutions of the Cauchy problem for a semilinear heat equation with Sobolev critical nonlinearity. The conjectures say that, depending on the decay rate of initial data and the space dimension, the threshold solutions may grow up, stabilize, or decay to zero as $t→∞$. The rates of grow up or decay are computed formally using matched asymptotics.

    Citation: Marek Fila, John R. King. Grow up and slow decay in the critical Sobolev case[J]. Networks and Heterogeneous Media, 2012, 7(4): 661-671. doi: 10.3934/nhm.2012.7.661

    Related Papers:

    [1] Marek Fila, John R. King . Grow up and slow decay in the critical Sobolev case. Networks and Heterogeneous Media, 2012, 7(4): 661-671. doi: 10.3934/nhm.2012.7.661
    [2] Caihong Gu, Yanbin Tang . Global solution to the Cauchy problem of fractional drift diffusion system with power-law nonlinearity. Networks and Heterogeneous Media, 2023, 18(1): 109-139. doi: 10.3934/nhm.2023005
    [3] Zhong-Jie Han, Enrique Zuazua . Decay rates for $1-d$ heat-wave planar networks. Networks and Heterogeneous Media, 2016, 11(4): 655-692. doi: 10.3934/nhm.2016013
    [4] Ciro D’Apice, Umberto De Maio, T. A. Mel'nyk . Asymptotic analysis of a perturbed parabolic problem in a thick junction of type 3:2:2. Networks and Heterogeneous Media, 2007, 2(2): 255-277. doi: 10.3934/nhm.2007.2.255
    [5] Frédéric Bernicot, Bertrand Maury, Delphine Salort . A 2-adic approach of the human respiratory tree. Networks and Heterogeneous Media, 2010, 5(3): 405-422. doi: 10.3934/nhm.2010.5.405
    [6] Francesca R. Guarguaglini . Stationary solutions and asymptotic behaviour for a chemotaxis hyperbolic model on a network. Networks and Heterogeneous Media, 2018, 13(1): 47-67. doi: 10.3934/nhm.2018003
    [7] Zhong-Jie Han, Enrique Zuazua . Decay rates for elastic-thermoelastic star-shaped networks. Networks and Heterogeneous Media, 2017, 12(3): 461-488. doi: 10.3934/nhm.2017020
    [8] Guillermo Reyes, Juan-Luis Vázquez . The Cauchy problem for the inhomogeneous porous medium equation. Networks and Heterogeneous Media, 2006, 1(2): 337-351. doi: 10.3934/nhm.2006.1.337
    [9] Ioannis Markou . Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks and Heterogeneous Media, 2017, 12(4): 683-705. doi: 10.3934/nhm.2017028
    [10] Sharayu Moharir, Ananya S. Omanwar, Neeraja Sahasrabudhe . Diffusion of binary opinions in a growing population with heterogeneous behaviour and external influence. Networks and Heterogeneous Media, 2023, 18(3): 1288-1312. doi: 10.3934/nhm.2023056
  • We present conjectures on asymptotic behaviour of threshold solutions of the Cauchy problem for a semilinear heat equation with Sobolev critical nonlinearity. The conjectures say that, depending on the decay rate of initial data and the space dimension, the threshold solutions may grow up, stabilize, or decay to zero as $t→∞$. The rates of grow up or decay are computed formally using matched asymptotics.


