Research article Special Issues

Existence results for nonlinear fractional-order multi-term integro-multipoint boundary value problems

  • Received: 02 December 2020 Accepted: 12 January 2021 Published: 18 January 2021
  • MSC : 34A08, 34B15

  • We investigate the existence of solutions for integro-multipoint boundary value problems involving nonlinear multi-term fractional integro-differential equations. The case involving three different types of nonlinearities is also briefly described. The desired results are obtained by applying the methods of modern functional analysis and are well-illustrated with examples.

    Citation: Ahmed Alsaedi, Bashir Ahmad, Manal Alblewi, Sotiris K. Ntouyas. Existence results for nonlinear fractional-order multi-term integro-multipoint boundary value problems[J]. AIMS Mathematics, 2021, 6(4): 3319-3338. doi: 10.3934/math.2021199

    Related Papers:

  • We investigate the existence of solutions for integro-multipoint boundary value problems involving nonlinear multi-term fractional integro-differential equations. The case involving three different types of nonlinearities is also briefly described. The desired results are obtained by applying the methods of modern functional analysis and are well-illustrated with examples.



    加载中


    [1] R. L. Magin, Fractional calculus in bioengineering, USA: Begell House Publishers, 2006.
    [2] G. M. Zaslavsky, Hamiltonian chaos and fractional dynamics, Oxford: Oxford University Press, 2005.
    [3] H. A. Fallahgoul, S. M. Focardi, F. J. Fabozzi, Fractional calculus and fractional processes with applications to financial economics. Theory and application, London: Elsevier/Academic Press, 2017.
    [4] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier Science B. V., 2006.
    [5] Y. Zhou, Basic theory of fractional differential equations, Hackensack: World Scientific Publishing Co. Pte. Ltd., 2014.
    [6] K. Diethelm, The analysis of fractional differential equations: An Application-oriented exposition using differential operators of Caputo type, Berlin: Springer-Verlag, 2010.
    [7] J. R. Graef, L. Kong, M. Wang, Existence and uniqueness of solutions for a fractional boundary value problem on a graph, Fract. Calc. Appl. Anal., 17 (2014), 499–510.
    [8] G. Wang, S. Liu, L. Zhang, Eigenvalue problem for nonlinear fractional differential equations with integral boundary conditions, Abstr. Appl. Anal., 2014 (2014), 1–6.
    [9] J. Henderson, N. Kosmatov, Eigenvalue comparison for fractional boundary value problems with the Caputo derivative, Fract. Calc. Appl. Anal., 17 (2014), 872–880.
    [10] J. Henderson, R. Luca, Nonexistence of positive solutions for a system of coupled fractional boundary value problems, Bound. Value Probl., 2015 (2015), 138. doi: 10.1186/s13661-015-0403-8
    [11] S. K. Ntouyas, S. Etemad, On the existence of solutions for fractional differential inclusions with sum and integral boundary conditions, Appl. Math. Comput., 266 (2015), 235–243.
    [12] B. Ahmad, R. Luca, Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions, Appl. Math. Comput., 339 (2018), 516–534.
    [13] A. Alsaedi, B. Ahmad, M. Alghanmi, Extremal solutions for generalized Caputo fractional differential equations with Steiltjes-type fractional integro-initial conditions, Appl. Math. Lett., 91 (2019), 113–120. doi: 10.1016/j.aml.2018.12.006
    [14] C. Ravichandran, N. Valliammal, J. J. Nieto, New results on exact controllability of a class of fractional neutral integro-differential systems with state-dependent delay in Banach spaces, J. Franklin I., 356 (2019), 1535–1565. doi: 10.1016/j.jfranklin.2018.12.001
    [15] D. Baleanu, S. Etemad, S. Rezapour, On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators, Alex. Eng. J., 59 (2020), 3019–3027. doi: 10.1016/j.aej.2020.04.053
    [16] P. J. Torvik, R. L. Bagley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51 (1984), 294–298. doi: 10.1115/1.3167615
    [17] F. Mainardi, Some basic problems in continuum and statistical mechanics, In: Fractals and fractional calculus in continuum mechanics, Berlin: Springer, 1997,291–348.
    [18] S. Stanek, Periodic problem for two-term fractional differential equations, Fract. Calc. Appl. Anal., 20 (2017), 662–678.
    [19] Y. Liu, Boundary value problems of singular multi-term fractional differential equations with impulse effects, Math. Nachr., 289 (2016), 1526–1547. doi: 10.1002/mana.201400339
    [20] B. Ahmad, A. Alsaedi, Y. Alruwaily, S. K. Ntouyas, Nonlinear multi-term fractional differential equations with Riemann-Stieltjes integro-multipoint boundary conditions, AIMS Mathematics, 5 (2020), 1446–1461. doi: 10.3934/math.2020099
    [21] K. Deimling, Nonlinear functional analysis, New York: Springer-Verlag, 1985.
    [22] D. R. Smart, Fixed point theorems, New York: Cambridge University Press, 1974.
    [23] M. A. Krasnoselskii, Two remarks on the method of successive approximations, Uspehi Mat. Nauk, 10 (1955), 123–127.
    [24] A. Granas, J. Dugundji, Fixed point theory, New York: Springer-Verlag, 2003.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2477) PDF downloads(227) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog