Citation: Ciro D'Apice, Peter I. Kogut, Rosanna Manzo. On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains[J]. Networks and Heterogeneous Media, 2014, 9(3): 501-518. doi: 10.3934/nhm.2014.9.501
[1] | Ciro D'Apice, Peter I. Kogut, Rosanna Manzo . On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Networks and Heterogeneous Media, 2014, 9(3): 501-518. doi: 10.3934/nhm.2014.9.501 |
[2] | Gabriella Bretti, Ciro D’Apice, Rosanna Manzo, Benedetto Piccoli . A continuum-discrete model for supply chains dynamics. Networks and Heterogeneous Media, 2007, 2(4): 661-694. doi: 10.3934/nhm.2007.2.661 |
[3] | Vincent Renault, Michèle Thieullen, Emmanuel Trélat . Optimal control of infinite-dimensional piecewise deterministic Markov processes and application to the control of neuronal dynamics via Optogenetics. Networks and Heterogeneous Media, 2017, 12(3): 417-459. doi: 10.3934/nhm.2017019 |
[4] | Thibault Liard, Raphael Stern, Maria Laura Delle Monache . A PDE-ODE model for traffic control with autonomous vehicles. Networks and Heterogeneous Media, 2023, 18(3): 1190-1206. doi: 10.3934/nhm.2023051 |
[5] | Ciro D'Apice, Rosanna Manzo . A fluid dynamic model for supply chains. Networks and Heterogeneous Media, 2006, 1(3): 379-398. doi: 10.3934/nhm.2006.1.379 |
[6] | Claus Kirchner, Michael Herty, Simone Göttlich, Axel Klar . Optimal control for continuous supply network models. Networks and Heterogeneous Media, 2006, 1(4): 675-688. doi: 10.3934/nhm.2006.1.675 |
[7] | Clément Cancès . On the effects of discontinuous capillarities for immiscible two-phase flows in porous media made of several rock-types. Networks and Heterogeneous Media, 2010, 5(3): 635-647. doi: 10.3934/nhm.2010.5.635 |
[8] | Martin Gugat, Alexander Keimer, Günter Leugering, Zhiqiang Wang . Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks. Networks and Heterogeneous Media, 2015, 10(4): 749-785. doi: 10.3934/nhm.2015.10.749 |
[9] | Michael Herty, Niklas Kolbe, Siegfried Müller . Central schemes for networked scalar conservation laws. Networks and Heterogeneous Media, 2023, 18(1): 310-340. doi: 10.3934/nhm.2023012 |
[10] | Ciro D'Apice, Peter I. Kogut, Rosanna Manzo . On optimization of a highly re-entrant production system. Networks and Heterogeneous Media, 2016, 11(3): 415-445. doi: 10.3934/nhm.2016003 |
[1] |
D. Armbruster, P. Degond and C. Ringhofer, A model for the dynamics of large queuing networks and supply chains, SIAM Journal on Applied Mathematics, 66 (2006), 896-920. doi: 10.1137/040604625
![]() |
[2] | H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces: Application to PDE and Optimization, SIAM, Philadelphia, 2006. |
[3] |
G. Bretti, C. D'Apice, R. Manzo and B. Piccoli, A continuum-discrete model for supply chains dynamics, Networks and Heterogeneous Media, 2 (2007), 661-694. doi: 10.3934/nhm.2007.2.661
![]() |
[4] | G. A. Chechkin and A. Yu. Goritsky, S.N. Kruzhkov's Lectures on First-Order Quasilinear PDEs, in Analytical and Numerical Aspects of PDEs, Walter de Gruyter, 2009. |
[5] |
C. F. Daganzo, A Theory of Supply Chains, Springer-Verlag, New York, Berlin, Heidelberg, 2003. doi: 10.1007/978-3-642-18152-8
![]() |
[6] |
