Processing math: 100%
Research article Special Issues

Existence results for nonlinear fractional-order multi-term integro-multipoint boundary value problems

  • We investigate the existence of solutions for integro-multipoint boundary value problems involving nonlinear multi-term fractional integro-differential equations. The case involving three different types of nonlinearities is also briefly described. The desired results are obtained by applying the methods of modern functional analysis and are well-illustrated with examples.

    Citation: Ahmed Alsaedi, Bashir Ahmad, Manal Alblewi, Sotiris K. Ntouyas. Existence results for nonlinear fractional-order multi-term integro-multipoint boundary value problems[J]. AIMS Mathematics, 2021, 6(4): 3319-3338. doi: 10.3934/math.2021199

    Related Papers:

    [1] Bashir Ahmad, Ahmed Alsaedi, Ymnah Alruwaily, Sotiris K. Ntouyas . Nonlinear multi-term fractional differential equations with Riemann-Stieltjes integro-multipoint boundary conditions. AIMS Mathematics, 2020, 5(2): 1446-1461. doi: 10.3934/math.2020099
    [2] Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Ahmed Alsaedi . On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions. AIMS Mathematics, 2023, 8(5): 11709-11726. doi: 10.3934/math.2023593
    [3] Ymnah Alruwaily, Lamya Almaghamsi, Kulandhaivel Karthikeyan, El-sayed El-hady . Existence and uniqueness for a coupled system of fractional equations involving Riemann-Liouville and Caputo derivatives with coupled Riemann-Stieltjes integro-multipoint boundary conditions. AIMS Mathematics, 2023, 8(5): 10067-10094. doi: 10.3934/math.2023510
    [4] Mohammad Esmael Samei, Lotfollah Karimi, Mohammed K. A. Kaabar . To investigate a class of multi-singular pointwise defined fractional $ q $–integro-differential equation with applications. AIMS Mathematics, 2022, 7(5): 7781-7816. doi: 10.3934/math.2022437
    [5] Zaid Laadjal, Fahd Jarad . Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions. AIMS Mathematics, 2023, 8(1): 1172-1194. doi: 10.3934/math.2023059
    [6] Bashir Ahmad, Badrah Alghamdi, Ahmed Alsaedi, Sotiris K. Ntouyas . Existence results for Riemann-Liouville fractional integro-differential inclusions with fractional nonlocal integral boundary conditions. AIMS Mathematics, 2021, 6(7): 7093-7110. doi: 10.3934/math.2021416
    [7] Ahmed Alsaedi, Fawziah M. Alotaibi, Bashir Ahmad . Analysis of nonlinear coupled Caputo fractional differential equations with boundary conditions in terms of sum and difference of the governing functions. AIMS Mathematics, 2022, 7(5): 8314-8329. doi: 10.3934/math.2022463
    [8] Ahmed Alsaedi, Bashir Ahmad, Afrah Assolami, Sotiris K. Ntouyas . On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions. AIMS Mathematics, 2022, 7(7): 12718-12741. doi: 10.3934/math.2022704
    [9] Veliappan Vijayaraj, Chokkalingam Ravichandran, Thongchai Botmart, Kottakkaran Sooppy Nisar, Kasthurisamy Jothimani . Existence and data dependence results for neutral fractional order integro-differential equations. AIMS Mathematics, 2023, 8(1): 1055-1071. doi: 10.3934/math.2023052
    [10] Najla Alghamdi, Bashir Ahmad, Esraa Abed Alharbi, Wafa Shammakh . Investigation of multi-term delay fractional differential equations with integro-multipoint boundary conditions. AIMS Mathematics, 2024, 9(5): 12964-12981. doi: 10.3934/math.2024632
  • We investigate the existence of solutions for integro-multipoint boundary value problems involving nonlinear multi-term fractional integro-differential equations. The case involving three different types of nonlinearities is also briefly described. The desired results are obtained by applying the methods of modern functional analysis and are well-illustrated with examples.



    The nonlocal nature of fractional-order operators led to a widespread interest in the study and applications of these operators. This popularity motivated many researchers to focus on the theoretical aspects of them to facilitate their applications. For application details, for instance, see the texts [1,2,3], while the theoretical development can be found in [4,5,6]. In [7], the authors studied the existence and uniqueness of solutions for a fractional boundary value problem on a graph. The details of eigenvalue problems involving fractional differential equations can be found in [8,9]. Nonexistence of positive solutions for a system of coupled fractional differential equations was discussed in [10]. The existence of solutions for fractional differential inclusions supplemented with sum and integral boundary conditions was proved in [11]. The authors investigated the existence of solutions for nonlocal boundary value problems involving sequential fractional integro-differential equations and inclusions in [12]. For the details on extremal solutions of generalized Caputo fractional differential equations equipped with Steiltjes-type fractional integro-initial conditions, see [13], while some results on controllability of fractional neutral integro-differential systems and hybrid integro-differential equations can respectively be found in [14] and [15]. The governing equations in the mathematical models of certain real world problems contain more than one fractional order differential operators. Examples include Bagley–Torvik [16] and Basset [17] equations. For some recent work on multi-term fractional-order boundary value problems, we refer the reader to the articles [18,19]. In a recent work [20], the authors studied nonlinear multi-term fractional differential equations complemented with Riemann-Stieltjes integro-multipoint boundary conditions.

    In this paper, we explore the existence criteria for the solutions of a nonlinear multi-term fractional integro-differential equation involving Caputo derivative operators of orders κ1(1,2],κ2(1,κ1) and an integral operator of order p>0:

    λ1CDκ1x(t)+λ2CDκ2x(t)=ζ(t,x(t))+Ipμ(t,x(t)), (1.1)

    complemented with nonlocal non-separated boundary conditions:

    a1x(0)+a2x(T)=A1ξ0x(υ)dυ+di=1ωix(ηi),a3x(0)+a4x(T)=A2Tηx(υ)dυ+qj=1γjx(ξj), (1.2)

    where 0<t<T,0<ξ<η<T,λ1,λ2,a1,a2,a3,a4,A1,A2,ωi,γjR, 0<ηi,ξj<T, i=1,2,,d,j=1,2,,q, λ10, CDκ1 and CDκ2 respectively denote the Caputo fractional derivative operators of order κ1 and κ2, Ip denotes Riemann-Liouville fractional integral of order p>0 and ζ,μ:[0,T]×RR are continuous functions.

    The uniqueness result for the problem (1.1)–(1.2) is obtained by means of Banach's contraction mapping principle, while Krasnosel'skii's fixed point theorem and nonlinear alternative of Leray-Schauder type are used to establish the existence results for the problem at hand.

    The rest of the paper is organized as follows: In Section 2 we recall some preliminary concepts of fractional calculus and present an auxiliary result concerning a linear variant of the problem (1.1)–(1.2). The main existence and uniqueness results are proved in Section 3. The case including three types of nonlinearities is indicated in Section 4, while Section 5 is devoted to illustrative examples.

    Here we present some auxiliary material related to the study of the problem (1.1)–(1.2).

    Definition 2.1. [4,6] The Riemann-Liouville fractional integral of order β>0 for yL1[a,b], existing almost everywhere on [a,b], is defined as

    Iβy(t)=1Γ(β)tay(υ)(tυ)1βdυ,t[a,b].

    Definition 2.2. [4,6] For a function yACm[a,b], the Caputo derivative of fractional order β, existing almost everywhere on [a,b], is defined as

    CDβy(t)=1Γ(mβ)ta(tυ)mβ1y(m)(υ)dυ,β(m1,m],mN,t[a,b].

    Lemma 2.3. (Auxiliary result) Let σC([0,T],R). Then the unique solution of the linear multi-term fractional differential equation:

    λ1CDκ1x(t)+λ2CDκ2x(t)=σ(t), (2.1)

    complemented with the boundary conditions (1.2) is given by the solution of the integral equation

    x(t)=1λ1[Iκ1σ(t)λ2Iκ1κ2x(t)+ρ1(t){A1(Iκ1+1σ(ξ)λ2Iκ1κ2+1x(ξ))+di=1ωi(Iκ1σ(ηi)λ2Iκ1κ2x(ηi))a2(Iκ1σ(T)λ2Iκ1κ2x(T))}+ρ2(t){A2(Tηυ0(υu)κ11Γ(κ1)σ(u)dudυλ2Tηυ0(υu)κ1κ21Γ(κ1κ2)x(u)dudυ)+qj=1γj(Iκ1σ(ξj)λ2Iκ1κ2x(ξj))a4(Iκ11σ(T)λ2Iκ1κ21x(T))}], (2.2)

    where

    ρ1(t)=12δ{(A2(T2η2)+2di=1γjξj2(a3+a4))+2t(A2(Tη)+qj=1γj)},ρ2(t)=12δ{A1ξ2+2di=1ωiηi2a2T2t(A1ξ+di=1ωi(a1+a2))}, (2.3)

    and it is assumed that

    δ=12[((T2η2)A2+2qj=1γjξj2(a3+a4))(A1ξ+di=1ωi(a1+a2))(A1ξ2+2di=1ωiηi2a2T)(A2(Tη)+qj=1γj)]0. (2.4)

    Proof. Applying the fractional integral operator Iκ1 to both sides of the fractional differential equation in (2.1) we get,

    x(t)=1λ1Iκ1σ(t)λ2λ1Iκ1κ2x(t)c0c1t, (2.5)

    where c0 and c1 are unknown arbitrary constants. From (2.5) we have

    x(t)=1λ1Iκ11σ(t)λ2λ1Iκ1κ21x(t)c1. (2.6)

    Using the boundary conditions (1.2) in (2.5) and (2.6), we get a system of equations in the unknown constants c0 and c1:

    {A1ξ+di=1ωi(a1+a2)}c0+{A1ξ2+2di=1ωiηi2a2T2}c1=A1λ1[Iκ1+1σ(ξ)λ2Iκ1κ2+1x(ξ)]a2λ1[Iκ1σ(T)λ2Iκ1κ2x(T)]+1λ1di=1ωi[Iκ1σ(ηi)λ2Iκ1κ2x(ηi)],{A2(Tη)+qj=1γj}c0+{((T2η2)A2+2qj=1γjξj2(a3+a4))2}c1=1λ1qj=1γj[Iκ1σ(ξj)λ2Iκ1κ2x(ξj)]a4λ1[Iκ11σ(T)λ2Iκ1κ21x(T)]+A2λ1[Tηυ0(υu)κ11Γ(κ1)σ(u)dudυλ2Tηυ0(υu)κ1κ21Γ(κ1κ2)x(u)dudυ]. (2.7)

    Solving the system (2.7) for c0 and c1, we find that

    c0=1λ12δ[(A2(T2η2)+2qj=1γjξj2(a3+a4)){A1(Iκ1+1σ(ξ)λ2Iκ1κ2+1x(ξ))+di=1ωi(Iκ1σ(ηi)λ2Iκ1κ2x(ηi))a2(Iκ1σ(T)λ2Iκ1κ2x(T))}(A1ξ2+2di=1ωiηi2a2T){A2(Tηυ0(υu)κ11Γ(κ1)σ(u)dudυλ2Tηυ0(υu)κ1κ21Γ(κ1κ2)x(u)dudυ)+qj=1γj(Iκ1σ(ξj)λ2Iκ1κ2x(ξj))a4(Iκ11σ(T)λ2Iκ1κ21x(T))}],c1=1λ1δ[(A2(Tη)+qj=1γj){A1(Iκ1+1σ(ξ)λ2Iκ1κ2+1x(ξ))+di=1ωi(Iκ1σ(ηi)λ2Iκ1κ2x(ηi))a2(Iκ1σ(T)λ2Iκ1κ2x(T))}(A1ξ+di=1ωi(a1+a2)){A2(Tηυ0(υu)κ11Γ(κ1)σ(u)dudυλ2Tηυ0(υu)κ1κ21Γ(κ1κ2)x(u)dudυ)+qj=1γj(Iκ1σ(ξj)λ2Iκ1κ2x(ξj))a4(Iκ11σ(T)λ2Iκ1κ21x(T))}].

    Inserting the values of c0 and c1 into (2.5) leads to the Eq (2.2). The converse of this lemma follows by direct computation.

    Keeping in mind Lemma 2.3, we introduce an operator V:CC associated with the problem (1.1)–(1.2) by

    (Vx)(t)=1λ1[t0(tυ)κ11Γ(κ1)ζ(υ,x(υ))dυ+t0(tυ)κ1+p1Γ(κ1+p)μ(υ,x(υ))dυλ2t0(tυ)κ1κ21Γ(κ1κ2)x(υ)dυ+ρ1(t){A1{ξ0(ξυ)κ1Γ(κ1+1)ζ(υ,x(υ))dυ+ξ0(ξυ)κ1+pΓ(κ1+p+1)μ(υ,x(υ))dυλ2ξ0(ξυ)κ1κ2Γ(κ1κ2+1)x(υ)dυ}+di=1ωi{ηi0(ηiυ)κ11Γ(κ1)ζ(υ,x(υ))dυ+ηi0(ηiυ)κ1+p1Γ(κ1+p)μ(υ,x(υ))dυλ2ηi0(ηiυ)κ1κ21Γ(κ1κ2)x(υ)dυ}a2{T0(Tυ)κ11Γ(κ1)ζ(υ,x(υ))dυ+T0(Tυ)κ1+p1Γ(κ1+p)μ(υ,x(υ))dυλ2T0(Tυ)κ1κ21Γ(κ1κ2)x(υ)dυ}}+ρ2(t){A2{Tηυ0(υu)κ11Γ(κ1)ζ(u,x(u))dudυ+Tηυ0u0((υu)κ11Γ(κ1))((uw)p1Γ(p))μ(w,x(w))dwdudυλ2Tηυ0(υu)κ1κ21Γ(κ1κ2)x(u)dudυ}+qj=1γj{ξj0(ξjυ)κ11Γ(κ1)ζ(υ,x(υ))dυ+ξj0(ξjυ)κ1+p1Γ(κ1+p)μ(υ,x(υ))dυλ2ξj0(ξjυ)κ1κ21Γ(κ1κ2)x(υ)dυ}a4{T0(Tυ)κ12Γ(κ11)ζ(υ,x(υ))dυ+T0(Tυ)κ1+p2Γ(κ1+p1)μ(υ,x(υ))dυλ2T0(Tυ)κ1κ22Γ(κ1κ21)x(υ)dυ}}],t[0,T], (3.1)

    where C=C([0,T],R) is the Banach space of all continuous functions from [0,T]R equipped with the norm x=sup{|x(t)|:t[0,T]}. Notice that the problem (1.1)–(1.2) will have a solution once it is shown that the operator V has a fixed point.

    Theorem 3.1. Assume that:

    (H1) ζ,μ:[0,T]×RR are continuous functions such that

    |ζ(t,x)ζ(t,¯x)|L1|x¯x|,|μ(t,x)μ(t,¯x)|L2|x¯x|,L1,L2>0,

    for all t[0,T],x,¯xR and |ζ(t,0)|M1<,|μ(t,0)|M2< for all t[0,T];

    (H2) (LΩ1+Ω2)<1, where L=max{L1,L2},

    Ω1=1|λ1|[1Γ(κ1+2){(κ1+1)(Tκ1+¯ρ1(|a2|Tκ1+di=1|ωi|ηκ1i)+¯ρ2(κ1|a4|Tκ11+qj=1|γj|ξκ1j))+¯ρ1|A1|ξκ1+1+¯ρ2|A2||Tκ1+1ηκ1+1|}+1Γ(κ1+p+2){(κ1+p+1)(Tκ1+p+¯ρ1(|a2|Tκ1+p+di=1|ωi|ηκ1+pi)+¯ρ2((κ1+p)|a4|Tκ1+p1+qj=1|γj|ξκ1+pj))+¯ρ1|A1|ξκ1+p+1+¯ρ2|A2||Tκ1+p+1ηκ1+p+1|}],Ω2=|λ2||λ1|Γ(κ1κ2+2)[(κ1κ2+1)(Tκ1κ2+¯ρ1(|a2|Tκ1κ2+di=1|ωi|ηκ1κ2i)+¯ρ2((κ1κ2)|a4|Tκ1κ21+qj=1|γj|ξκ1κ2j))+¯ρ1|A1|ξκ1κ2+1+¯ρ2|A2||Tκ1κ2+1ηκ1κ2+1|], (3.2)

    where

    ¯ρi=supt[0,T]|ρi(t)|,i=1,2.

    Then the problem (1.1)–(1.2) has a unique solution on [0,T].

    Proof. Consider a closed ball Br={xC,xr} and show that VBrBr, where the operator V is defined by (3.1) and rMΩ1(1LΩ1Ω2)1, where M=max{M1,M2} and Ωi(i=1,2) are given in (3.2). For any xBr, it follows by the condition (H1) that

    |ζ(t,x)|=|ζ(t,x(t))ζ(t,0)+ζ(t,0)||ζ(t,x(t))+ζ(t,0)|+|ζ(t,0)|L1x+M1L1r+M1.

    In a similar manner, we can get |μ(t,x)|L2r+M2. In view of the foregoing inequalities we obtain

    (Vx)=supt[0,T]|(Vx)(t)|supt[0,T]{1|λ1|{t0(tυ)κ11Γ(κ1)|ζ(υ,x(υ))|dυ+t0(tυ)κ1+p1Γ(κ1+p)|μ(υ,x(υ))|dυ+|λ2|t0(tυ)κ1κ21Γ(κ1κ2)|x(υ)|dυ+|ρ1(t)|{|A1|{ξ0(ξυ)κ1Γ(κ1+1)|ζ(υ,x(υ))|dυ+ξ0(ξυ)κ1+pΓ(κ1+p+1)|μ(υ,x(υ))|dυ+|λ2|ξ0(ξυ)κ1κ2Γ(κ1κ2+1)|x(υ)|dυ}+di=1|ωi|{ηi0(ηiυ)κ11Γ(κ1)|ζ(υ,x(υ))|dυ+ηi0(ηiυ)κ1+p1Γ(κ1+p)|μ(υ,x(υ))|dυ+|λ2|ηi0(ηiυ)κ1κ21Γ(κ1κ2)|x(υ)|dυ}+|a2|{T0(Tυ)κ11Γ(κ1)|ζ(υ,x(υ))|dυ+T0(Tυ)κ1+p1Γ(κ1+p)|μ(υ,x(υ))|dυ+|λ2|T0(Tυ)κ1κ21Γ(κ1κ2)|x(υ)|dυ}}+|ρ2(t)|{|A2|{Tηυ0(υu)κ11Γ(κ1)|ζ(u,x(u))|dudυ+Tηυ0u0((υu)κ11Γ(κ1))((uw)p1Γ(p))|μ(w,x(w))|dwdudυ+|λ2|Tηυ0(υu)κ1κ21Γ(κ1κ2)|x(u)|dudυ}+qj=1|γj|{ξj0(ξjυ)κ11Γ(κ1)|ζ(υ,x(υ))|dυ+ξj0(ξjυ)κ1+p1Γ(κ1+p)|μ(υ,x(υ))|dυ+|λ2|ξj0(ξjυ)κ1κ21Γ(κ1κ2)|x(υ)|dυ}+|a4|{T0(Tυ)κ12Γ(κ11)|ζ(υ,x(υ))|dυ+T0(Tυ)κ1+p2Γ(κ1+p1)|μ(υ,x(υ))|dυ+|λ2|T0(Tυ)κ1κ22Γ(κ1κ21)|x(υ)|dυ}}}}(L1r+M1)|λ1|Γ(κ1+2){(κ1+1)(Tκ1+¯ρ1(|a2|Tκ1+di=1|ωi|ηκ1i)+¯ρ2(κ1|a4|Tκ11+qj=1|γj|ξκ1j))+¯ρ1|A1|ξκ1+1+¯ρ2|A2||Tκ1+1ηκ1+1|}+(L2r+M2)|λ1|Γ(κ1+p+2){(κ1+p+1)(Tκ1+p+¯ρ1(|a2|Tκ1+p+di=1|ωi|ηκ1+pi)+¯ρ2((κ1+p)|a4|Tκ1+p1+qj=1|γj|ξκ1+pj))+¯ρ1|A1|ξκ1+p+1+¯ρ2|A2||Tκ1+p+1ηκ1+p+1|}+|λ2|r|λ1|Γ(κ1κ2+2){(κ1κ2+1)(Tκ1κ2+¯ρ1(|a2|Tκ1κ2+di=1|ωi|ηκ1κ2i)+¯ρ2((κ1κ2)|a4|Tκ1κ21+qj=1|γj|ξκ1κ2j))+¯ρ1|A1|ξκ1κ2+1+¯ρ2|A2||Tκ1κ2+1ηκ1κ2+1|}(Lr+M)Ω1+rΩ2r,

    which shows that VxBr for any xBr. Hence VBrBr.

    Next it will be established that the operator V is a contraction. For x,yR, we have

    VxV¯x=supt[0,T]|(Vx)(t)(V¯x)(t)|supt[0,T]{1|λ1|{t0(tυ)κ11Γ(κ1)|ζ(υ,x(υ))ζ(υ,¯x(υ))|dυ+t0(tυ)κ1+p1Γ(κ1+p)|μ(υ,x(υ))μ(υ,¯x(υ))|dυ+|λ2|t0(tυ)κ1κ21Γ(κ1κ2)|x(υ)¯x(υ)|dυ+|ρ1(t)|{|A1|{ξ0(ξυ)κ1Γ(κ1+1)|ζ(υ,x(υ))ζ(υ,¯x(υ))|dυ+ξ0(ξυ)κ1+pΓ(κ1+p+1)|μ(υ,x(υ))μ(υ,¯x(υ))|dυ+|λ2|ξ0(ξυ)κ1κ2Γ(κ1κ2+1)|x(υ)¯x(υ)|dυ}+di=1|ωi|{ηi0(ηiυ)κ11Γ(κ1)|ζ(υ,x(υ))ζ(υ,¯x(υ))|dυ+ηi0(ηiυ)κ1+p1Γ(κ1+p)|μ(υ,x(υ))μ(υ,¯x(υ))|dυ+|λ2|ηi0(ηiυ)κ1κ21Γ(κ1κ2)|x(υ)¯x(υ)|dυ}+|a2|{T0(Tυ)κ11Γ(κ1)|ζ(υ,x(υ))ζ(υ,¯x(υ))|dυ+T0(Tυ)κ1+p1Γ(κ1+p)|μ(υ,x(υ))μ(υ,¯x(υ))|dυ+|λ2|T0(Tυ)κ1κ21Γ(κ1κ2)|x(υ)¯x(υ)|dυ}}+|ρ2(t)|{|A2|{Tηυ0(υu)κ11Γ(κ1)|ζ(u,x(u))ζ(u,¯x(u))|dudυ+Tηυ0u0((υu)κ11Γ(κ1))((uw)p1Γ(p))|μ(w,x(w))μ(w,¯x(w))|dwdudυ+|λ2|Tηυ0(υu)κ1κ21Γ(κ1κ2)|x(u)¯x(u)|dudυ}+qj=1|γj|{ξj0(ξjυ)κ11Γ(κ1)|ζ(υ,x(υ))ζ(υ,¯x(υ))|dυ+ξj0(ξjυ)κ1+p1Γ(κ1+p)|μ(υ,x(υ))μ(υ,¯x(υ))|dυ+|λ2|ξj0(ξjυ)κ1κ21Γ(κ1κ2)|x(υ)¯x(υ)|dυ}+|a4|{T0(Tυ)κ12Γ(κ11)|ζ(υ,x(υ))ζ(υ,¯x(υ))|dυ+T0(Tυ)κ1+p2Γ(κ1+p1)|μ(υ,x(υ))μ(υ,¯x(υ))|dυ+|λ2|T0(Tυ)κ1κ22Γ(κ1κ21)|x(υ)¯x(υ)|dυ}}}}[L1|λ1|Γ(κ1+2){(κ1+1)(Tκ1+¯ρ1(|a2|Tκ1+di=1|ωi|ηκ1i)+¯ρ2(κ1|a4|Tκ11+qj=1|γj|ξκ1j))+¯ρ1|A1|ξκ1+1+¯ρ2|A2||Tκ1+1ηκ1+1|}+L2|λ1|Γ(κ1+p+2){(κ1+p+1)(Tκ1+p+¯ρ1(|a2|Tκ1+p+di=1|ωi|ηκ1+pi)+¯ρ2((κ1+p)|a4|Tκ1+p1+qj=1|γj|ξκ1+pj))+¯ρ1|A1|ξκ1+p+1+¯ρ2|A2||Tκ1+p+1ηκ1+p+1|}+|λ2||λ2|Γ(κ1κ2+2){(κ1κ2+1)(Tκ1κ2+¯ρ1(|a2|Tκ1κ2+di=1|ωi|ηκ1κ2i)+¯ρ2((κ1κ2)|a4|Tκ1κ21+qj=1|γj|ξκ1κ2j))+¯ρ1|A1|ξκ1κ2+1+¯ρ2|A2||Tκ1κ2+1ηκ1κ2+1|}]x¯x(LΩ1+Ω2)x¯x,

    which implies that the operator V is a contraction by the condition (H2). Hence the operator V has a unique fixed point by Banach fixed point theorem. In consequence, there exists a unique solution for the problem (1.1)–(1.2) on [0,T].

    Remark 3.2. In Theorem 3.1 we used the following form of Banach fixed point theorem from [21]: "Let X be a Banach space, DX be closed and F:DD is a strict contraction, that is, |FxFy|k|xy| for some k(0,1) and all x,yD. Then F has a fixed point in D." If we use the form of Banach fixed point theorem from [22]: "Any contraction mapping of a complete non-empty metric space M into itself has a unique fixed point in M", then the condition LΩ1+Ω2<1 can be omitted if we use the well-known Bielecki's re-norming method.

    In the following result, we apply Krasnosel'skii's fixed point theorem [22,23] to establish the existence of at least one solution for the boundary value problem (1.1)–(1.2).

    Theorem 3.3. Let ζ,μ:[0,T]×RR be continuous functions such that

    (H3) we can find β1,β2C([0,T],R+) with β=max{β1,β2} such that |ζ(t,x)|β1(t) and |g(t,x)|β2(t), for all (t,x)[0,T]×R.

    Then the problem (1.1)–(1.2) has at least one solution on [0,T] if Ω2<1, where Ω2 is given in (3.2).

    Proof. Let Bα={xC:xα} be a closed ball with αβΩ1(1Ω2)1 and define operators V1 and V2 on KαC by

    (V1x)(t)=1λ1{t0(tυ)κ11Γ(κ1)ζ(υ,x(υ))dυ+t0(tυ)κ1+p1Γ(κ1+p)μ(υ,x(υ))dυ+ρ1(t){A1{ξ0(ξυ)κ1Γ(κ1+1)ζ(υ,x(υ))dυ+ξ0(ξυ)κ1+pΓ(κ1+p+1)μ(υ,x(υ))dυ}+di=1ωi{ηi0(ηiυ)κ11Γ(κ1)ζ(υ,x(υ))dυ+ηi0(ηiυ)κ1+p1Γ(κ1+p)μ(υ,x(υ))dυ}a2{T0(Tυ)κ11Γ(κ1)ζ(υ,x(υ))dυ+T0(Tυ)κ1+p1Γ(κ1+p)μ(υ,x(υ))dυ}}+ρ2(t){A2{Tηυ0(υu)κ11Γ(κ1)ζ(u,x(u))dudυ+Tηυ0u0((υu)κ11Γ(κ1))((uw)p1Γ(p))μ(w,x(w))dwdudυ}+qj=1γj{ξj0(ξjυ)κ11Γ(κ1)ζ(υ,x(υ))dυ+ξj0(ξjυ)κ1+p1Γ(κ1+p)μ(υ,x(υ))dυ}a4{T0(Tυ)κ12Γ(κ11)ζ(υ,x(υ))dυ+T0(Tυ)κ1+p2Γ(κ1+p1)μ(υ,x(υ))dυ}}},t[0,T],(V2x)(t)=λ2λ1{t0(tυ)κ1κ21Γ(κ1κ2)x(υ)dυ+ρ1(t){A1ξ0(ξυ)κ1κ2Γ(κ1κ2+1)x(υ)dυ+di=1ωiηi0(ηiυ)κ1κ21Γ(κ1κ2)x(υ)dυa2T0(Tυ)κ1κ21Γ(κ1κ2)x(υ)dυ}+ρ2(t){A2Tηυ0(υu)κ1κ21Γ(κ1κ2)x(u)dudυ+qj=1γjξj0(ξjυ)κ1κ21Γ(κ1κ2)x(υ)dυa4T0(Tυ)κ1κ22Γ(κ1κ21)x(υ)dυ}},t[0,T].

    Observe that V=V1+V2 on Bα. Let us now verify the hypotheses of Krasnosel'skii's fixed point theorem [23].

    (ⅰ) For x,yKα, we have

    (V1x)+(V2y)=supt[0,T]|(V1x)(t)+(V2y)(t)|supt[0,T]{1|λ1|{t0(tυ)κ11Γ(κ1)|ζ(υ,x(υ))|dυ+t0(tυ)κ1+p1Γ(κ1+p)|μ(υ,x(υ))|dυ+|ρ1(t)|{|A1|{ξ0(ξυ)κ1Γ(κ1+1)|ζ(υ,x(υ))|dυ+ξ0(ξυ)κ1+pΓ(κ1+p+1)|μ(υ,x(υ))|dυ}+di=1|ωi|{ηi0(ηiυ)κ11Γ(κ1)|ζ(υ,x(υ))|dυ+ηi0(ηiυ)κ1+p1Γ(κ1+p)|μ(υ,x(υ))|dυ}+|a2|{T0(Tυ)κ11Γ(κ1)|ζ(υ,x(υ))|dυ+T0(Tυ)κ1+p1Γ(κ1+p)|μ(υ,x(υ))|dυ}}+|ρ2(t)|{A2{Tηυ0(υu)κ11Γ(κ1)|ζ(u,x(u))|dudυ+Tηυ0u0((υu)κ11Γ(κ1))((uw)p1Γ(p))|μ(w,x(w))|dwdudυ}+qj=1|γj|{ξj0(ξjυ)κ11Γ(κ1)|ζ(υ,x(υ))|dυ+ξj0(ξjυ)κ1+p1Γ(κ1+p)|μ(υ,x(υ))|dυ}+|a4|{T0(Tυ)κ12Γ(κ11)|ζ(υ,x(υ))|dυ+T0(Tυ)κ1+p2Γ(κ1+p1)|μ(υ,x(υ))|dυ}}+|λ2|{t0(tυ)κ1κ21Γ(κ1κ2)|y(υ)|dυ+|ρ1(t)|{|A1|ξ0(ξυ)κ1κ2Γ(κ1κ2+1)|y(υ)|dυ+di=1|ωi|ηi0(ηiυ)κ1κ21Γ(κ1κ2)|y(υ)|dυ+|a2|T0(Tυ)κ1κ21Γ(κ1κ2)|y(υ)|dυ}+|ρ2(t)|{|A2|Tηυ0(υu)κ1κ21Γ(κ1κ2)|y(u)|dudυ+qj=1|γj|ξj0(ξjυ)κ1κ21Γ(κ1κ2)|y(υ)|dυ+|a4|T0(Tυ)κ1κ22Γ(κ1κ21)|y(υ)|dυ}}}},β1|λ1|Γ(κ1+2){(κ1+1)(Tκ1+¯ρ1(|a2|Tκ1+di=1|ωi|ηκ1i)+¯ρ2(κ1|a4|Tκ11+qj=1|γj|ξκ1j))+¯ρ1|A1|ξκ1+1+¯ρ2|A2||Tκ1+1ηκ1+1|}+β2|λ1|Γ(κ1+p+2){(κ1+p+1)(Tκ1+p+¯ρ1(|a2|Tκ1+p+di=1|ωi|ηκ1+pi)+¯ρ2((κ1+p)|a4|Tκ1+p1+qj=1|γj|ξκ1+pj))+¯ρ1|A1|ξκ1+p+1+¯ρ2|A2||Tκ1+p+1ηκ1+p+1|}+|λ2|α|λ1|Γ(κ1κ2+2){(κ1κ2+1)(Tκ1κ2+¯ρ1(|a2|Tκ1κ2+di=1|ωi|ηκ1κ2i)+¯ρ2((κ1κ2)|a4|Tκ1κ21+qj=1|γj|ξκ1κ2j))+¯ρ1|A1|ξκ1κ2+1+¯ρ2|A2||Tκ1κ2+1ηκ1κ2+1|}βΩ1+αΩ2α,

    which implies that V1x+V2yBα.

    (ⅱ) In this step we show that V1 is compact and continuous. Clearly continuity of ζ and μ implies that the operator V1 is continuous. Furthermore, V1 is uniformly bounded on Bα as V1xβΩ1. Next we establish the compactness of the operator V1. Let us set sup(t,x)[0,T]×Bα|ζ(t,x)|=ζ1 and sup(t,x)[0,T]×Bα|μ(t,x)|=μ1. Then, for τ1,τ2[0,T],τ1<τ2, we have

    |(V1x)(τ2)(V1x)(τ1)|=|1λ1{τ10((τ2υ)κ11(τ1υ)κ11)Γ(κ1)ζ(υ,x(υ))dυ+τ2τ1(τ2υ)κ11Γ(κ1)ζ(υ,x(υ))dυ+τ10((τ2υ)κ1+p1(τ1υ)κ1+p1)Γ(κ1+p)μ(υ,x(υ))dυ+τ2τ1(τ2υ)κ1+p1Γ(κ1+p)μ(υ,x(υ))dυ+(ρ1(τ2)ρ1(τ1)){A1{ξ0(ξυ)κ1Γ(κ1+1)ζ(υ,x(υ))dυ+ξ0(ξυ)κ1+pΓ(κ1+p+1)μ(υ,x(υ))dυ}+di=1ωi{ηi0(ηiυ)κ11Γ(κ1)ζ(υ,x(υ))dυ+ηi0(ηiυ)κ1+p1Γ(κ1+p)μ(υ,x(υ))dυ}a2{T0(Tυ)κ11Γ(κ1)ζ(υ,x(υ))dυ+T0(Tυ)κ1+p1Γ(κ1+p)μ(υ,x(υ))dυ}}+(ρ2(τ2)ρ2(τ1)){A2{Tηυ0(υu)κ11Γ(κ1)ζ(u,x(u))dudυ+Tηυ0u0((υu)κ11Γ(κ1))((uw)p1Γ(p))μ(w,x(w))dwdudυ}+qj=1γj{ξj0(ξjυ)κ11Γ(κ1)ζ(υ,x(υ))dυ+ξj0(ξjυ)κ1+p1Γ(κ1+p)μ(υ,x(υ))dυ}a4{T0(Tυ)κ12Γ(κ11)ζ(υ,x(υ))dυ+T0(Tυ)κ1+p2Γ(κ1+p1)μ(υ,x(υ))dυ}}}|ζ1|λ1|Γ(κ1+2)[(κ1+1)(|τκ12τκ11|+2(τ2τ1)κ1)+|ρ1(τ2)ρ1(τ1)|{(κ1+1)(|a2|Tκ1+di=1|ωi|ηκ1i)+|A1|ξκ1+1}+|ρ2(τ2)ρ2(τ1)|{(κ1+1)(κ1|a4|Tκ11+qj=1|γj|ξκ1j)+|A2||Tκ1+1ηκ1+1}]+μ1|λ1|Γ(κ1+p+2)[(κ1+p+1)(|τκ1+p2τκ1+p1|+2(τ2τ1)κ1+p)+|ρ1(τ2)ρ1(τ1)|{(κ1+p+1)(|a2|Tκ1+p+di=1|ωi|ηκ1+pi)+|A1|ξκ1+p+1}+|ρ2(τ2)ρ2(τ1)|{(κ1+p+1)((κ1+p)|a4|Tκ1+p1+qj=1|γj|ξκ1+pj)+|A2||Tκ1+p+1ηκ1+p+1}]0,

    independently of xBα as τ2τ10. Therefore, V1 is equicontinuous. Thus V1 is relatively compact on Bα by the Arzelá-Ascoli theorem.

    (ⅲ) In view of the assumption Ω2<1, one can easily show that the operator V2 is a contraction.

    From the steps (ⅰ)–(ⅲ), it is clear that the hypotheses of Krasnosel'skii's fixed point theorem [23] are satisfied and Hence its conclusion implies that the boundary value problem (1.1)–(1.2) has at least one solution on [0,T]. The proof is completed.

    The following result is based on Leray-Schauder nonlinear alternative [24].

    Theorem 3.4. Let Ω2<1 where Ω2 is given in (3.2) and ζ,μ:[0,T]×RR be continuous functions such that the following conditions hold:

    (H4) |ζ(t,x)|p1(t)ψ1(|x|), |μ(t,x)|p2(t)ψ2(|x|) for each (t,x)[0,T]×R, where ψi:[0,)(0,) are continuous nondecreasing functions and piC([0,T],R+), i=1,2; (H5) There exists a constant K>0, such that

    (1Ω2)K(p1ψ1(K)+p2ψ2(K))Ω1>1. (3.3)

    Then the problem (1.1)–(1.2) has at least one solution on [0,T].

    Proof. Let us verify that operator V defined by (3.1) satisfies the hypotheses of the Leray-Schauder nonlinear alternative [24].

    Step 1. We establish that operator V maps bounded sets (balls) into a bounded set in C. For a number ς>0, let Bς={xC,xς} be a closed ball in C. Then, for t[0,T], we get

    (Vx)=supt[0,T]|(Vx)(t)|supt[0,T]{1|λ1|{t0(tυ)κ11Γ(κ1)|ζ(υ,x(υ))|dυ+t0(tυ)κ1+p1Γ(κ1+p)|μ(υ,x(υ))|dυ+|λ2|t0(tυ)κ1κ21Γ(κ1κ2)|x(υ)|dυ+|ρ1(t)|{|A1|{ξ0(ξυ)κ1Γ(κ1+1)|ζ(υ,x(υ))|dυ+ξ0(ξυ)κ1+pΓ(κ1+p+1)|μ(υ,x(υ))|dυ+|λ2|ξ0(ξυ)κ1κ2Γ(κ1κ2+1)|x(υ)|dυ}+di=1|ωi|{ηi0(ηiυ)κ11Γ(κ1)|ζ(υ,x(υ))|dυ+ηi0(ηiυ)κ1+p1Γ(κ1+p)|μ(υ,x(υ))|dυ+|λ2|ηi0(ηiυ)κ1κ21Γ(κ1κ2)|x(υ)|dυ}+|a2|{T0(Tυ)κ11Γ(κ1)|ζ(υ,x(υ))|dυ+T0(Tυ)κ1+p1Γ(κ1+p)|μ(υ,x(υ))|dυ+|λ2|T0(Tυ)κ1κ21Γ(κ1κ2)|x(υ)|dυ}}+|ρ2(t)|{|A2|{Tηυ0(υu)κ11Γ(κ1)|ζ(u,x(u))|dudυ+Tηυ0u0((υu)κ11Γ(κ1))((uw)p1Γ(p))|μ(w,x(w))|dwdudυ+|λ2|Tηυ0(υu)κ1κ21Γ(κ1κ2)|x(u)|dudυ}+qj=1|γj|{ξj0(ξjυ)κ11Γ(κ1)|ζ(υ,x(υ))|dυ+ξj0(ξjυ)κ1+p1Γ(κ1+p)|μ(υ,x(υ))|dυ+|λ2|ξj0(ξjυ)κ1κ21Γ(κ1κ2)|x(υ)|dυ}+|a4|{T0(Tυ)κ12Γ(κ11)|ζ(υ,x(υ))|dυ+T0(Tυ)κ1+p2Γ(κ1+p1)|μ(υ,x(υ))|dυ+|λ2|T0(Tυ)κ1κ22Γ(κ1κ21)|x(υ)|dυ}}}}(p1ψ1(ς)+p2ψ2(ς))Ω1+ςΩ2.

    Step 2. We will prove that V maps bounded sets into equicontinuous sets of C. Let ϱ1,ϱ2[0,T] with ϱ1<ϱ2. Then

    |(Vx)(ϱ2)(Vx)(ϱ1)|p1ψ1(ς)|λ1|Γ(κ1+2)[(κ1+1)(|ϱκ12ϱκ11|+2(ϱ2ϱ1)κ1)+|ρ1(ϱ2)ρ1(ϱ1)|{(κ1+1)(|a2|Tκ1+di=1|ωi|ηκ1i)+|A1|ξκ1+1}+|ρ2(ϱ2)ρ2(ϱ1)|{(κ1+1)(κ1|a4|Tκ11+qj=1|γj|ξκ1j)+|A2||Tκ1+1ηκ1+1|}]+p2ψ2(ς)|λ1|Γ(κ1+p+2)[(κ1+p+1)(|ϱκ1+p2ϱκ1+p1|+2(ϱ2ϱ1)κ1+p)+|ρ1(ϱ2)ρ1(ϱ1)|{(κ1+p+1)(|a2|Tκ1+p+di=1|ωi|ηκ1+pi)+|A1|ξκ1+p+1}+|ρ2(ϱ2)ρ2(ϱ1)|{(κ1+p+1)((κ1+p)|a4|Tκ1+p1+qj=1|γj|ξκ1+pj)+|A2||Tκ1+p+1ηκ1+p+1}]+ς|λ2||λ1|Γ(κ1κ2+2)[(κ1κ2+1)(|ϱκ1κ22ϱκ1κ21|+2(ϱ2ϱ1)κ1κ2)+|ρ1(ϱ2)ρ1(ϱ1)|{(κ1κ2+1)(|a2|Tκ1κ2+di=1|ωi|ηκ1κ2i)+|A1|ξκ1κ2+1}+|ρ2(ϱ2)ρ2(ϱ1)|{(κ1κ2+1)((κ1κ2)|a4|Tκ1κ21+qj=1|γj|ξκ1κ2j)+|A2||Tκ1κ2+1ηκ1κ2+1}]0,

    independent of xBς as ϱ2ϱ10. So V is equicontinuous. Therefore, the operator V is completely continuous by the application of the Arzelá-Ascoli theorem.

    Step3. We will show that the set of all solutions to equation x=ϑVx with ϑ(0,1) is bounded. From Step 1 we get

    |x(t)|(p1ψ1(x)+p2ψ2(x))Ω1+xΩ2, t[0,T],

    which implies

    (1Ω2)x(p1ψ1(x)+p2ψ2(x))Ω1<1.

    From (H5) there exists K>0 satisfying xK. We will introduce a set

    U={xC([a,b],R):x<K} (3.4)

    and V:¯UC is continuous and completely continuous. Thus, by choice of U, there does not exists any xU satisfying x=ϑVx for some ϑ(0,1). Consequently the operator V has a fixed-point x¯U by Leray-Schauder nonlinear alternative [24], which means that the problem (1.1)–(1.2) has a solution on [0,T].

    In this section, we consider a multi-term fractional differential equation involving three types of nonlinearities of the form:

    λ1CDκ1x(t)+λ2CDκ2h(t,x(t))=ζ(t,x(t))+Ipμ(t,x(t)), (4.1)

    where h:[0,T]×RR is a continuous function, while the other quantities are the same as defined in the problem (1.1)–(1.2).

    In this case, the fixed point operator F:CC associated with the Eq (4.1) complemented with the boundary conditions (1.2) is

    (Fx)(t)=1λ1[t0(tυ)κ11Γ(κ1)ζ(υ,x(υ))dυ+t0(tυ)κ1+p1Γ(κ1+p)μ(υ,x(υ))dυλ2t0(tυ)κ1κ21Γ(κ1κ2)h(υ,x(υ))dυ+ρ1(t){A1{ξ0(ξυ)κ1Γ(κ1+1)ζ(υ,x(υ))dυ+ξ0(ξυ)κ1+pΓ(κ1+p+1)μ(υ,x(υ))dυλ2ξ0(ξυ)κ1κ2Γ(κ1κ2+1)h(υ,x(υ))dυ}+di=1ωi{ηi0(ηiυ)κ11Γ(κ1)ζ(υ,x(υ))dυ+ηi0(ηiυ)κ1+p1Γ(κ1+p)μ(υ,x(υ))dυλ2ηi0(ηiυ)κ1κ21Γ(κ1κ2)h(υ,x(υ))dυ}a2{T0(Tυ)κ11Γ(κ1)ζ(υ,x(υ))dυ+T0(Tυ)κ1+p1Γ(κ1+p)μ(υ,x(υ))dυλ2T0(Tυ)κ1κ21Γ(κ1κ2)h(υ,x(υ))dυ}}+ρ2(t){A2{Tηυ0(υu)κ11Γ(κ1)ζ(u,x(u))dudυ+Tηυ0u0((υu)κ11Γ(κ1))((uw)p1Γ(p))μ(w,x(w))dwdudυλ2Tηυ0(υu)κ1κ21Γ(κ1κ2)h(u,x(u))dudυ}+qj=1γj{ξj0(ξjυ)κ11Γ(κ1)ζ(υ,x(υ))dυ+ξj0(ξjυ)κ1+p1Γ(κ1+p)μ(υ,x(υ))dυλ2ξj0(ξjυ)κ1κ21Γ(κ1κ2)h(υ,x(υ))dυ}a4{T0(Tυ)κ12Γ(κ11)ζ(υ,x(υ))dυ+T0(Tυ)κ1+p2Γ(κ1+p1)μ(υ,x(υ))dυλ2T0(Tυ)κ1κ22Γ(κ1κ21)h(υ,x(υ))dυ}}],t[0,T]. (4.2)

    Now we present a uniqueness result for the problem consisting of the Eq (4.1) and the boundary conditions (1.2). We do not provide its proof as it can be obtained with the aid of the operator defined in (4.2) by following the procedure used to accomplish Theorem 3.1.

    Theorem 4.1. Assume that:

    (H1) ζ,μ,h:[0,T]×RR are continuous functions satisfying the conditions:

    |ζ(t,x)ζ(t,y)|L1|xy|,|μ(t,x)μ(t,y)|L2|xy|,|h(t,x)h(t,y)|L3|xy|,

    L1,L2,L3>0, for all t[0,T],x,yR and |ζ(t,0)|M1<,|μ(t,0)|M2<,|h(t,0)|M3<, for all t[0,T];

    (H2) LΛ<1, where L=max{L1,L2,L3}, and

    Λ=1|λ1|[1Γ(κ1+2){(κ1+1)(Tκ1+¯ρ1(|a2|Tκ1+di=1|ωi|ηκ1i)+¯ρ2(κ1|a4|Tκ11+qj=1|γj|ξκ1j))+¯ρ1|A1|ξκ1+1+¯ρ2|A2||Tκ1+1ηκ1+1|}+1Γ(κ1+p+2){(κ1+p+1)(Tκ1+p+¯ρ1(|a2|Tκ1+p+di=1|ωi|ηκ1+pi)+¯ρ2((κ1+p)|a4|Tκ1+p1+qj=1|γj|ξκ1+pj))+¯ρ1|A1|ξκ1+p+1+¯ρ2|A2||Tκ1+p+1ηκ1+p+1|}+|λ2|Γ(κ1κ2+2){(κ1κ2+1)(Tκ1κ2+¯ρ1(|a2|Tκ1κ2+di=1|ωi|ηκ1κ2i)+¯ρ2((κ1κ2)|a4|Tκ1κ21+qj=1|γj|ξκ1κ2j))+¯ρ1|A1|ξκ1κ2+1+¯ρ2|A2||Tκ1κ2+1ηκ1κ2+1|}].

    Then the Eq (4.1) complemented with the boundary conditions (1.2) has a unique solution on [0,T].

    Here we illustrate the results obtained in the previous sections by numerical examples.

    Example 5.1. Consider the following problem

    {9cD1.75x(t)+17cD1.33x(t)=ζ(t,x(t))+I2μ(t,x(t)),t[0,4],2x(0)+3x(4)=1.50x(υ)dυ+3n=11nx(2+1n+1),5x(0)+3x(4)=242x(υ)dυ+3n=1n1+nx(1.55+1n), (5.1)

    where

    ζ(t,x(t))=1144+t2(tan1x+15),
    μ(t,x(t))=e5t15+t(x2(t)1+|x(t)|)+29.

    Here κ1=1.75, κ2=1.33, p=2, λ1=9, λ2=17, a1=2, a2=3, a3=5, a4=3, A1=1,A2=2, η=2, ξ=1.5. Using the given values, we obtain Ω16.476083916, Ω20.1380931002 and

    |ζ(t,x)ζ(t,y)|112|xy|, |μ(t,x)μ(t,y)|115|xy|,

    L1=112, L2=115 and L=max{L1,L2}=112. Moreover, we have LΩ1+Ω20.6777667599. As all the assumptions ot Theorem 3.1 are satisfied, the boundary value problem (5.1) has a unique solution on [0,4].

    Example 5.2. Consider the following problem

    {5cD1.25x(t)+cD1.05x(t)=ζ(t,x(t))+I12μ(t,x(t)),t[0,5],2x(0)+0.5x(5)=0.20.50x(υ)dυ+3n=1nx(7n+22n),4x(0)+3x(5)=553x(υ)dυ+3n=111+nx(3n+12(n+1)), (5.2)

    where

    ζ(t,x)=sin2tt2+2t+7(2sinx+2cosx+10)+29,
    μ(t,x)=cos2t1+t4(4tan1x+cot1x+12)+25.

    Notice that

    |ζ(t,x)|14sin2tt2+2t+7+29=β1(t), |μ(t,x)|(6π+1)cos2t21+t4+25=β2(t).

    Here κ1=1.25, κ2=1.05, p=12, λ1=5, λ2=1, a1=2, a2=0.5, a3=4, a4=3,A1=0.2,A2=5, η=3, ξ=0.5,β1=209, β2=5(6π+1)+410. Using the given values, we obtain that Ω20.7439599002<1. Therefore, the hypotheses of Theorem 3.3 holds true and consequently its conclusion implies that the boundary value problem (5.2) has at least one solution on [0,5].

    Example 5.3. Consider the following problem

    {5cD1.95x(t)+0.5cD1.35h(t,x)=ζ(t,x(t))+I8μ(t,x(t)),t[0,3],0.6x(0)+2x(3)=0.50x(υ)dυ+2n=11n+1x(1.5+1n+1),0.5x(0)+3x(3)=0.631.5x(υ)dυ+2n=112(1+n)x(5+n10), (5.3)

    where

    ζ(t,x)=1t+7(sinx+10)+14,
    μ(t,x)=e4t36+t(cot1x+12),
    h(t,x)=116+t4(tan1x+12),

    κ1=1.95, κ2=1.35, p=8, λ1=5, λ2=0.5, a1=0.6, a2=2, a3=0.5, a4=3, A1=1,A2=0.6, η=1.5, ξ=0.5. Using the given values, we obtain Λ3.233037708, and L=16 as

    |ζ(t,x)ζ(t,y)|17|xy|, |μ(t,x)μ(t,y)| 16|xy|, |h(t,x)h(t,y)|116|xy|,

    where L1=17, L2=16, L3=116 and L=max{L1,L2,L3}. Moreover, we have LΛ0.5388396180. As all the assumptions of Theorem 4.1 are satisfied, the boundary value problem (5.3) has a unique solution on [0,3].

    We presented different criteria for the existence of solutions for a nonlinear multi-term fractional integro-differential equation equipped with non-separated integro-multipoint boundary conditions. We also discussed a variant of the main problem involving fractional-order, non-integral and Riemann-Liouville type integral nonlinear terms in the fractional integro-differential equation. The results obtained in this paper are of quite general nature as we we can record several interesting cases (new results) by specializing the parameters involved in the problem at hand. For instance, our results correspond the ones for initial integro-multipoint conditions if we take a2=0=a4. On the other hand, by fixing a1=0=a3 in the results of this paper, we obtain the ones for terminal integro-multipoint conditions. In case, we fix A1=0=A2, our results become the ones associated with non-separated multipoint boundary conditions.

    This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia under grant no. (KEP-MSc-44-130-38). The authors, therefore, acknowledge with thanks DSR technical and financial support. We thank the reviewer for his/her useful comments on our work that led to its improvement.

    The authors declare no conflict of interest.



    [1] R. L. Magin, Fractional calculus in bioengineering, USA: Begell House Publishers, 2006.
    [2] G. M. Zaslavsky, Hamiltonian chaos and fractional dynamics, Oxford: Oxford University Press, 2005.
    [3] H. A. Fallahgoul, S. M. Focardi, F. J. Fabozzi, Fractional calculus and fractional processes with applications to financial economics. Theory and application, London: Elsevier/Academic Press, 2017.
    [4] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier Science B. V., 2006.
    [5] Y. Zhou, Basic theory of fractional differential equations, Hackensack: World Scientific Publishing Co. Pte. Ltd., 2014.
    [6] K. Diethelm, The analysis of fractional differential equations: An Application-oriented exposition using differential operators of Caputo type, Berlin: Springer-Verlag, 2010.
    [7] J. R. Graef, L. Kong, M. Wang, Existence and uniqueness of solutions for a fractional boundary value problem on a graph, Fract. Calc. Appl. Anal., 17 (2014), 499–510.
    [8] G. Wang, S. Liu, L. Zhang, Eigenvalue problem for nonlinear fractional differential equations with integral boundary conditions, Abstr. Appl. Anal., 2014 (2014), 1–6.
    [9] J. Henderson, N. Kosmatov, Eigenvalue comparison for fractional boundary value problems with the Caputo derivative, Fract. Calc. Appl. Anal., 17 (2014), 872–880.
    [10] J. Henderson, R. Luca, Nonexistence of positive solutions for a system of coupled fractional boundary value problems, Bound. Value Probl., 2015 (2015), 138. doi: 10.1186/s13661-015-0403-8
    [11] S. K. Ntouyas, S. Etemad, On the existence of solutions for fractional differential inclusions with sum and integral boundary conditions, Appl. Math. Comput., 266 (2015), 235–243.
    [12] B. Ahmad, R. Luca, Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions, Appl. Math. Comput., 339 (2018), 516–534.
    [13] A. Alsaedi, B. Ahmad, M. Alghanmi, Extremal solutions for generalized Caputo fractional differential equations with Steiltjes-type fractional integro-initial conditions, Appl. Math. Lett., 91 (2019), 113–120. doi: 10.1016/j.aml.2018.12.006
    [14] C. Ravichandran, N. Valliammal, J. J. Nieto, New results on exact controllability of a class of fractional neutral integro-differential systems with state-dependent delay in Banach spaces, J. Franklin I., 356 (2019), 1535–1565. doi: 10.1016/j.jfranklin.2018.12.001
    [15] D. Baleanu, S. Etemad, S. Rezapour, On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators, Alex. Eng. J., 59 (2020), 3019–3027. doi: 10.1016/j.aej.2020.04.053
    [16] P. J. Torvik, R. L. Bagley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51 (1984), 294–298. doi: 10.1115/1.3167615
    [17] F. Mainardi, Some basic problems in continuum and statistical mechanics, In: Fractals and fractional calculus in continuum mechanics, Berlin: Springer, 1997,291–348.
    [18] S. Stanek, Periodic problem for two-term fractional differential equations, Fract. Calc. Appl. Anal., 20 (2017), 662–678.
    [19] Y. Liu, Boundary value problems of singular multi-term fractional differential equations with impulse effects, Math. Nachr., 289 (2016), 1526–1547. doi: 10.1002/mana.201400339
    [20] B. Ahmad, A. Alsaedi, Y. Alruwaily, S. K. Ntouyas, Nonlinear multi-term fractional differential equations with Riemann-Stieltjes integro-multipoint boundary conditions, AIMS Mathematics, 5 (2020), 1446–1461. doi: 10.3934/math.2020099
    [21] K. Deimling, Nonlinear functional analysis, New York: Springer-Verlag, 1985.
    [22] D. R. Smart, Fixed point theorems, New York: Cambridge University Press, 1974.
    [23] M. A. Krasnoselskii, Two remarks on the method of successive approximations, Uspehi Mat. Nauk, 10 (1955), 123–127.
    [24] A. Granas, J. Dugundji, Fixed point theory, New York: Springer-Verlag, 2003.
  • This article has been cited by:

    1. Lingju Kong, Min Wang, Existence of positive solutions for a fractional compartment system, 2021, 14173875, 1, 10.14232/ejqtde.2021.1.60
    2. Ghaus Ur Rahman, Dildar Ahmad, José Francisco Gómez‐Aguilar, Ravi P. Agarwal, Amjad Ali, Study of Caputo fractional derivative and Riemann–Liouville integral with different orders and its application in multi‐term differential equations, 2024, 0170-4214, 10.1002/mma.10392
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2758) PDF downloads(229) Cited by(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog