Citation: Songxiao Li, Jizhen Zhou. Essential norm of generalized Hilbert matrix from Bloch type spaces to BMOA and Bloch space[J]. AIMS Mathematics, 2021, 6(4): 3305-3318. doi: 10.3934/math.2021198
[1] | A. Aleman, A. Montes-Rodríguez, A. Sarafoleanu, The eigenfunctions of the Hilbert matrix, Constr. Approx., 36 (2012), 353–374. doi: 10.1007/s00365-012-9157-z |
[2] | G. Bao, H. Wulan, Hankel matrices acting on Dirichlet spaces, J. Math. Anal. Appl., 409 (2014), 228–235. doi: 10.1016/j.jmaa.2013.07.006 |
[3] | Ch. Chatzifountas, D. Girela, J. Pelaéz, A generalized Hilbert matrix acting on Hardy spaces, J. Math. Anal. Appl., 413 (2014), 154–168. doi: 10.1016/j.jmaa.2013.11.046 |
[4] | E. Diamantopoulos, Hilbert Matrix on Bergman spaces, Illinois. J. Math., 48 (2004), 1067–1078. doi: 10.1215/ijm/1258131071 |
[5] | E. Diamantopoulos, A. Siskakis, Composition operators and the Hilbert matrix, Studia Math., 140 (2000), 191–198. |
[6] | M. Dostanić, M. Jevtić, D. Vukotić, Norm of the Hilbert matrix on Bergman and Hardy spaces and a theorem of Nehari type, J. Funct. Anal., 254 (2008), 2800–2815. doi: 10.1016/j.jfa.2008.02.009 |
[7] | P. Duren, Extension of a theorem of Carleson, Bull. Amer. Math. Soc., 75 (1969), 143–146. doi: 10.1090/S0002-9904-1969-12181-6 |
[8] | J. Garnett, Bounded Analytic Functions, New York: Academic Press, 1981. |
[9] | P. Galanopoulos, J. Peláez, A Hankel matrix acting on Hardy and Bergman spaces, Studia Math., 200 (2010), 201–220. doi: 10.4064/sm200-3-1 |
[10] | D. Girela, Analytic functions of bounded mean oscillation, Complex Functions Spaces, Univ. Joensuu Dept. Math. Report Series 4 (2001), 61–170. |
[11] | D. Girela, N. Merch$\acute{a}$n, A generalized Hilbert operator acting on conformally invariant spaces, Banach J. Math. Anal., 12 (2016), 374–398. |
[12] | D. Girela, N. Merch$\acute{a}$n, A Hankel Matrix acting on spaces of analytic functions, Integral Equations Operator Theory, 89 (2017), 581–594. doi: 10.1007/s00020-017-2409-3 |
[13] | D. Girela, N. Merch$\acute{a}$n, Hankel Matrix acting on the Hardy space $H^1$ and on Dirichlet spaces, Rev. Mat. Complut., 32 (2019), 799–822. doi: 10.1007/s13163-018-0288-z |
[14] | B. Lanucha, M. Nowak, M. Pavlović, Hilbert matrix operator on spaces of analytic functions, Ann. Acad. Sci. Fenn. Math., 37 (2012), 161–174. doi: 10.5186/aasfm.2012.3715 |
[15] | S. Li, Generalized Hilbert operator on Dirichlet type spaces, Appl. Math. Comput., 214 (2009), 304–309. |
[16] | J. Liu, Z. Lou, C. Xiong, Essential norms of integral operators on spaces of analytic functions, Nonlinear Anal., 75 (2012), 5145–5156. doi: 10.1016/j.na.2012.04.030 |
[17] | C. Kellogg, An extension of the Hausdorff-Yong theorem, Michigan Math. J., 18 (1971), 121–127. doi: 10.1307/mmj/1029000635 |
[18] | J. Xiao, Holomorphic $Q$ Classes, Berlin: Springer LNM, 2001. |
[19] | R. Zhao, Essential norms of composition operators between Bloch type spaces, Proc. Amer. Math. Soc., 138 (2010), 2537–2546. doi: 10.1090/S0002-9939-10-10285-8 |
[20] | X. Zhang, Weighted cesaro operator on the Dirichlet type spaces and Bloch type spaces of $C^n$, Chin. Ann. Math., 26A (2005), 138–150. |
[21] | K. Zhu, Bloch type spaces of analytic functions, Rocky Mountain J. Math., 23 (1993), 1143–1177. doi: 10.1216/rmjm/1181072549 |
[22] | K. Zhu, Operator Theory in Function Spaces, Second edition. Mathematical Surveys and Monographs, Providence: Amer. Math. Soc, 2007. |