Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

The shifted wavelet (q,q)-entropy and the classification of stationary fractal signals

  • In this article, a wavelet entropy, which behaves as a shifted version of the standard wavelet (q,q)-entropy of fractal signals, is presented. The shifted wavelet (q,q)-entropy is obtained by computing the standard (q,q)-entropy functional on a weighted relative-wavelet-energy (RWE) representation of fractal signals; it is shown that the weight within the RWE plays the role of a shifting factor in the characteristics of the standard wavelet (q,q)-entropy. Therefore the shifted wavelet (q,q)-entropy relocates the wavelet entropy values to any point of the fractality index range, which allows us to analyze a wide variety of fractal signal families thus improving on previously proposed entropies in the literature. Information planes for these entropies are obtained using different shifts and values of parameters q and q, which allow us to highlight the potential applications for a fractal signal analysis. Moreover, an experimental study using synthesized exact fractal signals shows that the shifted wavelet entropy can classify stationary long-memory signals from short-memory ones and can also be used to differentiate other fractal signal families.

    Citation: Julio César Ramírez Pacheco, Joel Antonio Trejo-Sánchez, Luis Rizo-Domínguez. The shifted wavelet (q,q)-entropy and the classification of stationary fractal signals[J]. Networks and Heterogeneous Media, 2025, 20(1): 89-103. doi: 10.3934/nhm.2025006

    Related Papers:

    [1] Li-Bin Liu, Yige Liao, Guangqing Long . Error estimate of BDF2 scheme on a Bakhvalov-type mesh for a singularly perturbed Volterra integro-differential equation. Networks and Heterogeneous Media, 2023, 18(2): 547-561. doi: 10.3934/nhm.2023023
    [2] Xiongfa Mai, Ciwen Zhu, Libin Liu . An adaptive grid method for a singularly perturbed convection-diffusion equation with a discontinuous convection coefficient. Networks and Heterogeneous Media, 2023, 18(4): 1528-1538. doi: 10.3934/nhm.2023067
    [3] Li-Bin Liu, Limin Ye, Xiaobing Bao, Yong Zhang . A second order numerical method for a Volterra integro-differential equation with a weakly singular kernel. Networks and Heterogeneous Media, 2024, 19(2): 740-752. doi: 10.3934/nhm.2024033
    [4] Dilip Sarkar, Shridhar Kumar, Pratibhamoy Das, Higinio Ramos . Higher-order convergence analysis for interior and boundary layers in a semi-linear reaction-diffusion system networked by a $ k $-star graph with non-smooth source terms. Networks and Heterogeneous Media, 2024, 19(3): 1085-1115. doi: 10.3934/nhm.2024048
    [5] Chaoqun Huang, Nung Kwan Yip . Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II. Networks and Heterogeneous Media, 2015, 10(4): 897-948. doi: 10.3934/nhm.2015.10.897
    [6] Yongqiang Zhao, Yanbin Tang . Approximation of solutions to integro-differential time fractional wave equations in $ L^{p}- $space. Networks and Heterogeneous Media, 2023, 18(3): 1024-1058. doi: 10.3934/nhm.2023045
    [7] Chaoqun Huang, Nung Kwan Yip . Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks and Heterogeneous Media, 2013, 8(4): 1009-1034. doi: 10.3934/nhm.2013.8.1009
    [8] Gianni Dal Maso, Francesco Solombrino . Quasistatic evolution for Cam-Clay plasticity: The spatially homogeneous case. Networks and Heterogeneous Media, 2010, 5(1): 97-132. doi: 10.3934/nhm.2010.5.97
    [9] Ciro D’Apice, Umberto De Maio, T. A. Mel'nyk . Asymptotic analysis of a perturbed parabolic problem in a thick junction of type 3:2:2. Networks and Heterogeneous Media, 2007, 2(2): 255-277. doi: 10.3934/nhm.2007.2.255
    [10] Rémi Goudey . A periodic homogenization problem with defects rare at infinity. Networks and Heterogeneous Media, 2022, 17(4): 547-592. doi: 10.3934/nhm.2022014
  • In this article, a wavelet entropy, which behaves as a shifted version of the standard wavelet (q,q)-entropy of fractal signals, is presented. The shifted wavelet (q,q)-entropy is obtained by computing the standard (q,q)-entropy functional on a weighted relative-wavelet-energy (RWE) representation of fractal signals; it is shown that the weight within the RWE plays the role of a shifting factor in the characteristics of the standard wavelet (q,q)-entropy. Therefore the shifted wavelet (q,q)-entropy relocates the wavelet entropy values to any point of the fractality index range, which allows us to analyze a wide variety of fractal signal families thus improving on previously proposed entropies in the literature. Information planes for these entropies are obtained using different shifts and values of parameters q and q, which allow us to highlight the potential applications for a fractal signal analysis. Moreover, an experimental study using synthesized exact fractal signals shows that the shifted wavelet entropy can classify stationary long-memory signals from short-memory ones and can also be used to differentiate other fractal signal families.



    Consider the following singularly perturbed Fredholm integro-differential equation (SPFIDE) in the interval ˉI=[0,T]:

    {Lu(t):=εu(t)+f(t,u(t))+λT0K(t,s,u(s))ds=0, tI=(0,T],u(0)=A, (1.1)

    where 0<ε1 is a perturbation parameter, A is a given constant and λ is a real parameter. We assume that f(t,u)C1(ˉI×R), K(t,s,u)C1(ˉI×ˉI×R) and there exist constants α, β such that 0<α|f/u|, |K/u|β. Under these assumptions, the problem (1.1) has a unique solution (see [1]).

    It is well known that the SPFIDEs arise widely in scientific fields such as mathematical biology [2], material mechanics [3], hydrodynamic [4] and so on.These problems depend on such a small positive parameter ε that the solution varies rapidly when ε0. Due to the presence of this perturbation parameter ε, classical numerical methods on a uniform mesh fail to give accurate results. Therefore, it is necessary to develop suitable numerical methods that are ε-uniformly convergent for solving these problems.

    Over the past few years, there has been a growing interest in the numerical methods for Volterra integro-differential equations (see, e.g., [5,6,7,8,9,10]) and Fredholm integro-differential equations (see, e.g., [11,12]). When the differential term of these integro-differential equations contains a small positive perturbation parameter ε, these problems are called singularly perturbed integro-differential equations. Recently, some robust numerical methods are proposed to solve singularly perturbed Volterra integro-differential equations[13,14,15,16]. Meanwhile, the authors in [17,18] developed fitted finite difference schemes on a uniform mesh for second-order SPFIDEs and gave some convergence results based on the prior information of the exact solution. Durmaz, et.al., [19] proposed a second-order uniformly convergent finite difference scheme on a Shishkin mesh for a singularly perturbed Fredholm integro-differential equation with the reduced second type Fredholm equation. In [20], the authors presented a fitted finite difference approach on a Shishkin mesh for a first-order singularly perturbed Fredholm integro-differential initial value problem with integral condition. Kumar et al. [21] proposed a non-standard finite difference scheme with Haar wavelet basis functions for a singularly perturbed partial integro-differential equation. Recently, Cakir et al., [22] solved first-order nonlinear SPFIDEs on a Sinshkin mesh with first-order convergence rate.

    From the literatures we have mentioned above, the existing numerical methods of SPFIDEs given in [19,20,21] are layer-adapted mesh approaches, which require a priori information about the location and width of the boundary layer. Thus, adaptive grid methods by equidistributing monitor functions are widely used to solve some singularly perturbed problems, see [25,26,27,28,29] for example. The advantages of these adaptive grid methods is to cluster automatically the grid points within the boundary layer. To the best of our knowledge, there is no report about this adaptive grid method for problem (1.1). Therefore, the aim of this paper is to solve problem (1.1) numerically by a finite difference scheme on an adaptive grid obtained by equidistributing a positive monitor function. The discrete scheme is constructed by using the backward Euler formula and right rectangle formula to approximate derivative term and nonlinear integral term, respectively. It is proved under some additional conditions that the proposed adaptive grid method is first-order uniformly convergent, with respect to ε.

    The rest of this paper is as follows. In Section 2, preliminary results of the exact solution are laid out. A discretization scheme is established in Section 3, in which a prior error analysis and a posterior error estimate are carried out successively. Numerical results obtained by the adaptive gird algorithm are given in Section 4 to support the theoretical analyses. The paper ends with a summary of the main conclusions in Section 5.

    Notation Throughout this paper, C which is not necessarily the same at each occurrence, indicates a positive constant independent of the mesh division parameter N or the singular perturbation parameter ε. To simplify the notation, we set vk=v(tk) for any function v(t). In our estimates, the maximum norm of a continuous function v(t) with the domain [0,T] is defined as v(t)=esssupt[0,T]|v(t)| as well as the maximum norm of a discrete vector x={xi}Ni=0 with N+1 elements is defined as x=maxi=0,1,2,,N|xi|.

    In this section, we list the bounds for the exact solution u(t) and its first-order derivative.

    Lemma 2.1. [22, Lemma 1] Assume the constant λ satisfies

    |λ|<αmax0tTT0|G(t,s)|ds. (2.1)

    Then we have

    uC0, (2.2)
    |u(t)|C(1+1εeαtε), 0tT, (2.3)

    where

    C0=|A|+1αq11α|λ|max0tTT0|G(t,s)|ds,G(t,s)=uK(t,s,γu), 0<γ<1,q(t)=f(t,0)γT0K(t,s,0)ds.

    Corollary 2.1. For any two functions v(t) and w(t) satisfying

    v(0)=w(0)=A,  (2.4)

    and

    Lv(t)Lw(t)=˜F(t), tI,  (2.5)

    where ˜F(t) is a bounded piece-wise continuous function, we have

    v(t)w(t)CLv(t)Lw(t).  (2.6)

    Proof. The proof is similar to [15, Corollary 2.1].

    Let ˉΩN:={0=t0<t1<<tN=T} be an arbitrary non-uniform mesh and hi=titi1 be the local mesh size for i=1,2,,N. For a given mesh function {vi}Ni=0, define the backward finite difference operator as follows:

    Dvi=vivi1hi, i=1,2,,N. (3.1)

    Then to construct the discretization scheme for problem (1.1), we integrate Eq (1.1) over (ti1,ti) and use the right rectangle rule to approximate the integral part, which yield,

    {εDui+f(ti,ui)+λNj=1hjK(ti,tj,uj)+Ri=0, i=1,2,,N,u0=A, (3.2)

    where

    Ri:=R(1)i+R(2)i+R(3)i (3.3)

    and

    R(1)i=h1ititi1(tti1)ddtf(t,u(t))dt,R(2)i=λh1ititi1(tti1)T0tK(t,s,u(s))dsdt,R(3)i=λNj=1tjtj1(stj1)ddsK(ti,s,u(s))ds. 

    Neglecting the truncation error Ri in Eq (3.2), we obtain the discretization scheme of problem (1.1)

    {LNuNi:=εDuNi+f(ti,uNi)+λNj=1hjK(ti,tj,uNj)=0, i=1,2,,N,u0=A, (3.4)

    where uNi is the approximation of u(t) at point t=ti.

    Let eNi:=uNiui, i=0,1,,N, be the absolute error at ti of the numerical solution. Then we can obtain the following error equations

    {LNuNiLNui=Ri, i=1,2,,N,eN0=0, (3.5)

    where Ri is the local truncation error defined in Eq (3.3) at ti.

    Lemma 3.1. For i=1,2,,N, the truncation error Ri defined in Eq (3.3) satisfies

    |Ri|Cmax1iNtiti1(1+|u(t)|)dt.  (3.6)

    Proof. At first, based on the conditions f(t,u)C1(ˉI×R) and 0<α|f/u|, we obtain

    |R(1)i|h1ititi1hi(|f(t,u)t|+|f(t,u)u||u(t)|)dtCtiti1(1+|u(t)|)dt.  (3.7)

    Then, since K(t,s,u)C1(ˉI×ˉI×R) and |K/u|β, we have

    |R(2)i||λ|titi1T0|tK(t,s,u(s))|dsdtChi.  (3.8)

    and

    |R(3)i||λ|Nj=1Ttjtj1(|K(ti,s,u)s|+|K(ti,s,u)u||u(s)|)dsCmax1jNtjtj1(1+|u(t)|)dt.  (3.9)

    Finally, the desired result of this lemma can be followed by Eqs (3.7), (3.8) and (3.9).

