Research article Special Issues

Robust optimal excess-of-loss reinsurance and investment problem with p-thinning dependent risks under CEV model

  • Received: 29 November 2020 Accepted: 19 February 2021 Published: 22 February 2021
  • JEL Codes: G32

  • This paper is devoted to study a robust optimal excess-of-loss reinsurance and investment problem with p-thinning dependent risks for an ambiguity-averse insurer (AAI). Assume that the AAI's wealth process consists of two p-thinning dependent classes of insurance business. The AAI is allowed to purchase excess-of-loss reinsurance and invest in a financial market consisting of one risk-free asset and one risky asset, where risky asset's price follows CEV model. Under the criterion of maximizing the expected exponential utility of AAI's terminal wealth, the explicit expressions of the optimal excess-of-loss reinsurance and investment strategy are derived by employing techniques of stochastic control theory. Moreover, we provide the verification theorem and present some numerical examples to analyze the impacts of parameters on our optimal control strategies.

    Citation: Lei Mao, Yan Zhang. Robust optimal excess-of-loss reinsurance and investment problem with p-thinning dependent risks under CEV model[J]. Quantitative Finance and Economics, 2021, 5(1): 134-162. doi: 10.3934/QFE.2021007

    Related Papers:

    [1] Muhammad Asim, Ghada AlNemer . Boundedness on variable exponent Morrey-Herz space for fractional multilinear Hardy operators. AIMS Mathematics, 2025, 10(1): 117-136. doi: 10.3934/math.2025007
    [2] Jie Sun, Jiamei Chen . Weighted estimates for commutators associated to singular integral operator satisfying a variant of Hörmander's condition. AIMS Mathematics, 2023, 8(11): 25714-25728. doi: 10.3934/math.20231311
    [3] Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy . Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2022, 7(10): 19147-19166. doi: 10.3934/math.20221051
    [4] Yueping Zhu, Yan Tang, Lixin Jiang . Boundedness of multilinear Calderón-Zygmund singular operators on weighted Lebesgue spaces and Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2021, 6(10): 11246-11262. doi: 10.3934/math.2021652
    [5] Wanjing Zhang, Suixin He, Jing Zhang . Boundedness of sublinear operators on weighted grand Herz-Morrey spaces. AIMS Mathematics, 2023, 8(8): 17381-17401. doi: 10.3934/math.2023888
    [6] Babar Sultan, Mehvish Sultan, Qian-Qian Zhang, Nabil Mlaiki . Boundedness of Hardy operators on grand variable weighted Herz spaces. AIMS Mathematics, 2023, 8(10): 24515-24527. doi: 10.3934/math.20231250
    [7] Javeria Younas, Amjad Hussain, Hadil Alhazmi, A. F. Aljohani, Ilyas Khan . BMO estimates for commutators of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces. AIMS Mathematics, 2024, 9(9): 23434-23448. doi: 10.3934/math.20241139
    [8] Ming Liu, Bin Zhang, Xiaobin Yao . Weighted variable Morrey-Herz space estimates for mth order commutators of ndimensional fractional Hardy operators. AIMS Mathematics, 2023, 8(9): 20063-20079. doi: 10.3934/math.20231022
    [9] Shuhui Yang, Yan Lin . Multilinear strongly singular integral operators with generalized kernels and applications. AIMS Mathematics, 2021, 6(12): 13533-13551. doi: 10.3934/math.2021786
    [10] Naqash Sarfraz, Muhammad Aslam . Some weighted estimates for the commutators of p-adic Hardy operator on two weighted p-adic Herz-type spaces. AIMS Mathematics, 2021, 6(9): 9633-9646. doi: 10.3934/math.2021561
  • This paper is devoted to study a robust optimal excess-of-loss reinsurance and investment problem with p-thinning dependent risks for an ambiguity-averse insurer (AAI). Assume that the AAI's wealth process consists of two p-thinning dependent classes of insurance business. The AAI is allowed to purchase excess-of-loss reinsurance and invest in a financial market consisting of one risk-free asset and one risky asset, where risky asset's price follows CEV model. Under the criterion of maximizing the expected exponential utility of AAI's terminal wealth, the explicit expressions of the optimal excess-of-loss reinsurance and investment strategy are derived by employing techniques of stochastic control theory. Moreover, we provide the verification theorem and present some numerical examples to analyze the impacts of parameters on our optimal control strategies.



    Let T be the Calderón-Zygmund singular integral operator and b be a locally integrable function on Rn. The commutator generated by b and T is defined by [b,T]f=bT(f)T(bf). The investigation of the commutator begins with Coifman-Rochberg-Weiss pioneering study and classical result (see [6]). The classical result of Coifman, Rochberg and Weiss (see [6]) states that the commutator [b,T]f=T(bf)bTf is bounded on Lp(Rn) for 1<p< if and only if bBMO(Rn). The major reason for considering the problem of commutators is that the boundedness of commutator can produces some characterizations of function spaces (see [1,6]). Chanillo (see [1]) proves a similar result when T is replaced by the fractional integral operator. In [11], the boundedness properties of the commutators for the extreme values of p are obtained. In recent years, the theory of Herz space and Herz type Hardy space, as a local version of Lebesgue space and Hardy space, have been developed (see [8,9,12,13]). The main purpose of this paper is to establish the endpoint continuity properties of some multilinear operators related to certain non-convolution type fractional singular integral operators on Herz and Herz type Hardy spaces.

    First, let us introduce some notations (see [8,9,10,12,13,15]). Throughout this paper, Q will denote a cube of Rn with sides parallel to the axes. For a cube Q and a locally integrable function f, let fQ=|Q|1Qf(x)dx and f#(x)=supQx|Q|1Q|f(y)fQ|dy. Moreover, f is said to belong to BMO(Rn) if f#L and define ||f||BMO=||f#||L; We also define the central BMO space by CMO(Rn), which is the space of those functions fLloc(Rn) such that

    ||f||CMO=supr>1|Q(0,r)|1Q|f(y)fQ|dy<.

    It is well-known that (see [9,10])

    ||f||CMOsupr>1infcC|Q(0,r)|1Q|f(x)c|dx.

    For kZ, define Bk={xRn:|x|2k} and Ck=BkBk1. Denote by χk the characteristic function of Ck and ˜χk the characteristic function of Ck for k1 and ˜χ0 the characteristic function of B0.

    Definition 1. Let 0<p< and αR.

    (1) The homogeneous Herz space ˙Kαp(Rn) is defined by

    ˙Kαp(Rn)={fLploc(Rn{0}):||f||˙Kαp<},

    where

    ||f||˙Kαp=k=2kα||fχk||Lp;

    (2) The nonhomogeneous Herz space Kαp(Rn) is defined by

    Kαp(Rn)={fLploc(Rn):||f||Kαp<},

    where

    ||f||Kαp=k=02kα||f˜χk||Lp.

    If α=n(11/p), we denote that ˙Kαp(Rn)=˙Kp(Rn), Kαp(Rn)=Kp(Rn).

    Definition 2. Let 0<δ<n and 1<p<n/δ. We shall call Bδp(Rn) the space of those functions f on Rn such that

    ||f||Bδp=supd>1dn(1/pδ/n)||fχQ(0,d)||Lp<.

    Definition 3. Let 1<p<.

    (1) The homogeneous Herz type Hardy space H˙Kp(Rn) is defined by

    H˙Kp(Rn)={fS(Rn):G(f)˙Kp(Rn)},

    where

    ||f||H˙Kp=||G(f)||˙Kp.

    (2) The nonhomogeneous Herz type Hardy space HKp(Rn) is defined by

    HKp(Rn)={fS(Rn):G(f)Kp(Rn)},

    where

    ||f||HKp=||G(f)||Kp.

    where G(f) is the grand maximal function of f.

    The Herz type Hardy spaces have the atomic decomposition characterization.

    Definition 4. Let 1<p<. A function a(x) on Rn is called a central (n(11/p),p)-atom (or a central (n(11/p),p)-atom of restrict type), if

    1) SuppaB(0,d) for some d>0 (or for some d1),

    2) ||a||Lp|B(0,d)|1/p1,

    3) a(x)dx=0.

    Lemma 1. (see [9,13]) Let 1<p<. A temperate distribution f belongs to H˙Kp(Rn)(or HKp(Rn)) if and only if there exist central (n(11/p),p)-atoms(or central (n(11/p),p)-atoms of restrict type) aj supported on Bj=B(0,2j) and constants λj, j|λj|< such that f=j=λjaj (or f=j=0λjaj)in the S(Rn) sense, and

    ||f||H˙Kp( or ||f||HKp)j|λj|.

    In this paper, we will consider a class of multilinear operators related to some non-convolution type singular integral operators, whose definition are following.

    Let m be a positive integer and A be a function on Rn. We denote that

    Rm+1(A;x,y)=A(x)|β|m1β!DβA(y)(xy)β

    and

    Qm+1(A;x,y)=Rm(A;x,y)|β|=m1β!DβA(x)(xy)β.

    Definition 5. Fixed ε>0 and 0<δ<n. Let Tδ:SS be a linear operator. Tδ is called a fractional singular integral operator if there exists a locally integrable function K(x,y) on Rn×Rn such that

    Tδ(f)(x)=RnK(x,y)f(y)dy

    for every bounded and compactly supported function f, where K satisfies:

    |K(x,y)|C|xy|n+δ

    and

    |K(y,x)K(z,x)|+|K(x,y)K(x,z)|C|yz|ε|xz|nε+δ

    if 2|yz||xz|. The multilinear operator related to the fractional singular integral operator Tδ is defined by

    TAδ(f)(x)=RnRm+1(A;x,y)|xy|mK(x,y)f(y)dy;

    We also consider the variant of TAδ, which is defined by

    ˜TAδ(f)(x)=RnQm+1(A;x,y)|xy|mK(x,y)f(y)dy.

    Note that when m=0, TAδ is just the commutators of Tδ and A (see [1,6,11,14]). It is well known that multilinear operator, as a non-trivial extension of commutator, is of great interest in harmonic analysis and has been widely studied by many authors (see [3,4,5]). In [7], the weighted Lp(p>1)-boundedness of the multilinear operator related to some singular integral operator are obtained. In [2], the weak (H1, L1)-boundedness of the multilinear operator related to some singular integral operator are obtained. In this paper, we will study the endpoint continuity properties of the multilinear operators TAδ and ˜TAδ on Herz and Herz type Hardy spaces.

    Now we state our results as following.

    Theorem 1. Let 0<δ<n, 1<p<n/δ and DβABMO(Rn) for all β with |β|=m. Suppose that TAδ is the same as in Definition 5 such that Tδ is bounded from Lp(Rn) to Lq(Rn) for any p,q(1,+] with 1/q=1/pδ/n. Then TAδ is bounded from Bδp(Rn) to CMO(Rn).

    Theorem 2. Let 0<δ<n, 1<p<n/δ, 1/q=1/pδ/n and DβABMO(Rn) for all β with |β|=m. Suppose that ˜TAδ is the same as in Definition 5 such that ˜TAδ is bounded from Lp(Rn) to Lq(Rn) for any p,q(1,+) with 1/q=1/pδ/n. Then ˜TAδ is bounded from H˙Kp(Rn) to ˙Kαq(Rn) with α=n(11/p).

    Theorem 3. Let 0<δ<n, 1<p<n/δ and DβABMO(Rn) for all β with |β|=m. Suppose that ˜TAδ is the same as in Definition 5 such that ˜TAδ is bounded from Lp(Rn) to Lq(Rn) for any p,q(1,+) with 1/q=1/pδ/n. Then the following two statements are equivalent:

    (ⅰ) ˜TAδ is bounded from Bδp(Rn) to CMO(Rn);

    (ⅱ) for any cube Q and z3Q2Q, there is

    1|Q|Q||β|=m1β!|DβA(x)(DβA)Q|(4Q)cKβ(z,y)f(y)dy|dxC||f||Bδp,

    where Kβ(z,y)=(zy)β|zy|mK(z,y) for |β|=m.

    Remark. Theorem 2 is also hold for nonhomogeneous Herz and Herz type Hardy space.

    To prove the theorem, we need the following lemma.

    Lemma 2. (see [5]) Let A be a function on Rn and DβALq(Rn) for |β|=m and some q>n. Then

    |Rm(A;x,y)|C|xy|m|β|=m(1|˜Q(x,y)|˜Q(x,y)|DβA(z)|qdz)1/q,

    where ˜Q(x,y) is the cube centered at x and having side length 5n|xy|.