    [1] M. Fila, J. R. King, M. Winkler and E. Yanagida, Optimal lower bound of the grow-up rate for a supercritical parabolic equation, J. Differ. Equations, 228 (2006), 339-356. doi: 10.1016/j.jde.2006.01.019
    [2] M. Fila, J. R. King, M. Winkler and E. Yanagida, Grow-up rate of solutions of a semilinear parabolic equation with a critical exponent, Adv. Differ. Equations, 12 (2007), 1-26.
    [3] M. Fila, J. R. King, M. Winkler and E. Yanagida, Very slow grow-up of solutions of a semi-linear parabolic equation, Proc. Edinb. Math. Soc., 53 (2011), 1-20. doi: 10.1017/S0013091509001497
    [4] M. Fila, H. Matano and P. Poláčik, Immediate regularization after blow-up, SIAM J. Math. Anal., 37 (2005), 752-776. doi: 10.1137/040613299
    [5] M. Fila and M. Winkler, Rate of convergence to a singular steady state of a supercritical parabolic equation, J. Evol. Equations, 8 (2008), 673-692. doi: 10.1007/s00028-008-0400-9
    [6] M. Fila, M. Winkler and E. Yanagida, Grow-up rate of solutions for a supercritical semilinear diffusion equation, J. Differ. Equations, 205 (2004), 365-389. doi: 10.1016/j.jde.2004.03.009
    [7] M. Fila, M. Winkler and E. Yanagida, Convergence rate for a parabolic equation with supercritical nonlinearity, J. Dynam. Differ. Equations, 17 (2005), 249-269. doi: 10.1007/s10884-005-5405-2
    [8] M. Fila, M. Winkler and E. Yanagida, Slow convergence to zero for a parabolic equation with supercritical nonlinearity, Math. Annalen, 340 (2008), 477-496. doi: 10.1007/s00208-007-0148-5
    [9] H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha} $, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124.
    [10] V. A. Galaktionov and J. R. King, Composite structure of global unbounded solutions of nonlinear heat equations with critical Sobolev exponents, J. Differ. Equations, 189 (2003), 199-233. doi: 10.1016/S0022-0396(02)00151-1
    [11] V. Galaktionov and J. L. Vázquez, Continuation of blow-up solutions of nonlinear heat equations in several space dimensions, Comm. Pure Applied Math., 50 (1997), 1-67. doi: 10.1002/(SICI)1097-0312(199701)50:1<1::AID-CPA1>3.3.CO;2-R
    [12] C. Gui, W.-M. Ni and X. Wang, On the stability and instability of positive steady states of a semilinear heat equation in $\mathbbR^n$, Comm. Pure Appl. Math., 45 (1992), 1153-1181. doi: 10.1002/cpa.3160450906
    [13] C. Gui, W.-M. Ni and X. Wang, Further study on a nonlinear heat equation, J. Differ. Equations, 169 (2001), 588-613. doi: 10.1006/jdeq.2000.3909
    [14] M. Hoshino and E. Yanagida, Sharp estimates of the convergence rate for a semilinear parabolic equation with supercritical nonlinearity, Nonlin. Anal. TMA, 69 (2008), 3136-3152. doi: 10.1016/j.na.2007.09.007
    [15] R. Ikehata, M. Ishiwata and T. Suzuki, Semilinear parabolic equation in $R^N$ associated with critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 69 (2010), 877-900. doi: 10.1016/j.anihpc.2010.01.002
    [16] M. Ishiwata, On the asymptotic behavior of unbounded radial solutions for semilinear parabolic problems involving critical Sobolev exponent, J. Differ. Equations, 249 (2010), 1466-1482. doi: 10.1016/j.jde.2010.06.024
    [17] O. Kavian, Remarks on the large time behaviour of a nonlinear diffusion equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), 423-452.
    [18] T. Kawanago, Asymptotic behavior of solutions of a semilinear heat equation with subcritical nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 1-15.
    [19] H. Matano and F. Merle, Classification of type I and type II behaviors for a supercritical nonlinear heat equation, J. Funct. Anal., 256 (2009), 992-1064. doi: 10.1016/j.jfa.2008.05.021
    [20] H. Matano and F. Merle, Threshold and generic type I behaviors for a supercritical nonlinear heat equation, J. Funct. Anal., 261 (2011), 716-748. doi: 10.1016/j.jfa.2011.02.025
    [21] N. Mizoguchi, On the behavior of solutions for a semilinear parabolic equation with supercritical nonlinearity, Math. Z., 239 (2002), 215-219. doi: 10.1007/s002090100292
    [22] N. Mizoguchi, Boundedness of global solutions for a supercritical semilinear heat equation and its applications, Indiana Univ. Math. J., 54 (2005), 1047-1059. doi: 10.1512/iumj.2005.54.2694
    [23] W.-M. Ni, P. E. Sacks and J. Tavantzis, On the asymptotic behavior of solutions of certain quasilinear parabolic equations, J. Differ. Equations, 54 (1984), 97-120. doi: 10.1016/0022-0396(84)90145-1
    [24] P. Poláčik and P. Quittner, Asymptotic behavior of threshold and sub-threshold solutions of a semilinear heat equation, Asymptotic Analysis, 57 (2008), 125-141.
    [25] P. Poláčik and E. Yanagida, On bounded and unbounded global solutions of a supercritical semilinear heat equation, Math. Annalen, 327 (2003), 745-771. doi: 10.1007/s00208-003-0469-y
    [26] P. Poláčik and E. Yanagida, Nonstabilizing solutions and grow-up set for a supercritical semilinear diffusion equation, Diff. Int. Equations, 17 (2004), 535-548.
    [27] P. Quittner, The decay of global solutions of a semilinear heat equation, Discrete Contin. Dynam. Systems A, 21 (2008), 307-318. doi: 10.3934/dcds.2008.21.307
    [28] P. Quittner and P. Souplet, "Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States," Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2007.
    [29] Ph. Souplet, Sur l'asymptotique des solutions globales pour une équation de la chaleur semi-linéaire dans des domaines non bornés, C. R. Acad. Sci. Paris Sér. I Math., 323 (1996), 877-882.
    [30] C. Stinner, Very slow convergence to zero for a supercritical semilinear parabolic equation, Adv. Differ. Equations, 14 (2009), 1085-1106.
    [31] C. Stinner, Very slow convergence rates in a semilinear parabolic equation, NoDEA, 17 (2010), 213-227. doi: 10.1007/s00030-009-0050-9
    [32] C. Stinner, The convergence rate for a semilinear parabolic equation with a critical exponent, Appl. Math. Letters, 24 (2011), 454-459. doi: 10.1016/j.aml.2010.10.041
    [33] X. Wang, On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., 337 (1993), 549-589. doi: 10.2307/2154232
  • This article has been cited by:

    1. Chunhua Wang, Juncheng Wei, Suting Wei, Yifu Zhou, Infinite time blow-up for critical heat equation with drift terms, 2020, 59, 0944-2669, 10.1007/s00526-019-1661-6
    2. Manuel del Pino, Monica Musso, Juncheng Wei, Infinite-time blow-up for the 3-dimensional energy-critical heat equation, 2020, 13, 1948-206X, 215, 10.2140/apde.2020.13.215
    3. Pavol Quittner, Optimal Liouville theorems for superlinear parabolic problems, 2021, 170, 0012-7094, 10.1215/00127094-2020-0096
    4. Guoyuan Chen, Juncheng Wei, Yifu Zhou, Finite time blow-up for the fractional critical heat equation in Rn, 2020, 193, 0362546X, 111420, 10.1016/j.na.2019.01.010
    5. Manuel del Pino, Monica Musso, Juncheng Wei, Existence and stability of infinite time bubble towers in the energy critical heat equation, 2021, 14, 1948-206X, 1557, 10.2140/apde.2021.14.1557
    6. Philippe Souplet, Morrey spaces and classification of global solutions for a supercritical semilinear heat equation in Rn, 2017, 272, 00221236, 2005, 10.1016/j.jfa.2016.09.002
    7. Charles Collot, Frank Merle, Pierre Raphaël, Strongly anisotropic type II blow up at an isolated point, 2020, 33, 0894-0347, 527, 10.1090/jams/941
    8. Zaizheng Li, Juncheng Wei, Qidi Zhang, Yifu Zhou, Long-time dynamics for the energy critical heat equation in R5, 2024, 247, 0362546X, 113594, 10.1016/j.na.2024.113594
    9. Leonardo Kosloff, César J. Niche, Gabriela Planas, Decay rates for the 4D energy‐critical nonlinear heat equation, 2024, 56, 0024-6093, 1468, 10.1112/blms.13006
    10. Giacomo Ageno, Manuel del Pino, Infinite time blow-up for the three dimensional energy critical heat equation in bounded domains, 2024, 0025-5831, 10.1007/s00208-024-02885-x
    11. Juncheng Wei, Qidi Zhang, Yifu Zhou, On Fila-King conjecture in dimension four, 2024, 398, 00220396, 38, 10.1016/j.jde.2024.03.004
    12. Zhong Tan, Yi Yang, Long-time asymptotics of the n-dimensional fractional critical heat equation, 2024, 75, 0044-2275, 10.1007/s00033-024-02357-x
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4950) PDF downloads(166) Cited by(12)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog