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Abstract. We present conjectures on asymptotic behaviour of threshold so-
lutions of the Cauchy problem for a semilinear heat equation with Sobolev

critical nonlinearity. The conjectures say that, depending on the decay rate of

initial data and the space dimension, the threshold solutions may grow up, sta-
bilize, or decay to zero as t → ∞. The rates of grow up or decay are computed

formally using matched asymptotics.

1. Introduction. In this paper we study the large-time behaviour of global clas-
sical solutions of the Cauchy problem{

ut = ∆u+ up, x ∈ RN , t > 0,

u(x, 0) = u0(x), x ∈ RN ,
(1.1)

where we assume that u0 is continuous, and

p = pS :=
N + 2

N − 2
, N > 2.

Problem (1.1) with p > 1 has been studied as an archetypal superlinear problem
and as a canonical problem of more general superlinear equations after taking a
scaling limit. In spite of its simple appearance, (1.1) is known to have a very rich
mathematical structure, and has been studied extensively by many authors. The
exponent pS is a well-known critical exponent for the dynamics of (1.1), see the
recent monograph [28] and references therein.

For 1 < p < pS there are no bounded positive radial steady states while for
p ≥ pS such steady states exist. For p = pS they are of the form

Φ(|x|; k) :=

(
k +

|x|2

kN(N − 2)

)−N−2
2

, k > 0. (1.2)

It was shown in [33] (see also [12]) that radial steady states are threshold solutions
for all p ≥ pS . A solution u = u(x, t;u0) is called a threshold solution if its initial
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function u0 is such that u(·, t;λu0) exists for all t > 0 if 0 < λ < 1 while u(·, t;λu0)
blows up in finite time in the L∞-norm if λ > 1.

For p > 1 and Ω ⊂ RN bounded, threshold solutions of the Dirichlet problem
ut = ∆u+ up, x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.3)

were studied in [23] and later in [11] and other papers, see [28] and references
therein. If Ω is a ball then we have a complete picture which can be summarized
as follows. Every threshold solution converges to the unique positive steady state if
p < pS . For p > pS , every radial threshold solution of (1.3) blows up in finite time
but exists globally as a weak solution (incomplete blow up). In fact, it can develop
a singularity at the centre of the ball Ω only finitely many times, see [4], [19], [20].
If p = pS then all radial threshold solutions of (1.3) grow up, which means that
they exist globally and become unbounded as t → ∞. Their rate of grow up was
studied in [10].

For the Cauchy problem (1.1), the situation is much more complicated. Global
positive solutions exist if and only if p > pF := 1 + 2/N , see [9], [28]. For pF <
p < pS , several sufficient conditions for global existence of threshold solutions and
their decay to zero have been established, see [17, 18, 27, 24, 28, 29]. If p > pS then
threshold solutions of (1.1) can exhibit incomplete blow up (cf. [21, 22, 28]), they
can grow up (cf. [1, 2, 3, 5, 6, 25, 26]), converge to steady states (cf. [7, 14, 30, 31]) or
decay to zero at slow rates (cf. [13, 8, 30]). Not many results have been established
for threshold solutions of (1.1) when p = pS . Among some other things, sufficient
conditions for global existence of threshold solutions for p = pS were given in
[24, 27, 28]; for some other results see for example [15, 16].

The aim of this paper is to present evidence that radial threshold solutions of
(1.1) with p = pS can exhibit grow up and slow decay at various rates.

In what follows we consider solutions of
ut = urr + N−1

r ur + upS , r > 0, t > 0,

ur(0, t) = 0, t > 0,

u(r, 0) = u0(r) > 0, r ≥ 0,

(1.4)

where u0 is continuous and N > 2, N ∈ R.
It was shown in [27] that if

lim
r→∞

r
N−2

2 u0(r) = 0,

and u is a threshold solution then it exists for all t > 0 and

lim sup
t→∞

t
N−2

4 ‖u(·, t)‖∞ =∞.

Here t−(N−2)/4 is the selfsimilar decay rate.
We shall assume that the initial function u0 satisfies

lim
r→∞

rγu0(r) = A for some A > 0 and γ >
N − 2

2
. (1.5)

The conjecture below says that decay rates which are slower than the selfsimilar
one occur for threshold solutions of (1.4) if 2 < N < 4, (N − 2)/2 < γ < N − 2 or
4 ≤ N < 6, (N − 2)/2 < γ < 2. On the other hand, grow up occurs if 2 < N < 4,
γ > N − 2 or N = 4, γ > 2. Notice that γ = N − 2, which separates decay from
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grow up when 2 < N < 4, corresponds to the decay rate of the steady states given
by (1.2).

Conjecture 1.1. Let u be a threshold solution of (1.4) with initial function u0
satisfying (1.5). Then there is a constant C = C(N, u0) > 0 such that

lim
t→∞

‖u(·, t)‖∞
ϕ(t;N, γ)

= C,

where the function ϕ(·;N, γ) is given in the table below for 2 < N < 6.

N−2
2 < γ < 2 γ = 2 γ > 2

2 < N < 4 t
γ+2−N

2 t
4−N

2 (ln t)−1 t
4−N

2

N = 4 t−
2−γ
2 ln t 1 ln t

4 < N < 6 t−
(2−γ)(N−2)

2(6−N) (ln t)−
N−2
6−N 1

If N ≥ 6 and γ > (N − 2)/2 then ϕ(·;N, γ) ≡ 1.

In the subsequent sections we compute the decay and grow up rates formally using
matched asymptotics. In Section 2 we give an inner expansion and Sections 3-5 are
devoted to outer solutions and matching for N < 4, N > 4 and N = 4, respectively.

2. Inner solution. The inner variables are

ξ :=
r

ρ(t)
, φ(ξ, t) := ρ

N−2
2 (t)u(r, t),

where

ρ(t) := u−
2

N−2 (0, t) (2.1)

is to be determined (cf. Section 4 in [10]). Thus

ρ2φt − ρρ′
(
ξφξ +

N − 2

2
φ

)
= φξξ +

N − 1

ξ
φξ + φp.

The first two terms in the expansion for the relevant (singly-unstable – separating
blowing-up solutions from fast (linear-diffusively) decaying ones) solution take the
form

φ ∼ Φ0(ξ) + ρρ′Φ1(ξ), (2.2)

implying for consistency that

ρ�
√
t as t→∞. (2.3)

Thus

(Φ0)ξξ +
N − 1

ξ
(Φ0)ξ + ΦpS0 = 0, (2.4)

whereby in view of (2.1) and (1.2) we have

Φ0(ξ) = Φ(ξ; 1). (2.5)

At next order we have the initial value problem

(Φ1)ξξ +
N − 1

ξ
(Φ1)ξ +

N + 2

N − 2
Φ

4
N−2

0 Φ1 = −ξ(Φ0)ξ −
N − 2

2
Φ0, (2.6)
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subject to

Φ1 = (Φ1)ξ = 0 at ξ = 0,

the complementary function of which satisfies

Φ1(ξ) ∼ β as ξ →∞ (2.7)

and, because

Φ0(ξ) ∼ (N(N − 2))−
N−2

2 ξ−(N−2) as ξ →∞,
a particular integral has asymptotic behaviour

Φ1(ξ) ∼ αξ4−N as ξ →∞, N 6= 4. (2.8)

In (2.8), α can be evaluated by direct substitution; in (2.7), β can be determined
only by integration of (2.6), which can be achieved by reduction of order using the
fact that ∂Φ/∂k(ξ; 1) satisfies the homogeneous version of (2.6). The exception to
(2.8) is when N = 4, when we instead have

Φ1(ξ) ∼ 4 ln ξ as ξ →∞, N = 4. (2.9)

3. Outer solution and matching: 2 < N < 4. In this regime (2.8) dominates
(2.7) and the inner expansion (2.2) thus breaks down at

ξ = O
(

(ρρ′)−1/2
)
. (3.1)

The outer problem reads

ut ∼ urr +
N − 1

r
ur (3.2)

and thus has r = O(
√
t), so that (3.1) implies that ρ′/ρ = O(1/t). Moreover, since

(2.7) is negligible, the boundary condition on (3.2) is that no r0 term be present at
r = 0 i.e. that the solution to (3.2) satisfy

u ∼ (N(N − 2)ρ)
N−2

2 r−(N−2) +O(r4−N ) as r → 0, (3.3)

where we have matched with (2.5) and where ρ(t) will be determined asymptotically
by this outer problem.

As a side remark we mention that in view of (1.5), the relevant contributions to
the far field expansion read

u ∼ Ar−γ +
(
Aγ(γ + 2−N)r−γ−2 +ApSr−γpS

)
t, (3.4)

this requiring for consistency with r = O(
√
t) that

t
2γ
N−2 � t as t→∞

i.e. that γ > (N −2)/2. This condition will prove important later; if γ < (N −2)/2
then finite-time blow up occurs.

From (3.2), (3.3) we have

d

dt

∫ ∞
0

rudr = [rur + (N − 2)u]∞0 = 0 (3.5)

when the integral exists i.e. when γ > 2; an alternative statement of (3.3) is that
rur + (N − 2)u = 0 at r = 0. In the case γ > 2

u ∼ t−1g(r/
√
t), g(η) := Bη−(N−2)e−η

2/4 (3.6)
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where B depends on the initial data (and cannot be determined explicitly because
the conservation law (3.5) of course holds only asymptotically as t→∞). Matching
(3.6) with (3.3) yields

ρ ∼ 1
N(N−2)B

2
N−2 t−

4−N
N−2 ,

umax ∼ (N(N − 2))−
2

N−2B−1t
4−N

2

(3.7)

for N < 4, γ > 2, representing grow up.
For (N − 2)/2 < γ < 2 we instead have

u ∼ t−
γ
2 g(r/

√
t), g(η) ∼ σAη−(N−2) as η → 0

where g(η) is specified via ηgη + (N − 2)g = 0 at η = 0,

g ∼ Aη−γ as η →∞,
where the constant σ(γ) can be determined from the boundary value problem for
g(η). In this case

ρ ∼ 1
N(N−2) (σA)

2
N−2 t−

γ+2−N
N−2 ,

umax ∼ (N(N − 2))−
2

N−2 (σA)−1t
γ+2−N

2

(3.8)

for N < 4, γ < 2. This gives grow up for N − 2 < γ < 2 and decay for (N − 2)/2 <
γ < N − 2; for γ = N − 2 we have g(η) = Aη−(N−2), and u neither grows nor
decays; this is of course the case in which the decay in (1.5) coincides with that of
(2.5). The constraint (2.3) requires γ > (N − 2)/2, an inequality already deduced
from other considerations.

Finally here, for γ = 2 we have

u ∼ t−1 ln t g(r/
√
t) + t−1h(r/

√
t)

whereby

g(η) := σAη−(N−2)e−η
2/4

(where σ will again be determined by matching) and

g − h− η

2
hη = hηη +

N − 1

η
hη

so that (since no η0 term can be present at η = 0)

σA

∫ η

0

θ−(N−3)e−θ
2/4 dθ − 1

2
η2h = ηhη + (N − 2)h,

from which it follows (on imposing the required far-field behaviour) that

σ =

(
2

∫ ∞
0

θ−(N−3)e−θ
2/4 dθ

)−1
.

Thus
ρ ∼ 1

N(N−2) (σA)
2

N−2 t−
4−N
N−2 ln

2
N−2 t,

umax ∼ (N(N − 2))−
2

N−2 (σA)−1t
4−N

2 ln−1 t,
(3.9)

for N < 4, γ = 2; the latter grows slightly more slowly than in (3.7).



666 MAREK FILA AND JOHN R. KING

4. Outer solution and matching: N > 4.

4.1. Scenario 1. In this regime it is plausible that there is an intermediate region
where

ξ = O
(

(ρρ′)−1/(N−2)
)

(4.1)

and whereby at leading order

0 = urr +
N − 1

r
ur, (4.2)

so that

u ∼ ρ−
N−2

2

(
(N(N − 2))

N−2
2 ξ−(N−2) + βρρ′

)
; (4.3)

over this region the two contributions from (4.2) thus swap dominance. Since (4.1)
implies

r = O
(
ρ
N−3
N−2 (ρ′)−

1
N−2

)
(4.4)

the requirement that r �
√
t in some circumstances simply leads again to (2.3);

however, as we shall see later the situation can be more complicated and we shall
subsequently (in Subsection 4.2) need to revisit the self-consistency of the scenario
that we now present.

In the current scenario, the outer region has (3.2) subject on matching with (4.3)
to no r−(N−2) term being present at r = 0 i.e. to rN−1ur = 0 and (3.5) is thus
replaced by

d

dt

∫ ∞
0

rN−1u dr = 0

if γ > N . Thus we would have for γ > N that

u ∼ t−N2 g(r/
√
t), g(η) := Be−η

2/4 (4.5)

and matching with (3.3) would then yield

βρ−
N−4

2 ρ′ = Bt−
N
2 (4.6)

where

β =
2N(N + 2)Γ2(N/2)

(N − 2)(N − 4)Γ(N)
> 0.

In fact this argument is incorrect, for reasons we explain in Subsection 4.2, but is
instructive in that the implication

ρ(t)→ ρ∞ as t→∞ (4.7)

is indeed valid, implying that a steady state is attained: trying instead to set ρ∞ = 0
leads from (4.6) to unacceptable signs for N < 6 and to a violation of (2.3) for N > 6
– similar comment applies in other cases below.

For γ < N under the current scenario we instead have

u ∼ t−
γ
2 g(r/

√
t), g(η) ∼ σA as η → 0,

g(η) being specified via gη = 0 at η = 0 and

g ∼ Aη−γ as η →∞,
for some constant σ(γ) with

βρ−
N−4

2 ρ′ = σAt−
γ
2 . (4.8)

For γ > 2 we thus recover (4.7) (this also encompasses the case γ = N when a ln t
term appears on the right-hand side of (4.8), cf. the discussion of γ = 2 in the
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previous section). Since we need γ > (N − 2)/2, it follows that (4.7) in fact applies
for all relevant γ when N ≥ 6. For 4 < N < 6, (N − 2)/2 < γ < 2, however, we
have from (4.8) that

ρ ∼
(

(6−N)σA
(2−γ)β

) 2
6−N

t
2−γ
6−N ,

umax ∼
(

(6−N)σA
(2−γ)β

)−N−2
6−N

t−
(N−2)(2−γ)

2(6−N) ,

(4.9)

as t → ∞; as γ → (N − 2)/2+ we approach the usual self-similar behaviour. For
4 < N < 6, γ = 2 we have

ρ ∼
(

(6−N)σA
β

) 2
6−N

(ln t)
2

6−N ,

umax ∼
(

(6−N)σA
β

)−N−2
6−N

(ln t)−
N−2
6−N .

(4.10)

Both (4.9) and (4.10) imply slow decay.

4.2. Scenario 2. We must now reassess the applicability of the above asymptotic
structure in the light of (4.3). For (N − 2)/2 < γ < N − 2 all is well, with (4.4)
necessarily having r �

√
t. However, (4.6) implies for γ > N that

ρ = ρ∞ +O
(
t−

N−2
2

)
as t→∞

so that (4.4) has

r = O
(
t

N
2(N−2)

)
,

which is never consistent with r �
√
t, while (4.8) gives

ρ = ρ∞ +O
(
t−

γ−2
2

)
as t→∞

for max(2, (N − 2)/2) < γ < N , so (4.4) corresponds to

r = O
(
t

γ
2(N−2)

)
and self-consistency then demands that γ < N − 2, as already implied. Thus the
asymptotic structure differs from that explored in Subsection 4.1 when γ ≥ N − 2:
the intermediate layer is absent, while (4.3), in the form

u ∼ (N(N − 2)ρ∞)
N−2

2 r−(N−2) + βρ
−N−4

2∞ ρ′, (4.11)

is applied as a matching condition on the outer region, the first term in (4.11)
implying that the leading-order outer solution takes the form

u ∼ t−
N−2

2 g(r/
√
t) (4.12)

with

g(η) = Kη−(N−2)
∫ ∞
η

θN−3e−θ
2/4 dθ +

{
0, N − 2 < γ,

Aη−(N−2), γ = N − 2,
(4.13)

where K depends on the initial data but can be determined in terms of ρ∞ (which
of course itself depends on the initial data) using (4.11), in the form

ρ(N−2)/2∞ (N(N − 2))(N−2)/2 = K

∫ ∞
0

θN−3e−θ
2/4 dθ +

{
0, N − 2 < γ,
A, γ = N − 2,
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and matching with the second term in (4.11) gives

βρ−(N−4)/2∞ ρ′ ∼ − K

N − 2
t−

N−2
2 (4.14)

so that ρ decays towards ρ∞ at a rate given by (4.14) rather than by (4.6) or (4.8)
when γ ≥ N − 2.

5. Outer solution and matching: N = 4. This critical case is of some interest
because there is a significant change in behaviour between N < 4 and N > 4, as
indicated by the analysis of the previous two sections. Here (4.3) is replaced by

u ∼ ρ−1
(
8ξ−2 + 4ρρ′ ln(r/ρ)

)
(5.1)

in matching into r = O(
√
t). To describe the outer region for γ > 2 we accordingly

introduce variables η = r/
√
t, τ = ln t and seek an expansion in the form

u ∼ t−1
(
ψ(τ)g(η) + ψ̇(τ)G(η)

)
(5.2)

where ˙ denotes d/dτ , g(η), G(η) = o(η−2) as η → ∞ and ψ(τ) is specified by the
requirement that

u ∼ t−1ψ(τ)η−2 as η → 0 (5.3)

applies as a matching condition to all orders in τ ; matching with (4.1) then imme-
diately implies that

ψ = 8ρ. (5.4)

At leading order we find

g(η) = η−2e−η
2/4,

while the first correction term satisfies

η−2e−η
2/4 −G− η

2
Gη = Gηη +

3

η
Gη

and hence

−1

2

(
E1(η2/4) + η2G

)
= ηGη + 2G,

where

E1(ζ) :=

∫ ∞
ζ

ϑ−1e−ϑdϑ

is the exponential integral. Thus

G(η) ∼ 1

2
ln η as η → 0 (5.5)

and matching to the second term in (5.1) (wherein the ln ρ contribution is negligible)
implies

4ρ̇ ln r ∼ −1

4
ψ +

ψ̇

2
ln(r/

√
t), (5.6)

the first term on the right-hand side coming from g(η) and the second from (5.5).
In view of (5.4), the ln r terms in (5.6) automatically match and

τ ρ̇ ∼ −ρ,

so that

ρ ∼ 1

K ln t
, umax ∼ K ln t
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(representing extremely slow grow up) for some constant K that depends on the
initial data. Tracking back through the above analysis, we may observe as an aside
that the matching condition (5.1) is equivalent to

r3ur ∼ −16ρ, rur + 2u ∼ 4ρ′ ln t at r = 0

i.e. to (3.2) being subject to the mixed condition

rur + 2u ∼ −1

4

(
r3ur

)
t
ln t at r = 0,

the right-hand side of which is only logarithmically larger than the left for r =
O(
√
t). We note that in the analysis above the leading-order matching condition

on (3.2) can be viewed as being

rur + (N − 2)u = 0 at r = 0

for N < 4 and (
rN−1ur

)
t

= 0 at r = 0

for N > 4, clearly illustrating the borderline role of the case N = 4.
For γ = 2(= (N − 2)) we can replace (5.2) by

u ∼ t−1
(
Aη−2 + ψ(τ)g(η) + ψ̇(τ)G(η)

)
(5.7)

where g and G are as given above but (5.3) is replaced by

u ∼ t−1
(
A+ ψ(τ)

)
η−2 as η → 0.

Matching proceeds as before, the only changes following from the obvious one to
(5.4), whereby

A+ ψ = 8ρ, τ ψ̇ ∼ −ψ
so that the ψ contribution does not appear at leading order in (5.7) and

ρ ∼ A/8, umax ∼ 8/A.

We note here that no ln t terms appear at leading order in the borderline case
for N = 4, this being a consequence of the similarity solution Aη−2 having the
exceptional feature that neither η0 nor ηN−4 terms are present as η → 0 (the two
of course coinciding for N = 4).

Finally, for ((N − 2)/2 =)1 < γ < 2 we have

u ∼ t−
γ
2 g(r/

√
t), g(η) ∼ σA as η → 0, g(η) ∼ Aη−γ as η →∞,

and matching with (5.1) gives

4 ln(
√
t/ρ)ρ′ ∼ σAt−γ/2

so that, roughly speaking, ρ ∼ t1−γ/2 and hence

ρ′ ∼ σAt−γ/2

2(γ − 1) ln t

so that, more precisely,

ρ ∼ σAt(2−γ)/2

(γ − 1)(2− γ) ln t
, umax ∼

1

ρ
,

representing slow decay. As a final check, in (5.1) we have a balance

ξ−2 ≈ t1−γ/ ln t

so
r ≈

√
t/ ln t
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which indeed satisfies r �
√
t, but ‘only just’.

Acknowledgments. The first author was supported in part by the Slovak Re-
search and Development Agency under the contract No. APVV-0134-10 and by the
VEGA grant 1/0711/12. The second author gratefully acknowledges the support of
the Royal Society and Wolfson Foundation.

REFERENCES

[1] M. Fila, J. R. King, M. Winkler and E. Yanagida, Optimal lower bound of the grow-up rate

for a supercritical parabolic equation, J. Differ. Equations, 228 (2006), 339–356.

[2] M. Fila, J. R. King, M. Winkler and E. Yanagida, Grow-up rate of solutions of a semilinear
parabolic equation with a critical exponent, Adv. Differ. Equations, 12 (2007), 1–26.

[3] M. Fila, J. R. King, M. Winkler and E. Yanagida, Very slow grow-up of solutions of a semi-

linear parabolic equation, Proc. Edinb. Math. Soc., 53 (2011), 1–20.
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