C. D'Apice, S. Göttlich, M. Herty and B. Piccoli, Modeling, Simulation, and Optimization of Supply Chains: A Continuous Approach, SIAM, Philadelphia, 2010. doi: 10.1137/1.9780898717600
![]() |
[7] | C. D'Apice, P. I. Kogut and R. Manzo, Efficient controls for one class of fluid dynamic models, JFar East J. Appl. Math., 46 (2010), 85-119. |
[8] |
C. D'Apice and R. Manzo, A fluid-dynamic model for supply chain, Networks and Heterogeneous Media, 1 (2006), 379-398. doi: 10.3934/nhm.2006.1.379
![]() |
[9] | C. D'Apice, R. Manzo and B. Piccoli, Modelling supply networks with partial differential equations, Quarterly of Applied Mathematics, 67 (2009), 419-440. |
[10] |
C. D'Apice, R. Manzo and B. Piccoli, Existence of solutions to Cauchy problems for a mixed continuum-discrete model for supply chains and networks, Journal of Mathematical Analysis and Applications, 362 (2010), 374-386. doi: 10.1016/j.jmaa.2009.07.058
![]() |
[11] |
C. D'Apice, R. Manzo and B. Piccoli, Optimal input flow for a PDE-ODE model of supply chains, Commun. Math. Sci., 10 (2012), 1225-1240. doi: 10.4310/CMS.2012.v10.n4.a10
![]() |
[12] |
C. D'Apice, R. Manzo and B. Piccoli, Numerical schemes for the optimal input flow of a supply-chain, SIAM Journal on Numerical Analysis, 51 (2013), 2634-2650. doi: 10.1137/120889721
![]() |
[13] |
F. Dubois and P. L. Lefloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws, Journal of Differential Equations, 71 (1988), 93-122. doi: 10.1016/0022-0396(88)90040-X
![]() |
[14] |
E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston, 1984. doi: 10.1007/978-1-4684-9486-0
![]() |
[15] |
S. Göttlich, M. Herty and A. Klar, Network models for supply chains, Comm. Math. Sci., 3 (2005), 545-559. doi: 10.4310/CMS.2005.v3.n4.a5
![]() |
[16] |
S. Göttlich, M. Herty and A. Klar, Modelling and optimization of supply chains on complex networks, Comm. Math. Sci., 4 (2006), 315-330. doi: 10.4310/CMS.2006.v4.n2.a3
![]() |
[17] |
K. Han, T. L. Friesz and T. Yao, A variational approach for continuous supply chain networks, SIAM J. Control Optim., 52 (2014), 663-686. doi: 10.1137/120868943
![]() |
[18] |
D. Helbing, S. Lämmer, T. Seidel, P. Seba and T. Platkowsk, Physics, stability and dynamics of supply networks, Phys. Rev., E, 70 (2004), 66-116. doi: 10.1103/PhysRevE.70.066116
![]() |
[19] |
M. Herty, A. Klar and B. Piccoli, Existence of solutions for supply chain models based on partial differential equations, SIAM J. Math. Anal., 39 (2007), 160-173. doi: 10.1137/060659478
![]() |
[20] |
C. Kirchner, M. Herty, S. Göttlich and A. Klar, Optimal Control for Continuous Supply Network Models, Netw. Heterog. Media, 1 (2006), 675-688. doi: 10.3934/nhm.2006.1.675
![]() |
[21] |
P. I. Kogut and G. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains. Approximation and Asymptotic Analysis, Birkhäuser Verlag, Boston, 2011. doi: 10.1007/978-0-8176-8149-4
![]() |
[22] |
P. I. Kogut and R. Manzo, On Vector-valued approximation of state constrained optimal control problems for nonlinear hyperbolic conservation laws, Journal of Dynamical and Control Systems, 19 (2013), 381-404. doi: 10.1007/s10883-013-9184-5
![]() |
[23] |
M. La Marca, D. Armbruster, M. Herty and C. Ringhofer, Control of continuum models of production systems, IEEE Trans. Automatic Control, 55 (2010), 2511-2526. doi: 10.1109/TAC.2010.2046925
![]() |
[24] | P. D. Lax, Hyperbolic System of Conservation Laws and the Mathematical Theory of Shock Waves, Society of Industrial and Applied Mathematics, Philadelfia, Pa., 1973. |
[25] | M. Miranda, Comportamento delle successioni convergenti di frontiere minimali, Rend. Sem. Mat. Univ. Padova, 38 (1967), 238-257. |
[26] | R. Schiel, Vector Optimization ans Control with PDEs and Pointwise State Constraints, PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2014. |
[27] |
D. M. Zhuang, Density result for proper efficiencies, SIAM J. on Control and Optimiz., 32 (1994), 51-58. doi: 10.1137/S0363012989171518
![]() |
1. | Lidia Huerga, Baasansuren Jadamba, Miguel Sama, An Extension of the Kaliszewski Cone to Non-polyhedral Pointed Cones in Infinite-Dimensional Spaces, 2019, 181, 0022-3239, 437, 10.1007/s10957-018-01468-6 | |
2. | Peter I. Kogut, Olha P. Kupenko, 2021, Chapter 6, 978-3-030-50301-7, 91, 10.1007/978-3-030-50302-4_6 | |
3. | Maria Pia D'Arienzo, Luigi Rarità, 2020, 2293, 0094-243X, 420042, 10.1063/5.0026462 | |
4. | Ciro D'Apice, Peter I. Kogut, Rosanna Manzo, On optimization of a highly re-entrant production system, 2016, 11, 1556-1801, 415, 10.3934/nhm.2016003 | |
5. | Rubén López, Miguel Sama, Stability and sensivity analysis for conical regularization of linearly constrained least-squares problems in Hilbert spaces, 2017, 456, 0022247X, 476, 10.1016/j.jmaa.2017.07.020 | |
6. | Michael Z. Zgurovsky, Ciro D’Apice, Umberto De Maio, Nataliia V. Gorban, Pavlo O. Kasyanov, Oleksiy V. Kapustyan, Olha V. Khomenko, José Valero, 2021, Chapter 15, 978-3-030-50301-7, 347, 10.1007/978-3-030-50302-4_15 | |
7. | Simone Göttlich, Stephan Knapp, Semi-Markovian capacities in production network models, 2017, 22, 1553-524X, 3235, 10.3934/dcdsb.2017090 | |
8. | Simone Göttlich, Stephan Knapp, Load-Dependent Machine Failures in Production Network Models, 2019, 79, 0036-1399, 1197, 10.1137/18M1193177 | |
9. | Ciro D’Apice, Maria Pia D’Arienzo, Peter I. Kogut, Rosanna Manzo, On boundary optimal control problem for an arterial system: Existence of feasible solutions, 2018, 18, 1424-3199, 1745, 10.1007/s00028-018-0460-4 | |
10. | Ram Jiwari, Vikas Kumar, Sukhveer Singh, Lie group analysis, exact solutions and conservation laws to compressible isentropic Navier–Stokes equation, 2022, 38, 0177-0667, 2027, 10.1007/s00366-020-01175-9 | |
11. | Khaled A.A.A. Othman, Thomas Meurer, Optimal Boundary Control for the Backlog Problem in Production Systems, 2022, 55, 24058963, 511, 10.1016/j.ifacol.2022.09.146 | |
12. | Ciro D’Apice, Peter I. Kogut, 2017, 1863, 0094-243X, 560055, 10.1063/1.4992738 | |
13. | Maria Pia D'Arienzo, Luigi Rarità, 2020, 2293, 0094-243X, 420041, 10.1063/5.0026464 | |
14. | Rosanna Manzo, Peter Kogut, 2023, 2849, 0094-243X, 410005, 10.1063/5.0162073 | |
15. | Martin Gugat, Michael Schuster, Jan Sokołowski, The location problem for compressor stations in pipeline networks, 2024, 12, 2325-3444, 507, 10.2140/memocs.2024.12.507 |