    Proof of Theorem 1. It suffices to prove that there exists a constant CQ such that

    1|Q|Q|TAδ(f)(x)CQ|dxC||f||Bδp

    holds for any cube Q=Q(0,d) with d>1. Fix a cube Q=Q(0,d) with d>1. Let ˜Q=5nQ and ˜A(x)=A(x)|β|=m1β!(DβA)˜Qxβ, then Rm+1(A;x,y)=Rm+1(˜A;x,y) and Dβ˜A=DβA(DβA)˜Q for all β with |β|=m. We write, for f1=fχ˜Q and f2=fχRn˜Q,

    TAδ(f)(x)=RnRm+1(˜A;x,y)|xy|mK(x,y)f(y)dy=RnRm(˜A;x,y)|xy|mK(x,y)f1(y)dy|β|=m1β!RnK(x,y)(xy)β|xy|mDβ˜A(y)f1(y)dy+RnRm+1(˜A;x,y)|xy|mK(x,y)f2(y)dy,

    then

    1|Q|Q|TAδ(f)(x)T˜Aδ(f2)(0)|dx1|Q|Q|Tδ(Rm(˜A;x,)|x|mf1)(x)|dx+|β|=m1β!1|Q|Q|Tδ((x)β|x|mDβ˜Af1)(x)|dx+|T˜Aδ(f2)(x)T˜Aδ(f2)(0)|dx:=I+II+III.

    For I, note that for xQ and y˜Q, using Lemma 2, we get

    Rm(˜A;x,y)C|xy|m|β|=m||DβA||BMO,

    thus, by the Lp(Rn) to Lq(Rn)-boundedness of TAδ for 1<p,q< with 1/q=1/pδ/n, we get

    IC|Q|Q|Tδ(|β|=m||DβA||BMOf1)(x)|dxC|β|=m||DβA||BMO(1|Q|Q|Tδ(f1)(x)|qdx)1/qC|β|=m||DβA||BMO|Q|1/q||f1||LpC|β|=m||DβA||BMOrn(1/pδ/n)||fχ˜Q||LpC|β|=m||DβA||BMO||f||Bδp.

    For II, taking 1<s<p such that 1/r=1/sδ/n, by the (Ls,Lr)-boundedness of Tδ and Holder's inequality, we gain

    IIC|Q|Q|Tδ(|β|=m(DβA(DβA)˜Q)f1)(x)|dxC|β|=m(1|Q|Q|Tδ((DβA(DβA)˜Q)f1)(x)|rdx)1/rC|Q|1/r|β|=m||(DβA(DβA)˜Q)f1||LsC|Q|1/r||f1||Lp|β|=m(1|Q|˜Q|DβA(y)(DβA)˜Q|ps/(ps)dy)(ps)/(ps)|Q|(ps)/(ps)C|β|=m||DβA||BMOrn/q||fχ˜Q||LpC|β|=m||DβA||BMO||f||Bδp.

    To estimate III, we write

    T˜Aδ(f2)(x)T˜Aδ(f2)(0)=Rn[K(x,y)|xy|mK(0,y)|y|m]Rm(˜A;x,y)f2(y)dy+RnK(0,y)f2(y)|y|m[Rm(˜A;x,y)Rm(˜A;0,y)]dy|β|=m1β!Rn(K(x,y)(xy)β|xy|mK(0,y)(y)β|y|m)Dβ˜A(y)f2(y)dy:=III1+III2+III3.

    By Lemma 2 and the following inequality (see [15])

    |bQ1bQ2|Clog(|Q2|/|Q1|)||b||BMO for Q1Q2,

    we know that, for xQ and y2k+1˜Q2k˜Q,

    |Rm(˜A;x,y)|C|xy|m|β|=m(||DβA||BMO+|(DβA)˜Q(x,y)(DβA)˜Q|)Ck|xy|m|β|=m||DβA||BMO.

    Note that |xy||y| for xQ and yRn˜Q, we obtain, by the condition of K,

    |III1|CRn(|x||y|m+n+1δ+|x|ε|y|m+n+εδ)|Rm(˜A;x,y)||f2(y)|dyC|β|=m||DβA||BMOk=02k+1˜Q2k˜Qk(|x||y|n+1δ+|x|ε|y|n+εδ)|f(y)|dyC|β|=m||DβA||BMOk=1k(2k+2εk)(2kr)n(1/pδ/n)||fχ2k˜Q||LpC|β|=m||DβA||BMOk=1k(2k+2εk)||f||BδpC|β|=m||DβA||BMO||f||Bδp.

    For III2, by the formula (see [5]):

    Rm(˜A;x,y)Rm(˜A;x0,y)=|γ|<m1γ!Rm|γ|(Dγ˜A;x,x0)(xy)γ

    and Lemma 2, we have

    |Rm(˜A;x,y)Rm(˜A;x0,y)|C|γ|<m|β|=m|xx0|m|γ||xy||γ|||DβA||BMO,

    thus, similar to the estimates of III1, we get

    |III2|C|β|=m||DβA||BMOk=02k+1˜Q2k˜Q|x||y|n+1δ|f(y)|dyC|β|=m||DβA||BMO||f||Bδp.

    For III3, by Holder's inequality, similar to the estimates of III1, we get

    |III3|C|β|=mk=02k+1˜Q2k˜Q(|x||y|n+1δ+|x|ε|y|n+εδ)|Dβ˜A(y)||f(y)|dyC|β|=mk=1(2k+2εk)(2kr)n(1/pδ/n)(|2k˜Q|12k˜Q|DβA(y)(DβA)˜Q|pdy)1/p||fχ2k˜Q||LpC|β|=m||DβA||BMOk=1(2k+2εk)(2kr)n(1/pδ/n)||fχ2k˜Q||LpC|β|=m||DβA||BMO||f||Bδp.

    Thus

    IIIC|β|=m||DβA||BMO||f||Bδp,

    which together with the estimates for I and II yields the desired result. This finishes the proof of Theorem 1.

    Proof of Theorem 2. Let fH˙Kp(Rn), by Lemma 1, f=j=λjaj, where ajs are the central (n(11/p),p)-atom with suppajBj=B(0,2j) and ||f||H˙Kpj|λj|. We write

    ||˜TAδ(f)||˙Kαq=k=2kn(11/p)||χk˜TAδ(f)||Lqk=2kn(11/p)k1j=|λj|||χk˜TAδ(aj)||Lq+k=2kn(11/p)j=k|λj|||χk˜TAδ(aj)||Lq=J+JJ.

    For JJ, by the (Lp,Lq)-boundedness of ˜TAδ for 1/q=1/pδ/n, we get

    JJCk=2kn(11/p)j=k|λj|||aj||LpCk=2kn(11/p)j=k|λj|2jn(1/p1)Cj=|λj|jk=2(kj)n(11/p)Cj=|λj|C||f||H˙Kp.

    To obtain the estimate of J, we denote that ˜A(x)=A(x)|β|=m1β!(DβA)2Bjxβ. Then Qm(A;x,y)=Qm(˜A;x,y) and Qm+1(A;x,y)=Rm(A;x,y)|β|=m1β!(xy)βDβA(x). We write, by the vanishing moment of a and for xCk with kj+1,

    ˜TAδ(aj)(x)=RnK(x,y)Rm(A;x,y)|xy|maj(y)dy|β|=m1β!RnK(x,y)Dβ˜A(x)(xy)β|xy|maj(y)dy=Rn[K(x,y)|xy|mK(x,0)|x|m]Rm(˜A;x,y)aj(y)dy+RnK(x,0)|x|m[Rm(˜A;x,y)Rm(˜A;x,0)]aj(y)dy|β|=m1β!Rn[K(x,y)(xy)β|xy|mK(x,0)xβ|x|m]Dβ˜A(x)aj(y)dy.

    Similar to the proof of Theorem 1, we obtain

    |˜TAδ(aj)(x)|CRn[|y||x|m+n+1δ+|y|ε|x|m+n+εδ]|Rm(˜A;x,y)||aj(y)|dy+C|β|=mRn[|y||x|n+1δ+|y|ε|x|n+εδ]|Dβ˜A(x)||aj(y)|dyC|β|=m||DβA||BMO[2j2k(n+1δ)+2jε2k(n+εδ)]+C|β|=m[2j2k(n+1δ)+2jε2k(n+εδ)]|Dβ˜A(x)|,

    thus

    JC|β|=m||DβA||BMOk=2kn(11/p)k1j=|λj|[2j2k(n+1δ)+2jε2k(n+εδ)]2kn/q+C|β|=mk=2kn(11/p)k1j=|λj|[2j2k(n+1δ)+2jε2k(n+εδ)](Bk|Dβ˜A(x)|qdx)1/qC|β|=m||DβA||BMOk=2kn(1δ/n)k1j=|λj|[2j2k(n+1δ)+2jε2k(n+εδ)]C|β|=m||DβA||BMOj=|λj|k=j+1[2jk+2(jk)ε]C|β|=m||DβA||BMOj=|λj|C|β|=m||DβA||BMO||f||H˙Kp.

    This completes the proof of Theorem 2.

    Proof of Theorem 3. For any cube Q=Q(0,r) with r>1, let fBδp and ˜A(x)=A(x)|β|=m1β!(DβA)˜Qxβ. We write, for f=fχ4Q+fχ(4Q)c=f1+f2 and z3Q2Q,

    ˜TAδ(f)(x)=˜TAδ(f1)(x)+RnRm(˜A;x,y)|xy|mK(x,y)f2(y)dy|β|=m1β!(DβA(x)(DβA)Q)(Tδ,β(f2)(x)Tδ,β(f2)(z))|β|=m1β!(DβA(x)(DβA)Q)Tδ,β(f2)(z)=I1(x)+I2(x)+I3(x,z)+I4(x,z),

    where Tδ,β is the singular integral operator with the kernel (xy)β|xy|mK(x,y) for |β|=m. Note that (I4(,z))Q=0, we have

    ˜TAδ(f)(x)(˜TAδ(f))Q=I1(x)(I1())Q+I2(x)I2(z)[I2()I2(z)]QI3(x,z)+(I3(x,z))QI4(x,z).

    By the (Lp,Lq)-bounded of ˜TAδ, we get

    1|Q|Q|I1(x)|dx(1|Q|Q|˜TAδ(f1)(x)|qdx)1/qC|Q|1/q||f1||LpC||f||Bδp.

    Similar to the proof of Theorem 1, we obtain

    |I2(x)I2(z)|C||f||Bδp

    and

    1|Q|Q|I3(x,z)|dxC||f||Bδp.

    Then integrating in x on Q and using the above estimates, we obtain the equivalence of the estimate

    1|Q|Q|˜TAδ(f)(x)(˜TAδ(f))Q|dxC||f||Bδp

    and the estimate

    1|Q|Q|I4(x,z)|dxC||f||Bδp.

    This completes the proof of Theorem 3.

    In this section we shall apply the theorems of the paper to some particular operators such as the Calderón-Zygmund singular integral operator and fractional integral operator.

    Application 1. Calderón-Zygmund singular integral operator.

    Let T be the Calderón-Zygmund operator defined by (see [10,11,15])

    T(f)(x)=RnK(x,y)f(y)dy,

    the multilinear operator related to T is defined by

    TA(f)(x)=RnRm+1(A;x,y)|xy|mK(x,y)f(y)dy.

    Then it is easily to see that T satisfies the conditions in Theorems 1–3, thus the conclusions of Theorems 1–3 hold for TA.

    Application 2. Fractional integral operator with rough kernel.

    For 0<δ<n, let Tδ be the fractional integral operator with rough kernel defined by (see [2,7])

    Tδf(x)=RnΩ(xy)|xy|nδf(y)dy,

    the multilinear operator related to Tδ is defined by

    TAδf(x)=RnRm+1(A;x,y)|xy|m+nδΩ(xy)f(y)dy,

    where Ω is homogeneous of degree zero on Rn, Sn1Ω(x)dσ(x)=0 and ΩLipε(Sn1) for some 0<ε1, that is there exists a constant M>0 such that for any x,ySn1, |Ω(x)Ω(y)|M|xy|ε. Then Tδ satisfies the conditions in Theorem 1. In fact, for suppf(2Q)c and xQ=Q(x0,d), by the condition of Ω, we have (see [16])

    |Ω(xy)|xy|nδΩ(x0y)|x0y|nδ|C(|xx0|ε|x0y|n+εδ+|xx0||x0y|n+1δ),

    thus, the conclusions of Theorems 1–3 hold for TAδ.

    The author would like to express his deep gratitude to the referee for his/her valuable comments and suggestions. This research was supported by the National Natural Science Foundation of China (Grant No. 11901126), the Scientific Research Funds of Hunan Provincial Education Department. (Grant No. 19B509).

    The authors declare that they have no competing interests.



    [1] A C, Li Z (2015) Optimal investment and excess-of-loss reinsurance problem with delay for an insurer under Heston's SV model. Insur Math Econ 61: 181-196. doi: 10.1016/j.insmatheco.2015.01.005
    [2] A C, Lai Y, Shao Y (2018) Optimal excess-of-loss reinsurance and investment problem with delay and jump-diffusion risk process under the CEV model. J Comput Appl Math 342: 317-336. doi: 10.1016/j.cam.2018.03.035
    [3] Anderson E, Hansen L, Sargent T (1999) Robustness detection and the price of risk. Working Paper. Available from: https://files.nyu.edu/ts43/public/research/.svn/text-base/ahs3.pdf.svn-base.
    [4] Asmussen S, Højgaard B, Taksar M (2000) Optimal risk control and dividend distribution policies: example of excess-of-loss reinsurance for an insurance corporation. Financ Stoch 4: 299-324. doi: 10.1007/s007800050075
    [5] Bai L, Zhang H (2008) Dynamic mean-variance problem with constrained risk control for the insurers. Math Meth Oper Res 68: 181-205. doi: 10.1007/s00186-007-0195-4
    [6] Bi J, Liang Z, Xu F (2016) Optimal mean-variance investment and reinsurance problems for the risk model with common shock dependence. Insur Math Econ 70: 245-258. doi: 10.1016/j.insmatheco.2016.06.012
    [7] Branger N, Larsen L (2013) Robust portfolio choice with uncertainty about jump and diffusion risk. J Bank Financ 37: 5036-5047. doi: 10.1016/j.jbankfin.2013.08.023
    [8] Gerber H (1979) An Introduction to Mathematical Risk Theory, In: S.S. Huebner Foundation Monograph, Series No. 8, Irwin, Homewood, Ⅲ, 1979.
    [9] Gong L, Badescu A, Cheung ECK (2012) Recursive methods for a multidimensional risk process with common shocks. Insur Math Econ 50: 109-120. doi: 10.1016/j.insmatheco.2011.10.007
    [10] Grandell J (1991) Aspects of Risk Theory, New York: Springer-Verlag, 1-32.
    [11] Gu A, Guo X, Li Z, et al. (2012) Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model. Insur Math Econ 51: 674-684. doi: 10.1016/j.insmatheco.2012.09.003
    [12] Guan G, Liang Z (2014) Optimal reinsurance and investment strategies for insurer under interest rate and inflation risks. Insur Math Econ 55: 105-115. doi: 10.1016/j.insmatheco.2014.01.007
    [13] Hipp C, Plum M (2000) Optimal investment for insurers. Insur Math Econ 27: 215-228. doi: 10.1016/S0167-6687(00)00049-4
    [14] Huang Y, Yang X, Zhou J (2017) Robust optimal investment and reinsurance problem for a general insurance company under Heston model. Math Meth Oper Res 85: 1-22. doi: 10.1007/s00186-017-0578-0
    [15] Irgens C, Paulsen J (2004) Optimal control of risk exposure, reinsurance and investments for insurance portfolios. Insur Math Econ 35: 21-51. doi: 10.1016/j.insmatheco.2004.04.004
    [16] Jeanblanc M, Yor M, Chesney M (2009) Mathematical Methods for Financial Markets, London: Springer-Verlag.
    [17] Kraft H (2005) Optimal portfolios and Heston stochastic volatility model: an explicit solution for power utility. Quant Financ 5: 303-313. doi: 10.1080/14697680500149503
    [18] Kraft H (2004) Optimal portfolios with stochastic interest rates and defaultable assets, Springer.
    [19] Li D, Rong X, Zhao H (2015) Time-consistent reinsurance-investment strategy for an insurer and a reinsurer with mean-variance criterion under the CEV model. J Comput Appl Math 283: 142-162. doi: 10.1016/j.cam.2015.01.038
    [20] Li D, Zeng Y, Yang H (2017) Robust optimal excess-of-loss reinsurance and investment strategy for an insurer in a model with jumps. Scand Actuar J, 1-27.
    [21] Liang Z, Yuen KC (2016) Optimal dynamic reinsurance with dependent risks: variance premium principle. Scand Actuar J 1: 18-36. doi: 10.1080/03461238.2014.892899
    [22] Liang Z, Yuen KC, Guo J (2011) Optimal proportional reinsurance and investment in a stock market with Ornstein-Uhlenbeck process. Insur Math Econ 49: 207-215. doi: 10.1016/j.insmatheco.2011.04.005
    [23] Liang Z, Bi J, Yuen K, et al. (2016) Optimal mean-variance reinsurance and investment in a jump-diffusion financial market with common shock dependence. Math Methods Oper Res 1: 1-27.
    [24] Liang X, Wang G (2012) On a reduced form credit risk model with common shock and regime switching. Insur Math Econ 51: 567-575. doi: 10.1016/j.insmatheco.2012.07.010
    [25] Maenhout PJ (2006) Robust portfolio rules and dectection-error probabilities for a mean-reverting risk premium. J Econ Theory 128: 136-163. doi: 10.1016/j.jet.2005.12.012
    [26] Maenhout PJ (2004) Robust portfolio rules and asset pricing. Rev Financ Stud 17: 951-983. doi: 10.1093/rfs/hhh003
    [27] Pan J, Hu S, Zhou X (2019) Optimal investment strategy for asset-liability management under the Heston model. Optimization.
    [28] Promislow SD, Young VR (2005) Minimizing the probability of ruin when claims follow Brownian motion with drift. N Am Actuar J 9: 110-128. doi: 10.1080/10920277.2005.10596214
    [29] Schmidli H (2002) On minimizing the ruin probability by investment and reinsurance. Ann Appl Probab 12: 890-907. doi: 10.1214/aoap/1031863173
    [30] Tian Y, Guo J, Sun Z (2020) Optimal mean-variance reinsurance in a financial market with stochastic rate of return. J Ind Manga Optim.
    [31] Yang H, Zhang L (2005) Optimal investment for insurer with jump-diffusion risk process. Insur Math Econ 37: 615-634. doi: 10.1016/j.insmatheco.2005.06.009
    [32] Yang X, Liang Z, Zhang C (2017) Optimal mean-variance reinsurance with delay and multiple classes of dependent risks (in Chinese). Sci Sin Math 47: 723-756. doi: 10.1360/SCM-2016-0388
    [33] Yi B, Li Z, Viens FG, et al. (2013) Robust optimal control for an insurer with reinsurance and investment under Heston's stochastic volatility model. Insur Math Econ 53: 601-614. doi: 10.1016/j.insmatheco.2013.08.011
    [34] Yuen KC, Guo J, Wu X (2002) On a correlated aggregate claim model with Poisson and Erlang risk process. Insur Math Econ 31: 205-214. doi: 10.1016/S0167-6687(02)00150-6
    [35] Yuen KC, Guo J, Wu X (2006) On the first time of ruin in the bivariate compound Poisson model. Insur Math Econ 38: 298-308. doi: 10.1016/j.insmatheco.2005.08.011
    [36] Yuen KC, Liang Z, Zhou M (2015) Optimal proportional reinsurance with common shock dependence. Insur Math Econ 64: 1-13. doi: 10.1016/j.insmatheco.2015.04.009
    [37] Zhang Y, Zhao P, Teng X, et al. (2020) Optimal reinsurance and investment strategies for an insurer and a reinsurer under Hestons SV model: HARA utility and Legendre transform. J Ind Manga Optim.
    [38] Zhang Y, Zhao P (2020) Optimal Reinsurance and Investment problem with dependent risks Based on Legendre transform. J Ind Manga Optim 16: 1457-1479.
    [39] Zhang Y, Zhao P (2019) Robust optimal excess-of-loss reinsurance and investment problem with delay and dependent risks. Discrete Dyn Nat Soc 2019: 1-21.
    [40] Zhao H, Weng C, Shen Y, et al. (2017) Time-consistent investment-reinsurance strategies towards joint interests of the insurer and the reinsurer under CEV models. Sci China Math 60: 317-344. doi: 10.1007/s11425-015-0542-7
    [41] Zeng X, Taksar M (2013) A stochastic volatility model and optimal portfolio selection. Quant Financ 13: 1547-1558. doi: 10.1080/14697688.2012.740568
    [42] Zeng Y, Li Z, Lai Y (2013) Time-consistent investment and reinsurance strategies for mean-variance insurers with jumps. Insur Math Econ 52: 498-507. doi: 10.1016/j.insmatheco.2013.02.007
    [43] Zeng Y, Li D, Gu A (2016) Robust equilibrium reinsurance-investment strategy for a mean-variance insurer in a model with jumps. Insur Math Econ 66: 138-152. doi: 10.1016/j.insmatheco.2015.10.012
    [44] Zheng X, Zhou J, Sun Z (2016) Robust optimal portfolio and proportional reinsurance for an insurer under a CEV model. Insur Math Econ 67: 77-87. doi: 10.1016/j.insmatheco.2015.12.008
    [45] Zhu H, Deng C, Yue S, et al. (2015) Optimal reinsurance and investment problem for an insurer with counterparty risk. Insur Math Econ 61: 242-254. doi: 10.1016/j.insmatheco.2015.01.013
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2710) PDF downloads(182) Cited by(5)

Figures and Tables

Figures(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog