Age, sex, and body mass index (BMI) were associated with obstructive sleep apnea (OSA). Although various methods have been used in OSA prediction, this study aimed to develop predictions using simple and general predictors incorporating machine learning algorithms. This single-center, retrospective observational study assessed the diagnostic relevance of age, sex, and BMI for OSA in a cohort of 9, 422 patients who had undergone polysomnography (PSG) between 2015 and 2020. The participants were randomly divided into training, testing, and independent validation groups. Multivariable logistic regression (LR) and artificial neural network (ANN) algorithms used age, sex, and BMI as predictors to develop risk-predicting models for moderate-and-severe OSA. The training-testing dataset was used to assess the model generalizability through five-fold cross-validation. We calculated the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the independent validation set to assess the performance of the model. The results showed that age, sex, and BMI were significantly associated with OSA. The validation AUCs of the generated LR and ANN models were 0.806 and 0.807, respectively. The independent validation set's accuracy, sensitivity, specificity, PPV, and NPV were 76.3%, 87.5%, 57.0%, 77.7%, and 72.7% for the LR model, and 76.4%, 87.7%, 56.9%, 77.7%, and 73.0% respectively, for the ANN model. The LR- and ANN-boosted models with the three simple parameters effectively predicted OSA in patients referred for PSG examination and improved insight into risk stratification for OSA diagnosis.
Citation: Yi-Chun Kuan, Chien-Tai Hong, Po-Chih Chen, Wen-Te Liu, Chen-Chih Chung. Logistic regression and artificial neural network-based simple predicting models for obstructive sleep apnea by age, sex, and body mass index[J]. Mathematical Biosciences and Engineering, 2022, 19(11): 11409-11421. doi: 10.3934/mbe.2022532
[1] | Muhammad Asim, Ghada AlNemer . Boundedness on variable exponent Morrey-Herz space for fractional multilinear Hardy operators. AIMS Mathematics, 2025, 10(1): 117-136. doi: 10.3934/math.2025007 |
[2] | Jie Sun, Jiamei Chen . Weighted estimates for commutators associated to singular integral operator satisfying a variant of Hörmander's condition. AIMS Mathematics, 2023, 8(11): 25714-25728. doi: 10.3934/math.20231311 |
[3] | Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy . Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2022, 7(10): 19147-19166. doi: 10.3934/math.20221051 |
[4] | Yueping Zhu, Yan Tang, Lixin Jiang . Boundedness of multilinear Calderón-Zygmund singular operators on weighted Lebesgue spaces and Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2021, 6(10): 11246-11262. doi: 10.3934/math.2021652 |
[5] | Wanjing Zhang, Suixin He, Jing Zhang . Boundedness of sublinear operators on weighted grand Herz-Morrey spaces. AIMS Mathematics, 2023, 8(8): 17381-17401. doi: 10.3934/math.2023888 |
[6] | Babar Sultan, Mehvish Sultan, Qian-Qian Zhang, Nabil Mlaiki . Boundedness of Hardy operators on grand variable weighted Herz spaces. AIMS Mathematics, 2023, 8(10): 24515-24527. doi: 10.3934/math.20231250 |
[7] | Javeria Younas, Amjad Hussain, Hadil Alhazmi, A. F. Aljohani, Ilyas Khan . BMO estimates for commutators of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces. AIMS Mathematics, 2024, 9(9): 23434-23448. doi: 10.3934/math.20241139 |
[8] | Ming Liu, Bin Zhang, Xiaobin Yao . Weighted variable Morrey-Herz space estimates for mth order commutators of n−dimensional fractional Hardy operators. AIMS Mathematics, 2023, 8(9): 20063-20079. doi: 10.3934/math.20231022 |
[9] | Shuhui Yang, Yan Lin . Multilinear strongly singular integral operators with generalized kernels and applications. AIMS Mathematics, 2021, 6(12): 13533-13551. doi: 10.3934/math.2021786 |
[10] | Naqash Sarfraz, Muhammad Aslam . Some weighted estimates for the commutators of p-adic Hardy operator on two weighted p-adic Herz-type spaces. AIMS Mathematics, 2021, 6(9): 9633-9646. doi: 10.3934/math.2021561 |
Age, sex, and body mass index (BMI) were associated with obstructive sleep apnea (OSA). Although various methods have been used in OSA prediction, this study aimed to develop predictions using simple and general predictors incorporating machine learning algorithms. This single-center, retrospective observational study assessed the diagnostic relevance of age, sex, and BMI for OSA in a cohort of 9, 422 patients who had undergone polysomnography (PSG) between 2015 and 2020. The participants were randomly divided into training, testing, and independent validation groups. Multivariable logistic regression (LR) and artificial neural network (ANN) algorithms used age, sex, and BMI as predictors to develop risk-predicting models for moderate-and-severe OSA. The training-testing dataset was used to assess the model generalizability through five-fold cross-validation. We calculated the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the independent validation set to assess the performance of the model. The results showed that age, sex, and BMI were significantly associated with OSA. The validation AUCs of the generated LR and ANN models were 0.806 and 0.807, respectively. The independent validation set's accuracy, sensitivity, specificity, PPV, and NPV were 76.3%, 87.5%, 57.0%, 77.7%, and 72.7% for the LR model, and 76.4%, 87.7%, 56.9%, 77.7%, and 73.0% respectively, for the ANN model. The LR- and ANN-boosted models with the three simple parameters effectively predicted OSA in patients referred for PSG examination and improved insight into risk stratification for OSA diagnosis.
Let T be the Calderón-Zygmund singular integral operator and b be a locally integrable function on Rn. The commutator generated by b and T is defined by [b,T]f=bT(f)−T(bf). The investigation of the commutator begins with Coifman-Rochberg-Weiss pioneering study and classical result (see [6]). The classical result of Coifman, Rochberg and Weiss (see [6]) states that the commutator [b,T]f=T(bf)−bTf is bounded on Lp(Rn) for 1<p<∞ if and only if b∈BMO(Rn). The major reason for considering the problem of commutators is that the boundedness of commutator can produces some characterizations of function spaces (see [1,6]). Chanillo (see [1]) proves a similar result when T is replaced by the fractional integral operator. In [11], the boundedness properties of the commutators for the extreme values of p are obtained. In recent years, the theory of Herz space and Herz type Hardy space, as a local version of Lebesgue space and Hardy space, have been developed (see [8,9,12,13]). The main purpose of this paper is to establish the endpoint continuity properties of some multilinear operators related to certain non-convolution type fractional singular integral operators on Herz and Herz type Hardy spaces.
First, let us introduce some notations (see [8,9,10,12,13,15]). Throughout this paper, Q will denote a cube of Rn with sides parallel to the axes. For a cube Q and a locally integrable function f, let fQ=|Q|−1∫Qf(x)dx and f#(x)=supQ∋x|Q|−1∫Q|f(y)−fQ|dy. Moreover, f is said to belong to BMO(Rn) if f#∈L∞ and define ||f||BMO=||f#||L∞; We also define the central BMO space by CMO(Rn), which is the space of those functions f∈Lloc(Rn) such that
||f||CMO=supr>1|Q(0,r)|−1∫Q|f(y)−fQ|dy<∞. |
It is well-known that (see [9,10])
||f||CMO≈supr>1infc∈C|Q(0,r)|−1∫Q|f(x)−c|dx. |
For k∈Z, define Bk={x∈Rn:|x|≤2k} and Ck=Bk∖Bk−1. Denote by χk the characteristic function of Ck and ˜χk the characteristic function of Ck for k≥1 and ˜χ0 the characteristic function of B0.
Definition 1. Let 0<p<∞ and α∈R.
(1) The homogeneous Herz space ˙Kαp(Rn) is defined by
˙Kαp(Rn)={f∈Lploc(Rn∖{0}):||f||˙Kαp<∞}, |
where
||f||˙Kαp=∞∑k=−∞2kα||fχk||Lp; |
(2) The nonhomogeneous Herz space Kαp(Rn) is defined by
Kαp(Rn)={f∈Lploc(Rn):||f||Kαp<∞}, |
where
||f||Kαp=∞∑k=02kα||f˜χk||Lp. |
If α=n(1−1/p), we denote that ˙Kαp(Rn)=˙Kp(Rn), Kαp(Rn)=Kp(Rn).
Definition 2. Let 0<δ<n and 1<p<n/δ. We shall call Bδp(Rn) the space of those functions f on Rn such that
||f||Bδp=supd>1d−n(1/p−δ/n)||fχQ(0,d)||Lp<∞. |
Definition 3. Let 1<p<∞.
(1) The homogeneous Herz type Hardy space H˙Kp(Rn) is defined by
H˙Kp(Rn)={f∈S′(Rn):G(f)∈˙Kp(Rn)}, |
where
||f||H˙Kp=||G(f)||˙Kp. |
(2) The nonhomogeneous Herz type Hardy space HKp(Rn) is defined by
HKp(Rn)={f∈S′(Rn):G(f)∈Kp(Rn)}, |
where
||f||HKp=||G(f)||Kp. |
where G(f) is the grand maximal function of f.
The Herz type Hardy spaces have the atomic decomposition characterization.
Definition 4. Let 1<p<∞. A function a(x) on Rn is called a central (n(1−1/p),p)-atom (or a central (n(1−1/p),p)-atom of restrict type), if
1) Suppa⊂B(0,d) for some d>0 (or for some d≥1),
2) ||a||Lp≤|B(0,d)|1/p−1,
3) ∫a(x)dx=0.
Lemma 1. (see [9,13]) Let 1<p<∞. A temperate distribution f belongs to H˙Kp(Rn)(or HKp(Rn)) if and only if there exist central (n(1−1/p),p)-atoms(or central (n(1−1/p),p)-atoms of restrict type) aj supported on Bj=B(0,2j) and constants λj, ∑j|λj|<∞ such that f=∑∞j=−∞λjaj (or f=∑∞j=0λjaj)in the S′(Rn) sense, and
||f||H˙Kp( or ||f||HKp)≈∑j|λj|. |
In this paper, we will consider a class of multilinear operators related to some non-convolution type singular integral operators, whose definition are following.
Let m be a positive integer and A be a function on Rn. We denote that
Rm+1(A;x,y)=A(x)−∑|β|≤m1β!DβA(y)(x−y)β |
and
Qm+1(A;x,y)=Rm(A;x,y)−∑|β|=m1β!DβA(x)(x−y)β. |
Definition 5. Fixed ε>0 and 0<δ<n. Let Tδ:S→S′ be a linear operator. Tδ is called a fractional singular integral operator if there exists a locally integrable function K(x,y) on Rn×Rn such that
Tδ(f)(x)=∫RnK(x,y)f(y)dy |
for every bounded and compactly supported function f, where K satisfies:
|K(x,y)|≤C|x−y|−n+δ |
and
|K(y,x)−K(z,x)|+|K(x,y)−K(x,z)|≤C|y−z|ε|x−z|−n−ε+δ |
if 2|y−z|≤|x−z|. The multilinear operator related to the fractional singular integral operator Tδ is defined by
TAδ(f)(x)=∫RnRm+1(A;x,y)|x−y|mK(x,y)f(y)dy; |
We also consider the variant of TAδ, which is defined by
˜TAδ(f)(x)=∫RnQm+1(A;x,y)|x−y|mK(x,y)f(y)dy. |
Note that when m=0, TAδ is just the commutators of Tδ and A (see [1,6,11,14]). It is well known that multilinear operator, as a non-trivial extension of commutator, is of great interest in harmonic analysis and has been widely studied by many authors (see [3,4,5]). In [7], the weighted Lp(p>1)-boundedness of the multilinear operator related to some singular integral operator are obtained. In [2], the weak (H1, L1)-boundedness of the multilinear operator related to some singular integral operator are obtained. In this paper, we will study the endpoint continuity properties of the multilinear operators TAδ and ˜TAδ on Herz and Herz type Hardy spaces.
Now we state our results as following.
Theorem 1. Let 0<δ<n, 1<p<n/δ and DβA∈BMO(Rn) for all β with |β|=m. Suppose that TAδ is the same as in Definition 5 such that Tδ is bounded from Lp(Rn) to Lq(Rn) for any p,q∈(1,+∞] with 1/q=1/p−δ/n. Then TAδ is bounded from Bδp(Rn) to CMO(Rn).
Theorem 2. Let 0<δ<n, 1<p<n/δ, 1/q=1/p−δ/n and DβA∈BMO(Rn) for all β with |β|=m. Suppose that ˜TAδ is the same as in Definition 5 such that ˜TAδ is bounded from Lp(Rn) to Lq(Rn) for any p,q∈(1,+∞) with 1/q=1/p−δ/n. Then ˜TAδ is bounded from H˙Kp(Rn) to ˙Kαq(Rn) with α=n(1−1/p).
Theorem 3. Let 0<δ<n, 1<p<n/δ and DβA∈BMO(Rn) for all β with |β|=m. Suppose that ˜TAδ is the same as in Definition 5 such that ˜TAδ is bounded from Lp(Rn) to Lq(Rn) for any p,q∈(1,+∞) with 1/q=1/p−δ/n. Then the following two statements are equivalent:
(ⅰ) ˜TAδ is bounded from Bδp(Rn) to CMO(Rn);
(ⅱ) for any cube Q and z∈3Q∖2Q, there is
1|Q|∫Q|∑|β|=m1β!|DβA(x)−(DβA)Q|∫(4Q)cKβ(z,y)f(y)dy|dx≤C||f||Bδp, |
where Kβ(z,y)=(z−y)β|z−y|mK(z,y) for |β|=m.
Remark. Theorem 2 is also hold for nonhomogeneous Herz and Herz type Hardy space.
To prove the theorem, we need the following lemma.
Lemma 2. (see [5]) Let A be a function on Rn and DβA∈Lq(Rn) for |β|=m and some q>n. Then
|Rm(A;x,y)|≤C|x−y|m∑|β|=m(1|˜Q(x,y)|∫˜Q(x,y)|DβA(z)|qdz)1/q, |
where ˜Q(x,y) is the cube centered at x and having side length 5√n|x−y|.
Proof of Theorem 1. It suffices to prove that there exists a constant CQ such that
1|Q|∫Q|TAδ(f)(x)−CQ|dx≤C||f||Bδp |
holds for any cube Q=Q(0,d) with d>1. Fix a cube Q=Q(0,d) with d>1. Let ˜Q=5√nQ and ˜A(x)=A(x)−∑|β|=m1β!(DβA)˜Qxβ, then Rm+1(A;x,y)=Rm+1(˜A;x,y) and Dβ˜A=DβA−(DβA)˜Q for all β with |β|=m. We write, for f1=fχ˜Q and f2=fχRn∖˜Q,
TAδ(f)(x)=∫RnRm+1(˜A;x,y)|x−y|mK(x,y)f(y)dy=∫RnRm(˜A;x,y)|x−y|mK(x,y)f1(y)dy−∑|β|=m1β!∫RnK(x,y)(x−y)β|x−y|mDβ˜A(y)f1(y)dy+∫RnRm+1(˜A;x,y)|x−y|mK(x,y)f2(y)dy, |
then
1|Q|∫Q|TAδ(f)(x)−T˜Aδ(f2)(0)|dx≤1|Q|∫Q|Tδ(Rm(˜A;x,⋅)|x−⋅|mf1)(x)|dx+∑|β|=m1β!1|Q|∫Q|Tδ((x−⋅)β|x−⋅|mDβ˜Af1)(x)|dx+|T˜Aδ(f2)(x)−T˜Aδ(f2)(0)|dx:=I+II+III. |
For I, note that for x∈Q and y∈˜Q, using Lemma 2, we get
Rm(˜A;x,y)≤C|x−y|m∑|β|=m||DβA||BMO, |
thus, by the Lp(Rn) to Lq(Rn)-boundedness of TAδ for 1<p,q<∞ with 1/q=1/p−δ/n, we get
I≤C|Q|∫Q|Tδ(∑|β|=m||DβA||BMOf1)(x)|dx≤C∑|β|=m||DβA||BMO(1|Q|∫Q|Tδ(f1)(x)|qdx)1/q≤C∑|β|=m||DβA||BMO|Q|−1/q||f1||Lp≤C∑|β|=m||DβA||BMOr−n(1/p−δ/n)||fχ˜Q||Lp≤C∑|β|=m||DβA||BMO||f||Bδp. |
For II, taking 1<s<p such that 1/r=1/s−δ/n, by the (Ls,Lr)-boundedness of Tδ and Holder's inequality, we gain
II≤C|Q|∫Q|Tδ(∑|β|=m(DβA−(DβA)˜Q)f1)(x)|dx≤C∑|β|=m(1|Q|∫Q|Tδ((DβA−(DβA)˜Q)f1)(x)|rdx)1/r≤C|Q|−1/r∑|β|=m||(DβA−(DβA)˜Q)f1||Ls≤C|Q|−1/r||f1||Lp∑|β|=m(1|Q|∫˜Q|DβA(y)−(DβA)˜Q|ps/(p−s)dy)(p−s)/(ps)|Q|(p−s)/(ps)≤C∑|β|=m||DβA||BMOr−n/q||fχ˜Q||Lp≤C∑|β|=m||DβA||BMO||f||Bδp. |
To estimate III, we write
T˜Aδ(f2)(x)−T˜Aδ(f2)(0)=∫Rn[K(x,y)|x−y|m−K(0,y)|y|m]Rm(˜A;x,y)f2(y)dy+∫RnK(0,y)f2(y)|y|m[Rm(˜A;x,y)−Rm(˜A;0,y)]dy−∑|β|=m1β!∫Rn(K(x,y)(x−y)β|x−y|m−K(0,y)(−y)β|y|m)Dβ˜A(y)f2(y)dy:=III1+III2+III3. |
By Lemma 2 and the following inequality (see [15])
|bQ1−bQ2|≤Clog(|Q2|/|Q1|)||b||BMO for Q1⊂Q2, |
we know that, for x∈Q and y∈2k+1˜Q∖2k˜Q,
|Rm(˜A;x,y)|≤C|x−y|m∑|β|=m(||DβA||BMO+|(DβA)˜Q(x,y)−(DβA)˜Q|)≤Ck|x−y|m∑|β|=m||DβA||BMO. |
Note that |x−y|∼|y| for x∈Q and y∈Rn∖˜Q, we obtain, by the condition of K,
|III1|≤C∫Rn(|x||y|m+n+1−δ+|x|ε|y|m+n+ε−δ)|Rm(˜A;x,y)||f2(y)|dy≤C∑|β|=m||DβA||BMO∞∑k=0∫2k+1˜Q∖2k˜Qk(|x||y|n+1−δ+|x|ε|y|n+ε−δ)|f(y)|dy≤C∑|β|=m||DβA||BMO∞∑k=1k(2−k+2−εk)(2kr)−n(1/p−δ/n)||fχ2k˜Q||Lp≤C∑|β|=m||DβA||BMO∞∑k=1k(2−k+2−εk)||f||Bδp≤C∑|β|=m||DβA||BMO||f||Bδp. |
For III2, by the formula (see [5]):
Rm(˜A;x,y)−Rm(˜A;x0,y)=∑|γ|<m1γ!Rm−|γ|(Dγ˜A;x,x0)(x−y)γ |
and Lemma 2, we have
|Rm(˜A;x,y)−Rm(˜A;x0,y)|≤C∑|γ|<m∑|β|=m|x−x0|m−|γ||x−y||γ|||DβA||BMO, |
thus, similar to the estimates of III1, we get
|III2|≤C∑|β|=m||DβA||BMO∞∑k=0∫2k+1˜Q∖2k˜Q|x||y|n+1−δ|f(y)|dy≤C∑|β|=m||DβA||BMO||f||Bδp. |
For III3, by Holder's inequality, similar to the estimates of III1, we get
|III3|≤C∑|β|=m∞∑k=0∫2k+1˜Q∖2k˜Q(|x||y|n+1−δ+|x|ε|y|n+ε−δ)|Dβ˜A(y)||f(y)|dy≤C∑|β|=m∞∑k=1(2−k+2−εk)(2kr)−n(1/p−δ/n)(|2k˜Q|−1∫2k˜Q|DβA(y)−(DβA)˜Q|p′dy)1/p′||fχ2k˜Q||Lp≤C∑|β|=m||DβA||BMO∞∑k=1(2−k+2−εk)(2kr)−n(1/p−δ/n)||fχ2k˜Q||Lp≤C∑|β|=m||DβA||BMO||f||Bδp. |
Thus
III≤C∑|β|=m||DβA||BMO||f||Bδp, |
which together with the estimates for I and II yields the desired result. This finishes the proof of Theorem 1.
Proof of Theorem 2. Let f∈H˙Kp(Rn), by Lemma 1, f=∑∞j=−∞λjaj, where a′js are the central (n(1−1/p),p)-atom with suppaj⊂Bj=B(0,2j) and ||f||H˙Kp≈∑j|λj|. We write
||˜TAδ(f)||˙Kαq=∞∑k=−∞2kn(1−1/p)||χk˜TAδ(f)||Lq≤∞∑k=−∞2kn(1−1/p)k−1∑j=−∞|λj|||χk˜TAδ(aj)||Lq+∞∑k=−∞2kn(1−1/p)∞∑j=k|λj|||χk˜TAδ(aj)||Lq=J+JJ. |
For JJ, by the (Lp,Lq)-boundedness of ˜TAδ for 1/q=1/p−δ/n, we get
JJ≤C∞∑k=−∞2kn(1−1/p)∞∑j=k|λj|||aj||Lp≤C∞∑k=−∞2kn(1−1/p)∞∑j=k|λj|2jn(1/p−1)≤C∞∑j=−∞|λj|j∑k=−∞2(k−j)n(1−1/p)≤C∞∑j=−∞|λj|≤C||f||H˙Kp. |
To obtain the estimate of J, we denote that ˜A(x)=A(x)−∑|β|=m1β!(DβA)2Bjxβ. Then Qm(A;x,y)=Qm(˜A;x,y) and Qm+1(A;x,y)=Rm(A;x,y)−∑|β|=m1β!(x−y)βDβA(x). We write, by the vanishing moment of a and for x∈Ck with k≥j+1,
˜TAδ(aj)(x)=∫RnK(x,y)Rm(A;x,y)|x−y|maj(y)dy−∑|β|=m1β!∫RnK(x,y)Dβ˜A(x)(x−y)β|x−y|maj(y)dy=∫Rn[K(x,y)|x−y|m−K(x,0)|x|m]Rm(˜A;x,y)aj(y)dy+∫RnK(x,0)|x|m[Rm(˜A;x,y)−Rm(˜A;x,0)]aj(y)dy−∑|β|=m1β!∫Rn[K(x,y)(x−y)β|x−y|m−K(x,0)xβ|x|m]Dβ˜A(x)aj(y)dy. |
Similar to the proof of Theorem 1, we obtain
|˜TAδ(aj)(x)|≤C∫Rn[|y||x|m+n+1−δ+|y|ε|x|m+n+ε−δ]|Rm(˜A;x,y)||aj(y)|dy+C∑|β|=m∫Rn[|y||x|n+1−δ+|y|ε|x|n+ε−δ]|Dβ˜A(x)||aj(y)|dy≤C∑|β|=m||DβA||BMO[2j2k(n+1−δ)+2jε2k(n+ε−δ)]+C∑|β|=m[2j2k(n+1−δ)+2jε2k(n+ε−δ)]|Dβ˜A(x)|, |
thus
J≤C∑|β|=m||DβA||BMO∞∑k=−∞2kn(1−1/p)k−1∑j=−∞|λj|[2j2k(n+1−δ)+2jε2k(n+ε−δ)]2kn/q+C∑|β|=m∞∑k=−∞2kn(1−1/p)k−1∑j=−∞|λj|[2j2k(n+1−δ)+2jε2k(n+ε−δ)](∫Bk|Dβ˜A(x)|qdx)1/q≤C∑|β|=m||DβA||BMO∞∑k=−∞2kn(1−δ/n)k−1∑j=−∞|λj|[2j2k(n+1−δ)+2jε2k(n+ε−δ)]≤C∑|β|=m||DβA||BMO∞∑j=−∞|λj|∞∑k=j+1[2j−k+2(j−k)ε]≤C∑|β|=m||DβA||BMO∞∑j=−∞|λj|≤C∑|β|=m||DβA||BMO||f||H˙Kp. |
This completes the proof of Theorem 2.
Proof of Theorem 3. For any cube Q=Q(0,r) with r>1, let f∈Bδp and ˜A(x)=A(x)−∑|β|=m1β!(DβA)˜Qxβ. We write, for f=fχ4Q+fχ(4Q)c=f1+f2 and z∈3Q∖2Q,
˜TAδ(f)(x)=˜TAδ(f1)(x)+∫RnRm(˜A;x,y)|x−y|mK(x,y)f2(y)dy−∑|β|=m1β!(DβA(x)−(DβA)Q)(Tδ,β(f2)(x)−Tδ,β(f2)(z))−∑|β|=m1β!(DβA(x)−(DβA)Q)Tδ,β(f2)(z)=I1(x)+I2(x)+I3(x,z)+I4(x,z), |
where Tδ,β is the singular integral operator with the kernel (x−y)β|x−y|mK(x,y) for |β|=m. Note that (I4(⋅,z))Q=0, we have
˜TAδ(f)(x)−(˜TAδ(f))Q=I1(x)−(I1(⋅))Q+I2(x)−I2(z)−[I2(⋅)−I2(z)]Q−I3(x,z)+(I3(x,z))Q−I4(x,z). |
By the (Lp,Lq)-bounded of ˜TAδ, we get
1|Q|∫Q|I1(x)|dx≤(1|Q|∫Q|˜TAδ(f1)(x)|qdx)1/q≤C|Q|−1/q||f1||Lp≤C||f||Bδp. |
Similar to the proof of Theorem 1, we obtain
|I2(x)−I2(z)|≤C||f||Bδp |
and
1|Q|∫Q|I3(x,z)|dx≤C||f||Bδp. |
Then integrating in x on Q and using the above estimates, we obtain the equivalence of the estimate
1|Q|∫Q|˜TAδ(f)(x)−(˜TAδ(f))Q|dx≤C||f||Bδp |
and the estimate
1|Q|∫Q|I4(x,z)|dx≤C||f||Bδp. |
This completes the proof of Theorem 3.
In this section we shall apply the theorems of the paper to some particular operators such as the Calderón-Zygmund singular integral operator and fractional integral operator.
Application 1. Calderón-Zygmund singular integral operator.
Let T be the Calderón-Zygmund operator defined by (see [10,11,15])
T(f)(x)=∫RnK(x,y)f(y)dy, |
the multilinear operator related to T is defined by
TA(f)(x)=∫RnRm+1(A;x,y)|x−y|mK(x,y)f(y)dy. |
Then it is easily to see that T satisfies the conditions in Theorems 1–3, thus the conclusions of Theorems 1–3 hold for TA.
Application 2. Fractional integral operator with rough kernel.
For 0<δ<n, let Tδ be the fractional integral operator with rough kernel defined by (see [2,7])
Tδf(x)=∫RnΩ(x−y)|x−y|n−δf(y)dy, |
the multilinear operator related to Tδ is defined by
TAδf(x)=∫RnRm+1(A;x,y)|x−y|m+n−δΩ(x−y)f(y)dy, |
where Ω is homogeneous of degree zero on Rn, ∫Sn−1Ω(x′)dσ(x′)=0 and Ω∈Lipε(Sn−1) for some 0<ε≤1, that is there exists a constant M>0 such that for any x,y∈Sn−1, |Ω(x)−Ω(y)|≤M|x−y|ε. Then Tδ satisfies the conditions in Theorem 1. In fact, for suppf⊂(2Q)c and x∈Q=Q(x0,d), by the condition of Ω, we have (see [16])
|Ω(x−y)|x−y|n−δ−Ω(x0−y)|x0−y|n−δ|≤C(|x−x0|ε|x0−y|n+ε−δ+|x−x0||x0−y|n+1−δ), |
thus, the conclusions of Theorems 1–3 hold for TAδ.
The author would like to express his deep gratitude to the referee for his/her valuable comments and suggestions. This research was supported by the National Natural Science Foundation of China (Grant No. 11901126), the Scientific Research Funds of Hunan Provincial Education Department. (Grant No. 19B509).
The authors declare that they have no competing interests.
[1] |
D. J. Eckert, A. Malhotra, Pathophysiology of adult obstructive sleep apnea, Proc. Am. Thorac. Soc., 5 (2008), 144–153. https://doi.org/10.1513/pats.200707-114MG doi: 10.1513/pats.200707-114MG
![]() |
[2] |
D. J. Gottlieb, N. M. Punjabi, Diagnosis and management of obstructive sleep apnea: A review, JAMA, 323 (2020), 1389–1400. https://doi.org/10.1001/jama.2020.3514 doi: 10.1001/jama.2020.3514
![]() |
[3] |
K. J. Ruskin, J. A. Caldwell, J. L. Caldwell, E. A. Boudreau, Screening for sleep apnea in morbidly obese pilots, Aerosp. Med. Hum. Perform., 86 (2015), 835–841. https://doi.org/10.3357/amhp.4163.2015 doi: 10.3357/amhp.4163.2015
![]() |
[4] |
C. V. Senaratna, J. L. Perret, C. J. Lodge, A. J. Lowe, B. E. Campbell, M. C. Matheson, et al., Prevalence of obstructive sleep apnea in the general population: A systematic review, Sleep Med. Rev., 34 (2017), 70–81. https://doi.org/10.1016/j.smrv.2016.07.002 doi: 10.1016/j.smrv.2016.07.002
![]() |
[5] |
A. G. Andrade, O. M. Bubu, A. W. Varga, R. S. Osorio, The relationship between obstructive sleep apnea and Alzheimer's disease, J. Alzheimers Disease, 64 (2018), S255–S270. https://doi.org/10.3233/jad-179936 doi: 10.3233/jad-179936
![]() |
[6] |
L. A. Salman, R. Shulman, J. B. Cohen, Obstructive sleep apnea, hypertension, and cardiovascular risk: Epidemiology, pathophysiology, and management, Curr. Cardiol. Rep., 22 (2020), 6. https://doi.org/10.1007/s11886-020-1257-y doi: 10.1007/s11886-020-1257-y
![]() |
[7] |
M. Knauert, S. Naik, M. B. Gillespie, M. Kryger, Clinical consequences and economic costs of untreated obstructive sleep apnea syndrome, World J. Otorhinolaryngology-Head Neck Surgery, 1 (2015), 17–27. https://doi.org/10.1016/j.wjorl.2015.08.001 doi: 10.1016/j.wjorl.2015.08.001
![]() |
[8] |
V. K. Kapur, D. H. Auckley, S. Chowdhuri, D. C. Kuhlmann, R. Mehra, K. Ramar, et al., Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: An american academy of sleep medicine clinical practice guideline, J. Clin. Sleep Med., 13 (2017), 479–504. https://doi.org/10.5664/jcsm.6506 doi: 10.5664/jcsm.6506
![]() |
[9] |
S. A. Stewart, R. Skomro, J. Reid, E. Penz, M. Fenton, J. Gjevre, et al., Improvement in obstructive sleep apnea diagnosis and management wait times: A retrospective analysis of home management pathway for obstructive sleep apnea, Can, Respir, J., 22 (2015), 167–170. https://doi.org/10.1155/2015/516580 doi: 10.1155/2015/516580
![]() |
[10] |
D. N. Polesel, K. T. Nozoe, L. Bittencourt, S. Tufik, M. L. Andersen, M. T. B. Fernandes, et al., Waist-to-height ratio and waist circumference as the main measures to evaluate obstructive sleep apnea in the woman's reproductive life stages, Women Health, 61 (2021), 277–288. https://doi.org/10.1080/03630242.2020.1862386 doi: 10.1080/03630242.2020.1862386
![]() |
[11] |
K.-H. Yu, A. L. Beam, I. S. Kohane, Artificial intelligence in healthcare, Nat. Biomed. Eng., 2 (2018), 719–731. https://doi.org/10.1038/s41551-018-0305-z doi: 10.1038/s41551-018-0305-z
![]() |
[12] |
T. Davenport, R. Kalakota, The potential for artificial intelligence in healthcare, Future Healthc. J., 6 (2019), 94–98. https://doi.org/10.7861/futurehosp.6-2-94 doi: 10.7861/futurehosp.6-2-94
![]() |
[13] |
J. C. Stoltzfus, Logistic regression: a brief primer, Acad. Emerg. Med., 18 (2011), 1099–1104. https://doi.org/10.1111/j.1553-2712.2011.01185.x doi: 10.1111/j.1553-2712.2011.01185.x
![]() |
[14] |
S. Agatonovic-Kustrin, R. Beresford, Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research, J. Pharm. Biomed. Anal., 22 (2000), 717–727. https://doi.org/10.1016/S0731-7085(99)00272-1 doi: 10.1016/S0731-7085(99)00272-1
![]() |
[15] |
D. Álvarez, A. Cerezo-Hernández, A. Crespo, G. C. Gutiérrez-Tobal, F. Vaquerizo-Villar, V. Barroso-García, et al., A machine learning-based test for adult sleep apnoea screening at home using oximetry and airflow, Sci. Rep., 10 (2020), 5332. https://doi.org/10.1038/s41598-020-62223-4 doi: 10.1038/s41598-020-62223-4
![]() |
[16] |
R. B. Berry, R. Budhiraja, D. J. Gottlieb, D. Gozal, C. Iber, V. K. Kapur, et al., Rules for scoring respiratory events in sleep: Update of the 2007 AASM manual for the scoring of sleep and associated events, deliberations of the sleep apnea definitions task force of the american academy of sleep medicine, J. Clin. Sleep Med., 8 (2012), 597–619. https://doi.org/10.5664/jcsm.2172 doi: 10.5664/jcsm.2172
![]() |
[17] | F. Dankers, A. Traverso, L. Wee, S. M. J. van Kuijk, Prediction modeling methodology, In Fundamentals of Clinical Data Science, (eds. P. Kubben, M. Dumontier, A. Dekker), Springer, (2019), 101–120. https://doi.org/10.1007/978-3-319-99713-1_8 |
[18] |
B. A. Edwards, A. Wellman, S. A. Sands, R. L. Owens, D. J. Eckert, D. P. White, et al., Obstructive sleep apnea in older adults is a distinctly different physiological phenotype, Sleep, 37 (2014), 1227–1236. https://doi.org/10.5665/sleep.3844 doi: 10.5665/sleep.3844
![]() |
[19] |
I. Fietze, N. Laharnar, A. Obst, R. Ewert, S. B. Felix, C. Garcia, et al., Prevalence and association analysis of obstructive sleep apnea with gender and age differences—Results of SHIP-trend, J. Sleep Res., 28 (2019), e12770. https://doi.org/10.1111/jsr.12770 doi: 10.1111/jsr.12770
![]() |
[20] |
F. O. Martins, S. V. Conde, Gender differences in the context of obstructive sleep apnea and metabolic diseases, Front. Physiol., 12 (2021), 792633. https://doi.org/10.3389/fphys.2021.792633 doi: 10.3389/fphys.2021.792633
![]() |
[21] |
C. M. Lin, T. M. Davidson, S. Ancoli-Israel, Gender differences in obstructive sleep apnea and treatment implications, Sleep Med. Rev., 12 (2008), 481–496. https://doi.org/10.1016/j.smrv.2007.11.003 doi: 10.1016/j.smrv.2007.11.003
![]() |
[22] | L. Rezaie, S. Maazinezhad, D. J. Fogelberg, H. Khazaie, D. Sadeghi-Bahmani, S. Brand, Compared to individuals with mild to moderate Obstructive Sleep Apnea (OSA), individuals with severe OSA had higher BMI and respiratory-disturbance scores., Life (Basel), 11 (2021). https://doi.org/10.3390/life11050368 |
[23] |
R. Huxley, S. Mendis, E. Zheleznyakov, S. Reddy, J. Chan, Body mass index, waist circumference and waist:hip ratio as predictors of cardiovascular risk—a review of the literature, Eur. J. Clin. Nutr., 64 (2010), 16–22. https://doi.org/10.1038/ejcn.2009.68 doi: 10.1038/ejcn.2009.68
![]() |
[24] |
C.-C. Chung, L. Chan, O. A. Bamodu, C.-T. Hong, H.-W. Chiu, Artificial neural network based prediction of postthrombolysis intracerebral hemorrhage and death, Sci. Rep., 10 (2020), 20501. https://doi.org/10.1038/s41598-020-77546-5 doi: 10.1038/s41598-020-77546-5
![]() |
[25] |
C. C. Chung, W. T. Chiu, Y. H. Huang, L. Chan, C. T. Hong, H. W. Chiu, Identifying prognostic factors and developing accurate outcome predictions for in-hospital cardiac arrest by using artificial neural networks, J. Neurol. Sci., 425 (2021), 117445. https://doi.org/10.1016/j.jns.2021.117445 doi: 10.1016/j.jns.2021.117445
![]() |
[26] |
W. T. Chiu, C. C. Chung, C. H. Huang, Y. S. Chien, C. H. Hsu, C. H. Wu, et al., Predicting the survivals and favorable neurologic outcomes after targeted temperature management by artificial neural networks, J. Formos. Med. Assoc., 121 (2022), 490–499. https://doi.org/10.1016/j.jfma.2021.07.004 doi: 10.1016/j.jfma.2021.07.004
![]() |
[27] |
S.-Y. Chou, O. A. Bamodu, W.-T. Chiu, C.-T. Hong, L. Chan, C.-C. Chung, Artificial neural network-boosted Cardiac Arrest Survival Post-Resuscitation In-hospital (CASPRI) score accurately predicts outcome in cardiac arrest patients treated with targeted temperature management, Sci. Rep., 12 (2022), 7254. https://doi.org/10.1038/s41598-022-11201-z doi: 10.1038/s41598-022-11201-z
![]() |
[28] |
Y. J. Kim, J. S. Jeon, S. E. Cho, K. G. Kim, S. G. Kang, Prediction models for obstructive sleep apnea in korean adults using machine learning techniques, Diagnostics (Basel), 11 (2021). https://doi.org/10.3390/diagnostics11040612 doi: 10.3390/diagnostics11040612
![]() |
[29] |
W. C. Huang, P. L. Lee, Y. T. Liu, A. A. Chiang, F. Lai, Support vector machine prediction of obstructive sleep apnea in a large-scale Chinese clinical sample, Sleep, 43 (2020). https://doi.org/10.1093/sleep/zsz295 doi: 10.1093/sleep/zsz295
![]() |
[30] |
D. E. Jonas, H. R. Amick, C. Feltner, R. P. Weber, M. Arvanitis, A. Stine, et al., Screening for obstructive sleep apnea in adults: Evidence report and systematic review for the US preventive services task force, JAMA, 317 (2017), 415–433. https://doi.org/10.1001/jama.2016.19635 doi: 10.1001/jama.2016.19635
![]() |
[31] |
S. Tsuiki, T. Nagaoka, T. Fukuda, Y. Sakamoto, F. R. Almeida, H. Nakayama, et al., Machine learning for image-based detection of patients with obstructive sleep apnea: An exploratory study, Sleep Breath, 25 (2021), 2297–2305. https://doi.org/10.1007/s11325-021-02301-7 doi: 10.1007/s11325-021-02301-7
![]() |
[32] |
L. Zhang, Y. R. Yan, S. Q. Li, H. P. Li, Y. N. Lin, N. Li, et al., Moderate to severe OSA screening based on support vector machine of the Chinese population faciocervical measurements dataset: A cross-sectional study, BMJ Open, 11 (2021), e048482. https://doi.org/10.1136/bmjopen-2020-048482 doi: 10.1136/bmjopen-2020-048482
![]() |
[33] |
C. Y. Tsai, W. T. Liu, Y. T. Lin, S. Y. Lin, R. Houghton, W. H. Hsu, et al., Machine learning approaches for screening the risk of obstructive sleep apnea in the Taiwan population based on body profile, Inform. Health Soc. Care, (2021), 1–16. https://doi.org/10.1080/17538157.2021.2007930 doi: 10.1080/17538157.2021.2007930
![]() |
[34] |
D. J. Sargent, Comparison of artificial neural networks with other statistical approaches, Cancer, 91 (2001), 1636–1642. https://doi.org/10.1002/1097-0142(20010415)91:8+<1636::AID-CNCR1176>3.0.CO;2-D doi: 10.1002/1097-0142(20010415)91:8+<1636::AID-CNCR1176>3.0.CO;2-D
![]() |
[35] |
F. S. Arkin, G. Aras, E. Dogu, Comparison of artificial neural networks and logistic regression for 30-days survival prediction of cancer patients, Acta Inform. Med., 28 (2020), 108–113. https://doi.org/10.5455/aim.2020.28.108-113 doi: 10.5455/aim.2020.28.108-113
![]() |
[36] |
B. Eftekhar, K. Mohammad, H. E. Ardebili, M. Ghodsi, E. Ketabchi, Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data, BMC Med. Inform. Decis. Mak., 5 (2005), 3. https://doi.org/10.1186/1472-6947-5-3 doi: 10.1186/1472-6947-5-3
![]() |
[37] |
C. C. Chung, O. A. Bamodu, C. T. Hong, L. Chan, H. W. Chiu, Application of machine learning-based models to boost the predictive power of the SPAN index, Int. J. Neurosci., (2021), 1–11. https://doi.org/10.1080/00207454.2021.1881092 doi: 10.1080/00207454.2021.1881092
![]() |
[38] |
S. Dreiseitl, L. Ohno-Machado, Logistic regression and artificial neural network classification models: A methodology review, J. Biomed. Inform., 35 (2002), 352–359. https://doi.org/10.1016/S1532-0464(03)00034-0 doi: 10.1016/S1532-0464(03)00034-0
![]() |
[39] |
P. E. Peppard, T. Young, J. H. Barnet, M. Palta, E. W. Hagen, K. M. Hla, Increased prevalence of sleep-disordered breathing in adults, Am. J. Epidemiol., 177 (2013), 1006–1014. https://doi.org/10.1093/aje/kws342 doi: 10.1093/aje/kws342
![]() |