    Lemma 3.2. Under the assumption

    |λ|<1αmax1iNNj=1hj|Gij|,  (3.10)

    we have

    eN1α(11α|λ|max1iNNj=1hi|Gij|)1R,  (3.11)

    where eN={eNi}Ni=0, R={Ri}Ni=0 and Gij=uK(ti,sj,uj+ζeNj), 0<ζ<1.

    Proof. Applying the mean value theorem to Eq (3.5), we get

    εDeNi+aieNi+λNj=1hjGijeNj=Ri, i=1,2,,N, (3.12)

    where

    ai=uf(ti,ui+ξeNi), 0<ξ<1, (3.13)
    Gij=uK(ti,sj,uj+ζeNj), 0<ζ<1. (3.14)

    According to maximum principle for the operator εDeNi+aieNi, we have

    eN1αR+1α|λ|eNmax1iNNj=1hj|Gij|, (3.15)

    which immediately leads to the desired result with the assumption (3.10).

    Based on the above Lemmas 3.1–3.2, we get the following convergence results.

    Theorem 3.1. Let u(t) be the solution of problem (1.1) and uNi be the solution of discrete scheme (3.4). Then

    max1iN|uNiui|Cmax1iNtiti1(1+|u(t)|)dt. (3.16)

    Corollary 3.1. Under the conditions of Theorem 3.1, there exists an adaptive grid {ti}Ni=0 such that

    max1iN|uNiui|CN1.  (3.17)

    Proof. Based on the mesh equidistribution principle presented in [29], the mesh {ti}Ni=0 given by our adaptive grid algorithm satisfies

    titi1M(t)dt=1NT0M(t)dt, i=1,2,,N, (3.18)

    where M(t) is called the monitor function, which can be chosen as

    M(t)=1+|u(t)|.  (3.19)

    Therefore, it follows from Lemma 2.1 that

    max1iN|uNiui|Cmax1iNtiti1(1+|u(t)|)dt=CNT0(1+|u(t)|)dtCNT0(1+1εexp(αtε))dtCN(T+1α(1exp(αTε)))CN. (3.20)

    In this section, we shall derive an a posteriori error estimation for the numerical solution {uNi}Ni=0. Recall that ˜uN(t) is a piece-wise linear interpolation function through knots (ti,uNi), i=0,1,,N. Then, for any tJi:=[ti1,ti], we obtain

    ˜uN(t)=uNi+DuNi(tti), i=1,2,,N.  (3.21)

    Theorem 3.2. Let u(t) be the exact solution of problem (1.1), {uNi}Ni=0 be the discrete solution of problem (3.4) and ˜uN(t) be its piece-wise linear interpolation function defined in Eq (3.21). Then we have

    ˜uN(t)u(t)Cmax1iN(hi+hi|DuNi|).  (3.22)

    Proof. For any t(ti1,ti], it follows from Eq (1.1) and Eq (3.4) that

    L˜uN(t)Lu(t)=εDuNi+f(t,˜uN(t))+λT0K(t,s,˜uN(s))ds=f(ti,uNi)λNj=ihjK(ti,tj,uNj)+f(t,˜uN(t))+λT0K(t,s,˜uN(s))ds=P(t)+Q(t),  (3.23)

    where

    P(t)=f(t,˜uN(t))f(ti,uNi), (3.24)
    Q(t)=λT0K(t,s,˜uN(s))dsλNj=1hjK(ti,tj,uNj). (3.25)

    With the assumptions of functions f(t,u), K(t,s,u) and the definition of ˜uN(t), we have

    |P(t)|=|f(ti,uNi)+ttidf(τ,˜uN(τ))dτdτf(ti,uNi)|tit(|f(τ,˜uN)τ|+|f(τ,˜uN)u||DuNi|)dτChi(1+|DuNi|) (3.26)

    and

    |Q(t)|=|λNj=1tjtj1(K(t,s,˜uN(s))K(ti,tj,uNj))ds||λ|Nj=1tjtj1(|tK(ξ1t+(1ξ1)ti,s,˜uN(s))(tti)|+|sK(ti,ξ2s+(1ξ2)tj,˜uN(s))(stj)|+|uK(ti,tj,ξ3˜uN(s)+(1ξ3)uNj)(˜uN(s)uNj)|)dsC(hi+max1jNhj(1+|DuNj|)),  (3.27)

    where 0<ξ1<1, 0<ξ2<1, and 0<ξ3<1. The result can be derived from Eqs (3.23), (3.26), (3.27) and Corollary 2.1.

    From Corollary 3.1, it is easy to conclude that there exists a mesh {ti}Ni=0 and a monitor function M(t) given in Eq (3.19) such that the inequality (3.17) holds true. However, u(t) is not available. Therefore, based on the a posterior error estimation (3.22), we choose the discrete analogue of M(t) as

    ˜Mi=1+|DuNi|,i=1,2,,N.  (3.28)

    Therefore, the idea is to adaptively design a mesh in which the values of monitor function tildeMi are the same on each mesh interval. This is equivalent to find {(ti,uNi)}Ni=0, such that

    hi˜Mi=1NNj=1hj˜Mj, i=1,2,,N.  (3.29)

    Furthermore, to obtain this equidistributed mesh {ti}Ni=0 and the corresponding numerical solution uNi, we give the following iteration algorithm:

    Algorithm 1 Steps of adaptive grid algorithm
    1: Step 1: For a given N, let {t(0)i}Ni=0 be an initial mesh with mesh step 1N. Choose a constant μ>1 that controls when the algorithm terminates.
    2: Step 2: For a given mesh {t(k)i}Ni=0 and numerical solution {uN,(k)i}Ni=0, compute ˜M(k)i,i=1,2,,N in Eq (3.28) and set ˜M(k)0=0.
    3: Step 3: Set h(k)i=t(k)it(k)i1 for each i and set L(k)0=0 and L(k)i=ij=1h(k)j˜M(k)j for i=1,2,,N. Define
                                            μ(k):=NL(k)Nmaxi=0,1,,Nh(k)i˜M(k)i.(3.30)
    4: Step 4: Set Y(k)i=iL(k)N/N for i=0,1,,N. Interpolate (see [30, Remark 5.1]) to the points (L(k)i,t(k)i). Generate the new mesh {t(k+1)i}Ni=0 by evaluating this interpolant at the Y(k)i for i=0,1,,N.
    5: Step 5: If μ(k)μ, then take {t(k+1)i}Ni=0 as the final mesh and compute {uN,(k+1)i}Ni=0. Otherwise return to Step 2.

    In Section 4.1, We first present the iterative scheme. Then numerical experiments are given in Section 4.2 to validate the theoretical result of this paper. All experiments were performed on a Windows 10 (64 bit) PC-Intel(R) Core(TM) i5-4200H CPU 2.80 GHz, 8 GB of RAM using MATLAB R2021a.

    In order to avoid solving the nonlinear equations (3.4), we apply the quasilinearization technique that performs a first-order Taylor expansion on the last iteration values and obtain

    {uN,(k)i=ε/hiuN,(k)i1+BiuN,(k1)i+Ciε/hi+Bi,i=1,2,,N,uN,(k)0=A, (4.1)

    where

    Bi=uf(ti,uN,(k1)i), (4.2)
    Ci=f(ti,uN,(k1)i)λNj=1hjK(ti,tj,uN,(k1)j). (4.3)

    For all the numerical experiments below, we choose μ=1.1, which is defined in Step 4 in Algorithm 1.

    Example 4.1. We consider a SPFIDE in the form [22]

    {εu(t)+2u(t)+tanh(u(t))et+1410t2sin(u(s))ds=0, t(0,1],u(0)=1. (4.4)

    Since the analytic solution of this problem is not available, we use the following formulas to calculate the errors and the corresponding convergence rates:

    eNε=ˆu2NuN, pNε=log2(eNεe2Nε),  (4.5)

    where ˆu2N is the numerical solution obtained on the fine mesh ˉΩ2N=ˉΩN{ti+ti+12}N1i=0. The maximum errors and ε-uniform rates of the convergence are respectively defined as

    eN=maxεeNε, pN=log2(eNe2N). (4.6)

    In the numerical experiments, we apply the presented adaptive grid algorithm to solve this problem. The resulting errors eNε and the orders of the convergence pNε, for particular values of ε and N are listed in Table 1. In addition, to compare the performance of the presented adaptive mesh with the Shishkin mesh [22] and the Bakhvalov mesh [23], some numerical results are given in Table 2.

    Table 1.  The errors and corresponding convergence rates for Example 4.1.
    ε N=64 N=128 N=256 N=512 N=1024
    22 0.004663 0.002384 0.001222 0.000619 0.000312
    0.9680 0.9637 0.9811 0.9903 -
    24 0.00595 0.003152 0.00163 0.000801 0.000412
    0.9167 0.9515 1.0244 0.9610 -
    26 0.006539 0.003482 0.001818 0.000939 0.000477
    0.9089 0.9373 0.9532 0.9769 -
    28 0.006711 0.003633 0.001893 0.000979 0.000501
    0.8853 0.9404 0.9514 0.9667 -
    210 0.006799 0.003635 0.001913 0.000996 0.000509
    0.9035 0.9258 0.9424 0.9667 -
    212 0.006881 0.003649 0.001926 0.000996 0.000512
    0.9151 0.9221 0.9505 0.9606 -
    214 0.006854 0.003683 0.001924 0.001 0.000513
    0.8963 0.9365 0.9447 0.9633 -
    216 0.00672 0.003752 0.001934 0.000999 0.000515
    0.8411 0.9562 0.9526 0.9560 -
    eN 0.006881 0.003752 0.001934 0.001 0.000515
    pN 0.8751 0.9562 0.9517 0.9569 -

     | Show Table
    DownLoad: CSV
    Table 2.  Comparisons of errors and corresponding convergence rates for Example 4.1.
    N ε=26 ε=28
    Adaptive Bakhvalov Shishkin Adaptive Bakhvalov Shishkin
    3×25 4.53E-03 2.81E-03 7.18E-03 4.66E-03 2.83E-03 7.16E-03
    0.93 0.98 0.75 0.91 0.98 0.75
    3×26 2.39E-03 1.42E-03 4.26E-03 2.48E-03 1.44E-03 4.25E-03
    0.94 0.99 0.79 0.95 0.99 0.79
    3×27 1.24E-03 7.16E-04 2.46E-03 1.29E-03 7.23E-04 2.45E-03
    0.97 0.99 0.83 0.96 0.99 0.83
    3×28 6.33E-04 3.59E-04 1.39E-03 6.62E-04 3.63E-04 1.38E-03
    0.98 1.00 0.85 0.97 1.00 0.85
    3×29 3.20E-04 1.80E-04 7.71E-04 3.37E-04 1.82E-04 7.69E-04
    1.05 1.00 0.86 0.98 1.00 0.86
    3×210 1.54E-04 9.01E-05 4.23E-04 1.71E-04 9.09E-05 4.22E-04

     | Show Table
    DownLoad: CSV

    According to the results in Table 1, for fixed N, the error increases with a diminishing speed and the convergence rate goes away from 1 as ε decreases, while for fixed ε, the error deceases to half as N doubles and the convergence rate is getting closer to 1. According to the results in Table 2, our adaptive mesh demonstrates both less error and more accurate first-order convergence rate than Shishkin mesh. In general, the performance of our adaptive grid algorithm is better when μ which is used to distribute the grid uniformly is closer to 1. However, the enhance becomes very limited after certain threshold and it can not work out successfully when μ is so close to 1 due to the enormous amount of calculations. Here the limitation of the adaptive mesh lies.

    The behaviors of the numerical solution are presented in Figures 1, 2. Obviously, it can be seen that in these two figures the solution of the test problem decreases successively near to 0 at first and increases progressively close to 1 then and has a boundary layer at t=0. Figure 3 shows the ε-uniform convergence of the method with different ε. To be more physical, the first-order uniform convergence stands for our method in spite of violent changes of the numerical solution in the bound layer at t=0. From Figure 3, no matter how close ε tends to zero, the maximum point-wise errors are bounded by O(N1) which validates our theoretical analyses. For ε=28, Figure 4 displays how a mesh with N=64 evolves through successive iterations of the algorithm by using monitor function (3.28).

    Figure 1.  Numerical results of Example 4.1 for N=64 and ε=24.
    Figure 2.  Numerical results of Example 4.1 for N=256 and various ε.
    Figure 3.  Maximum point-wise errors of log-log plot for Example 4.1.
    Figure 4.  Evolution of the mesh for Example 4.1.

    Example 4.2. We consider a first-order nonlinear singularly perturbed mixed type integro-differential equation in [24] in the form:

    {εu(t)+f(t,u(t))+12t0u2(s)ds+1210u3(s)ds=0, t(0,1],u(0)=1. (4.7)

    where

    f(t,u(t))=ε4u2(t)+u(t)+ε6e3ε512ε. (4.8)

    It is testified that it satisfies the assumption (3.10). The analytic solution of this problem is u(t)=et/ε. We use the following formulas to calculate the errors and the corresponding convergence rates:

    eNε=max0iN|uNiui|, pNε=log2(eNεe2Nε).  (4.9)

    The maximum errors and ε-uniform convergence rates are defined in Eq (4.6).

    The resulting errors eNε and the orders of the convergence pNε, for particular values of ε and N are listed in Table 3. In addition, to compare the performance of the presented adaptive mesh with the Shishkin mesh [22] and the Bakhvalov mesh [23], some numerical results are given in Table 4.

    Table 3.  The errors and corresponding convergence rates for Example 4.2.
    ε N=64 N=128 N=256 N=512 N=1024
    22 0.008698 0.004386 0.002202 0.001103 0.000552
    0.9880 0.9939 0.9969 0.9985 -
    24 0.011073 0.00562 0.002799 0.001413 0.00071
    0.9783 1.0057 0.9863 0.9929 -
    26 0.012473 0.00639 0.003247 0.001638 0.0008
    0.9648 0.9767 0.9876 1.0335 -
    28 0.013236 0.006774 0.003463 0.00176 0.000887
    0.9664 0.9681 0.9763 0.9881 -
    210 0.013376 0.006909 0.003559 0.00181 0.000917
    0.9530 0.9570 0.9755 0.9814 -
    212 0.013461 0.006954 0.003575 0.001835 0.000929
    0.9528 0.9601 0.9619 0.9822 -
    214 0.013563 0.007002 0.003592 0.001836 0.000937
    0.9540 0.9631 0.9680 0.9704 -
    216 0.015521 0.007146 0.003596 0.001842 0.000935
    1.1190 0.9908 0.9647 0.9784 -
    eN 0.015521 0.007146 0.003596 0.001842 0.000937
    pN 1.1190 0.9908 0.9647 0.9755 -

     | Show Table
    DownLoad: CSV
    Table 4.  Comparisons of errors and corresponding convergence rates for Example 4.2.
    N ε=26 ε=28
    Adaptive Bakhvalov Shishkin Adaptive Bakhvalov Shishkin
    3×25 8.43E-03 2.15E-02 1.91E-02 8.95E-03 2.69E-02 1.67E-02
    0.97 0.90 1.28 0.97 0.65 0.11
    3×26 4.31E-03 1.15E-02 7.85E-03 4.58E-03 1.72E-02 1.54E-02
    0.98 0.94 1.29 0.97 0.67 0.80
    3×27 2.18E-03 6.00E-03 3.21E-03 2.33E-03 1.08E-02 8.88E-03
    1.04 0.97 1.00 0.98 0.90 1.28
    3×28 1.06E-03 3.06E-03 1.61E-03 1.18E-03 5.78E-03 3.65E-03
    0.97 0.98 0.85 0.99 0.93 1.32
    3×29 5.39E-04 1.55E-03 8.88E-04 5.93E-04 3.02E-03 1.46E-03
    0.98 0.99 0.87 1.00 0.97 1.41
    3×210 2.72E-04 7.78E-04 4.87E-04 2.98E-04 1.54E-03 5.51E-04

     | Show Table
    DownLoad: CSV

    The behaviors of the numerical solution are presented in Figures 5, 6. Obviously, it can be seen that in these two figures the solution of the test problem gradually decreases to zero with a decreasing velocity rate as well as has a boundary layer at t=0. Figure 7 shows the ε-uniform convergence of the method with different ε. From Figure 7, no matter how close ε tends to zero, the maximum point-wise errors are bounded by O(N1) which validates our theoretical analyses. For ε=28, Figure 8 displays how a mesh with N=64 evolves through successive iterations of the algorithm by using monitor function (3.28).

    Figure 5.  Numerical results of Example 4.2 for N=64 and ε=24.
    Figure 6.  Numerical results of Example 4.2 for N=256 and various ε.
    Figure 7.  Maximum point-wise errors of log-log plot for Example 4.2.
    Figure 8.  Evolution of the mesh for Example 4.2.

    The unique but significant difference between these two examples can be found in Table 4. At the situation ε=28, adaptive mesh demonstrates better than Bakhvalov mesh. This is because the construction of the Bakhvalov mesh is based on prior information of the exact solution. Therefore the effect of this method is tightly relevant to the form of equation. The existing Bakhvalov mesh may display wonderful at suitable equations but poor when it is adverse. However, the adaptive mesh based on posterior error estimate requires none of prior information of the exact solution and displays steadily at various equations.

    This paper considers a nonlinear singularly perturbed Fredholm integro-differential equation for a first-order initial value problem. A first-order ε-uniformly convergent numerical method for solving this problem is presented, which comprises an adaptive grid based on the posterior error estimate and the mesh equidistribution principle. The difference scheme including the weights and the remainders is established using the backward Euler formula for the derivative term, together with the composite right rectangle quadrature rule for the integral term. A theoretical analysis based on prior error bound is conducted to prove the first-order convergence of the proposed method. Two examples show that our adaptive mesh demonstrates better than Shishkin mesh and performs as well as Bakhvalov mesh. In the future, we will try to extend the proposed adaptive grid method for solving other related integro-differential equations which can be found in [5,6,31].

    The authors declare there is no conflict of interest.



    [1] B. B. Mandelbrot, J. R. Wallis, Noah, joseph, and operational hydrology, Water Resour. Res., 4 (1968), 909–918. https://doi.org/10.1029/WR004i005p00909 doi: 10.1029/WR004i005p00909
    [2] G. G. Booth, F. R. Kaen, P. E. Koveos, R/S analysis of foreign exchange rates under two international monetary regimes, J. Monet. Econ., 10 (1982), 407–415. https://doi.org/10.1016/0304-3932(82)90035-6 doi: 10.1016/0304-3932(82)90035-6
    [3] P. Gilfriche, V. Deschodt-Arsac, E. Blons, L. M. Arsac, Frequency-specific fractal analysis of postural control accounts for control strategies, Front. Physiol., 9 (2018), 293. https://doi.org/10.3389/fphys.2018.00293 doi: 10.3389/fphys.2018.00293
    [4] M. Frezza, A fractal-based approach for modeling stock price variations, Chaos, 28 (2018), 091102. https://doi.org/10.1063/1.5050867 doi: 10.1063/1.5050867
    [5] L. P. Bu, P. J. Shang, Scaling analysis of stock markets, Chaos, 24 (2014), 023107. https://doi.org/10.1063/1.4871479 doi: 10.1063/1.4871479
    [6] C. Y. Zhang, H. Y. Cui, Z. Z. He, L. Su, D. Fu, Fractals in carbon nanotube buckypapers, RSC Adv., 6 (2016), 8639–8643. https://doi.org/10.1039/C5RA23465D doi: 10.1039/C5RA23465D
    [7] M. A. Fernandes, E. A. Ribeiro Rosa, A. Cristina, A. M. T. Grégio, P. C. Trevilatto, L. R. Azevedo-Alanis, Applicability of fractal dimension analysis in dental radiographs for the evaluation of renal osteodystrophy, Fractals, 24 (2016), 1650010. https://doi.org/10.1142/S0218348X16500109 doi: 10.1142/S0218348X16500109
    [8] S. W. Ducharme, R. E. A. van Emmerik, Fractal dynamics, variability, and coordination in human locomotion, Kinesiology Rev., 7 (2018), 26–35. https://doi.org/10.1123/kr.2017-0054 doi: 10.1123/kr.2017-0054
    [9] J. Sen, D. McGill, Fractal analysis of heart rate variability as a predictor of mortality: A systematic review and meta-analysis, Chaos, 28 (2018), 072101. https://doi.org/10.1063/1.5038818 doi: 10.1063/1.5038818
    [10] A. L. Goldberger, L. A. Amaral, J. M. Hausdorff, P. C. Ivanov, C. K. Peng, H. E. Stanley, Fractal dynamics in physiology: Alterations with disease and aging, Proc. Nat. Acad. Sci., 99 (2002), 2466–2472. https://doi.org/10.1073/pnas.012579499 doi: 10.1073/pnas.012579499
    [11] D. G. Stephen, J. Anastas, Fractal fluctuations in gaze speed visual search, Atten. Percept. Psychophys, 73 (2011), 666–677. https://doi.org/10.3758/s13414-010-0069-3 doi: 10.3758/s13414-010-0069-3
    [12] M. Iosa, G. Morone, A. Fusco, F. Marchetti, C. Caltagirone, S. Paolucci, et al., Loss of fractal gait harmony in Parkinson's Disease, Clin. Neurophysiol., 127 (2016), 1540–1546. https://doi.org/10.1016/j.clinph.2015.11.016 doi: 10.1016/j.clinph.2015.11.016
    [13] L. G. A. Alves, P. B. Winter, L. N. Ferreira, R. M. Brielmann, R. I. Morimoto, L. A. N. Amaral, Long-range correlations and fractal dynamics in c. elegans: Changes with aging and stress, Phys. Rev. E, 96 (2017), 022417. https://doi.org/10.1103/PhysRevE.96.022417 doi: 10.1103/PhysRevE.96.022417
    [14] P. Li, L. Yu, A. S. P. Lim, A. S. Buchman, F. A. J. L. Scheer, S. A. Shea, et al., Fractal regulation and incident alzheimer's disease in elderly individuals, Alzheimers. Dement., 14 (2018), 1114–1125. https://doi.org/10.1016/j.jalz.2018.03.010 doi: 10.1016/j.jalz.2018.03.010
    [15] M. Gilmore, C. X. Yu, T. L. Rhodes, W. A. Peebles, Investigation of rescaled range analysis, the hurst exponent, and long-time correlations in plasma turbulence, Phys. Plasmas, 9 (2002), 1312–1317. https://doi.org/10.1063/1.1459707 doi: 10.1063/1.1459707
    [16] P. Xu, A discussion on fractal models for transport physics of porous media, Fractals, 23 (2015), 1530001. https://doi.org/10.1142/S0218348X15300019 doi: 10.1142/S0218348X15300019
    [17] J. Beran, R. Sherman, M. S. Taqqu, W. Willinger, Long-range dependence in variable-bit-rate video traffic, IEEE Trans. Commun., 43 (1995), 1566–1579. https://doi.org/10.1109/26.380206 doi: 10.1109/26.380206
    [18] F. Serinaldi, Use and misuse of some hurst parameter estimators applied to stationary and non-stationary financial time series, Physica A, 389 (2010), 2770–2781. https://doi.org/10.1016/j.physa.2010.02.044 doi: 10.1016/j.physa.2010.02.044
    [19] P. Abry, D. Veitch, Wavelet analysis of long-range-dependent traffic, IEEE Trans. Inf. Theory, 44 (1998), 2–15. https://doi.org/10.1109/18.650984 doi: 10.1109/18.650984
    [20] S. Stoev, M. S. Taqqu, C. Park, J. S. Marron, On the wavelet spectrum diagnostic for hurst parameter estimation in the analysis of internet traffic, Comput. Netw., 48 (2005), 423–445. https://doi.org/10.1016/j.comnet.2004.11.017 doi: 10.1016/j.comnet.2004.11.017
    [21] C. K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, A. L. Goldberger, Mosaic organization of dna nucleotides, Phys. Rev E, 49 (1994), 1685. https://doi.org/10.1103/PhysRevE.49.1685 doi: 10.1103/PhysRevE.49.1685
    [22] P. Ferreira, What detrended fluctuation analysis can tell us about nba results, Physica A, 500 (2018), 92–96. https://doi.org/10.1016/j.physa.2018.02.050 doi: 10.1016/j.physa.2018.02.050
    [23] J. Kwapień, P. Oświecimka, S. Drożdż, Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations, Phys. Rev. E, 92 (2015), 052815. https://doi.org/10.1103/PhysRevE.92.052815 doi: 10.1103/PhysRevE.92.052815
    [24] T. K. Lin, H. Fajri, Damage detection of structures with detrended fluctuation and detrended cross-correlation analyses, Smart Mater. Struct., 26 (2017), 035027. https://doi.org/10.1088/1361-665X/aa59d7 doi: 10.1088/1361-665X/aa59d7
    [25] J. C. Gallant, I. D. Moore, M. F. Hutchinson, P. Gessler, Estimating fractal dimension of profiles: A comparison of methods, Math. Geol., 26 (1994), 455–481. https://doi.org/10.1007/BF02083489 doi: 10.1007/BF02083489
    [26] B. Pilgram, D. T. Kaplan, A comparison of estimators for 1f noise, Physica D, 114 (1998), 108–122. https://doi.org/10.1016/S0167-2789(97)00188-7 doi: 10.1016/S0167-2789(97)00188-7
    [27] T. Stadnitski, Measuring fractality, Front. Physiol., 3 (2012), 127. https://doi.org/10.3389/fphys.2012.00127 doi: 10.3389/fphys.2012.00127
    [28] M. S. Taqqu, V. Teverovsky, W. Willinger, Estimators for long-range dependence: An empirical study, Fractals, 3 (1995), 785–798. https://doi.org/10.1142/S0218348X95000692 doi: 10.1142/S0218348X95000692
    [29] A. Eke, P. Herman, L. Kocsis, L. R. Kozak, Fractal characterization of complexity in temporal physiological signals, Physiol. Meas., 23 (2002), R1. https://doi.org/10.1088/0967-3334/23/1/201 doi: 10.1088/0967-3334/23/1/201
    [30] A. Eke, P. Herman, J. Bassingthwaighte, G. Raymond, D. Percival, M. Cannon, et al., Physiological time series: Distinguishing fractal noises from motions, Pflügers Arch. Eur. J. Physiol., 439 (2000), 403–415. https://doi.org/10.1007/s004249900135 doi: 10.1007/s004249900135
    [31] D. Delignieres, S. Ramdani, L. Lemoine, K. Torre, M. Fortes, G. Ninot, Fractal analyses for 'short'time series: A re-assessment of classical methods, J. Math. Psychol., 50 (2006), 525–544. https://doi.org/10.1016/j.jmp.2006.07.004 doi: 10.1016/j.jmp.2006.07.004
    [32] J. Ramirez Pacheco, D. Torres Román, H. Toral Cruz, Distinguishing stationary/nonstationary scaling processes using wavelet tsallis-entropies, Math. Probl. Eng., 2012 (2012), 867042. https://doi.org/10.1155/2012/867042 doi: 10.1155/2012/867042
    [33] O. Nicolis, J. Mateu, J. E. Contreras-Reyes, Wavelet-based entropy measures to characterize two-dimensional fractional Brownian fields, Entropy, 22 (2020), 196. https://doi.org/10.3390/e22020196 doi: 10.3390/e22020196
    [34] C. Bandt, B. Pompe, Permutation entropy: A natural complexity measure for time series, Phys. Rev. Lett., 88 (2002), 174102. https://doi.org/10.1103/PhysRevLett.88.174102 doi: 10.1103/PhysRevLett.88.174102
    [35] Y. H. Cao, W. Tung, J. B. Gao, V. A. Protopopescu, L. M. Hively, Detecting dynamical changes in time series using the permutation entropy, Phys. Rev. E, 70 (2004), 046217. https://doi.org/10.1103/PhysRevE.70.046217 doi: 10.1103/PhysRevE.70.046217
    [36] C. Tsallis, Possible generalization of boltzmann-gibbs statistics, J. Stat. Phys., 52 (1998), 479–487. https://doi.org/10.1007/BF01016429 doi: 10.1007/BF01016429
    [37] P. A. Varotsos, N. V. Sarlis, H. K. Tanaka, E. S. Skordas, Some properties of the entropy in the natural time, Phys. Rev. E, 71 (2005), 032102. https://doi.org/10.1103/PhysRevE.71.032102 doi: 10.1103/PhysRevE.71.032102
    [38] G. E. Powell, I. C. Percival. A spectral entropy method for distinguishing regular and irregular motion of hamiltonian systems, J. Phys. A Math. Gen., 12 (1979), 2053. https://doi.org/10.1088/0305-4470/12/11/017 doi: 10.1088/0305-4470/12/11/017
    [39] D. G. Perez, L. Zunino, M. Garavaglia, O. A. Rosso, Wavelet entropy and fractional brownian motion time series, Physica A, 365 (2006), 282–288. https://doi.org/10.1016/j.physa.2005.09.060 doi: 10.1016/j.physa.2005.09.060
    [40] L. Zunino, D. G. Perez, M. Garavaglia, O. A. Rosso, Wavelet entropy of stochastic processes, Physica A, 379 (2007), 503–512. https://doi.org/10.1016/j.physa.2006.12.057 doi: 10.1016/j.physa.2006.12.057
    [41] E. P. Borges, Itzhak Roditi, A family of nonextensive entropies, Phys. Lett. A, 246 (1998), 399–402. https://doi.org/10.1016/S0375-9601(98)00572-6 doi: 10.1016/S0375-9601(98)00572-6
    [42] W. X. Ren, Z. S. Sun, Structural damage identification by using wavelet entropy, Eng. Struct., 30 (2008), 2840–2849. https://doi.org/10.1016/j.engstruct.2008.03.013 doi: 10.1016/j.engstruct.2008.03.013
    [43] J. Ramirez-Pacheco, D. Torres-Roman, Cosh window behaviour of wavelet tsallis q-entropies in 1/f α signals, Electron. Lett., 47 (2011), 186–187. https://doi.org/10.1049/el.2010.7167 doi: 10.1049/el.2010.7167
    [44] J. Ramírez-Pacheco, L. Rizo-Domínguez, J. A. Trejo-Sánchez, J. Cortez-González, A nonextensive wavelet (q,q)-entropy for 1/fα signals, Rev. Mex. de Fis., 62 (2016), 229–234.
    [45] M. Maejima, On a class of self-similar processes, Probab. Theory Relat. Fields, 62 (1983), 235–245. https://doi.org/10.1007/BF00538799 doi: 10.1007/BF00538799
    [46] B. D. Malamud, D. L. Turcotte, Self-affine time series: Measures of weak and strong persistence, J. Stat. Plan. Inference, 80 (1999), 173–196. https://doi.org/10.1016/S0378-3758(98)00249-3 doi: 10.1016/S0378-3758(98)00249-3
    [47] J. E. Contreras-Reyes, Jensen-autocorrelation function for weakly stationary processes and applications, Physica D, 470 (2024), 134424. https://doi.org/10.1016/j.physd.2024.134424 doi: 10.1016/j.physd.2024.134424
    [48] J. Geweke, S. Porter-Hudak, The estimation and application of long memory time series models, J. Time Ser. Anal., 4 (1983), 221–238. https://doi.org/10.1111/j.1467-9892.1983.tb00371.x doi: 10.1111/j.1467-9892.1983.tb00371.x
    [49] C. W. J. Granger, R. Joyeux, An introduction to long-memory time series models and fractional differencing, J. Time Ser. Anal., 1 (1980), 15–29. https://doi.org/10.1111/j.1467-9892.1980.tb00297.x doi: 10.1111/j.1467-9892.1980.tb00297.x
    [50] D. B. Percival, Stochastic models and statistical analysis for clock noise, Metrologia, 40 (2003), S289. https://doi.org/10.1088/0026-1394/40/3/308 doi: 10.1088/0026-1394/40/3/308
    [51] A. Cohen, J. Kovacevic, Wavelets: The mathematical background, Proc. IEEE, 84 (1996), 514–522. https://doi.org/10.1109/5.488697 doi: 10.1109/5.488697
    [52] L. Hudgins, C. A. Friehe, M. E. Mayer, Wavelet transforms and atmopsheric turbulence, Phys. Rev. Lett., 71 (1993), 3279. https://doi.org/10.1103/PhysRevLett.71.3279 doi: 10.1103/PhysRevLett.71.3279
    [53] P. Abry, P. Gonçalvés, P. Flandrin, Wavelets, spectrum analysis and 1/f processes, In: Wavelets and Statistics, New York: Springer, 1995, 15–29. https://doi.org/10.1007/978-1-4612-2544-7-2
    [54] G. W. Wornell, A. V. Oppenheim, Estimation of fractal signals from noisy measurements using wavelets, IEEE Trans. Signal Process., 40 (1992), 611–623. https://doi.org/10.1109/78.120804 doi: 10.1109/78.120804
    [55] S. G. Mallat, A theory for multiresolution signal decomposition: The wavelet representation, in IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE, 11 (1989), 674–693. https://doi.org/10.1109/34.192463
    [56] P. Abry, D. Veitch, P. Flandrin, Long-range dependence: Revisiting aggregation with wavelets, J. Time Ser. Anal., 19 (1998), 253–266. https://doi.org/10.1111/1467-9892.00090 doi: 10.1111/1467-9892.00090
    [57] L. Eduardo Virgilio Silva, L. Otavio Murta Jr, Evaluation of physiologic complexity in time series using generalized sample entropy and surrogate data analysis, Chaos, 22 (2012), 043105. https://doi.org/10.1063/1.4758815 doi: 10.1063/1.4758815
    [58] M. J. Xu, P. J. Shang, J. J. Huang, Modified generalized sample entropy and surrogate data analysis for stock markets, Commun. Nonlinear Sci. Numer. Simul., 35 (2016), 17–24. https://doi.org/10.1016/j.cnsns.2015.10.023 doi: 10.1016/j.cnsns.2015.10.023
    [59] G. Kaniadakis, M. Lissia, A. M. Scarfone, Two-parameter deformations of logarithm, exponential, and entropy: A consistent framework for generalized statistical mechanics, Phys. Rev. E, 71 (2005), 046128. https://doi.org/10.1103/PhysRevE.71.046128 doi: 10.1103/PhysRevE.71.046128
    [60] G. Kaniadakis, Statistical mechanics in the context of special relativity, Phys. Rev. E, 66 (2002), 056125. https://doi.org/10.1103/PhysRevE.66.056125 doi: 10.1103/PhysRevE.66.056125
    [61] S. Abe, A note on the q-deformation-theoretic aspect of the generalized entropies in nonextensive physics, Phys. Lett. A, 224 (1997), 326–330. https://doi.org/10.1016/S0375-9601(96)00832-8 doi: 10.1016/S0375-9601(96)00832-8
  • This article has been cited by:

    1. Ajay Singh Rathore, Vembu Shanthi, A numerical solution of singularly perturbed Fredholm integro-differential equation with discontinuous source term, 2024, 446, 03770427, 115858, 10.1016/j.cam.2024.115858
    2. Abhilipsa Panda, Jugal Mohapatra, Ilhame Amirali, Muhammet Enes Durmaz, Gabil M. Amiraliyev, A numerical technique for solving nonlinear singularly perturbed Fredholm integro-differential equations, 2024, 220, 03784754, 618, 10.1016/j.matcom.2024.02.011
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(342) PDF downloads(23) Cited by(0)

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog