Loading [Contrib]/a11y/accessibility-menu.js

On gradient structures for Markov chains and the passage to Wasserstein gradient flows

  • Received: 01 March 2014 Revised: 01 October 2014
  • 35K10, 35K20, 37L05, 49M25, 60F99, 65M08, 60J27, 70G75, 82B35.

  • We study the approximation of Wasserstein gradient structures by their finite-dimensional analog. We show that simple finite-volume discretizations of the linear Fokker-Planck equation exhibit the recently established entropic gradient-flow structure for reversible Markov chains. Then we reprove the convergence of the discrete scheme in the limit of vanishing mesh size using only the involved gradient-flow structures. In particular, we make no use of the linearity of the equations nor of the fact that the Fokker-Planck equation is of second order.

    Citation: Karoline Disser, Matthias Liero. On gradient structures for Markov chains and the passage to Wasserstein gradient flows[J]. Networks and Heterogeneous Media, 2015, 10(2): 233-253. doi: 10.3934/nhm.2015.10.233

    Related Papers:

    [1] Karoline Disser, Matthias Liero . On gradient structures for Markov chains and the passage to Wasserstein gradient flows. Networks and Heterogeneous Media, 2015, 10(2): 233-253. doi: 10.3934/nhm.2015.10.233
    [2] Matthias Erbar, Dominik Forkert, Jan Maas, Delio Mugnolo . Gradient flow formulation of diffusion equations in the Wasserstein space over a Metric graph. Networks and Heterogeneous Media, 2022, 17(5): 687-717. doi: 10.3934/nhm.2022023
    [3] Fabian Rüffler, Volker Mehrmann, Falk M. Hante . Optimal model switching for gas flow in pipe networks. Networks and Heterogeneous Media, 2018, 13(4): 641-661. doi: 10.3934/nhm.2018029
    [4] Michael Helmers, Barbara Niethammer, Xiaofeng Ren . Evolution in off-critical diblock copolymer melts. Networks and Heterogeneous Media, 2008, 3(3): 615-632. doi: 10.3934/nhm.2008.3.615
    [5] Tong Li, Nitesh Mathur . Global well-posedness and asymptotic behavior of $ BV $ solutions to a system of balance laws arising in traffic flow. Networks and Heterogeneous Media, 2023, 18(2): 581-600. doi: 10.3934/nhm.2023025
    [6] Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond . A new model for the emergence of blood capillary networks. Networks and Heterogeneous Media, 2021, 16(1): 91-138. doi: 10.3934/nhm.2021001
    [7] Luis Almeida, Federica Bubba, Benoît Perthame, Camille Pouchol . Energy and implicit discretization of the Fokker-Planck and Keller-Segel type equations. Networks and Heterogeneous Media, 2019, 14(1): 23-41. doi: 10.3934/nhm.2019002
    [8] Steinar Evje, Kenneth H. Karlsen . Hyperbolic-elliptic models for well-reservoir flow. Networks and Heterogeneous Media, 2006, 1(4): 639-673. doi: 10.3934/nhm.2006.1.639
    [9] Raimund Bürger, Kenneth H. Karlsen, John D. Towers . On some difference schemes and entropy conditions for a class of multi-species kinematic flow models with discontinuous flux. Networks and Heterogeneous Media, 2010, 5(3): 461-485. doi: 10.3934/nhm.2010.5.461
    [10] Helge Holden, Nils Henrik Risebro . Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow. Networks and Heterogeneous Media, 2018, 13(3): 409-421. doi: 10.3934/nhm.2018018
  • We study the approximation of Wasserstein gradient structures by their finite-dimensional analog. We show that simple finite-volume discretizations of the linear Fokker-Planck equation exhibit the recently established entropic gradient-flow structure for reversible Markov chains. Then we reprove the convergence of the discrete scheme in the limit of vanishing mesh size using only the involved gradient-flow structures. In particular, we make no use of the linearity of the equations nor of the fact that the Fokker-Planck equation is of second order.


    [1] S. Adams, N. Dirr, M. A. Peletier and J. Zimmer, From a large-deviations principle to the Wasserstein gradient flow: A new micro-macro passage, Communications in Mathematical Physics, 307 (2011), 791-815. doi: 10.1007/s00220-011-1328-4
    [2] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005.
    [3] S. Arnrich, A. Mielke, M. A. Peletier, G. Savaré and M. Veneroni, Passing to the limit in a Wasserstein gradient flow: From diffusion to reaction, Calc. Var. Part. Diff. Eqns., 44 (2012), 419-454. doi: 10.1007/s00526-011-0440-9
    [4] J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84 (2000), 375-393. doi: 10.1007/s002110050002
    [5] M. Bessemoulin-Chatard, A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme, Numer. Math., 121 (2012), 637-670. doi: 10.1007/s00211-012-0448-x
    [6] A. Bradji and J. Fuhrmann, Some abstract error estimates of a finite volume scheme for a nonstationary heat equation on general nonconforming multidimensional spatial meshes, Appl. Math., 58 (2013), 1-38. doi: 10.1007/s10492-013-0001-y
    [7] C. Chainais-Hillairet, M. Gisclon and A. Jüngel, A finite-volume scheme for the multidimensional quantum drift-diffusion model for semiconductors, Numer. Methods Partial Differential Equations, 27 (2011), 1483-1510. doi: 10.1002/num.20592
    [8] S.-N. Chow, W. Huang, Y. Li and H. Zhou, Fokker-Planck equations for a free energy functional or Markov process on a graph, Arch. Rational Mech. Anal., 203 (2012), 969-1008. doi: 10.1007/s00205-011-0471-6
    [9] M. Erbar and J. Maas, Ricci curvature of finite Markov chains via convexity of the entropy, Arch. Rational Mech. Anal., 206 (2012), 997-1038. doi: 10.1007/s00205-012-0554-z
    [10] M. Erbar and J. Maas, Gradient flow structures for discrete porous medium equations, Discrete Contin. Dyn. Syst., 34 (2014), 1355-1374. doi: 10.3934/dcds.2014.34.1355
    [11] R. Eymard, T. Gallouët and R. Herbin, The finite volume method, in Handbook of Numerical Analysis. Vol. VII, North Holland, Amsterdam, 2000, 713-1022.
    [12] R. Eymard and J.-M. Hérard, eds., Finite Volumes for Complex Applications V, ISTE, London, 2008.
    [13] J. Fořt, J. Fürst Jiří, H. R. Herbin and F. Hubert, eds., Finite Volumes for Complex Applications. VI. Problems & perspectives. Volume 1, 2, Springer Proceedings in Mathematics, 4, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-20671-9
    [14] J. Fuhrmann, A. Linke and H. Langmach, A numerical method for mass conservative coupling between fluid flow and solute transport, Appl. Numer. Math., 61 (2011), 530-553. doi: 10.1016/j.apnum.2010.11.015
    [15] K. Gärtner, Charge transport in semiconductors and a finite volume scheme, in Finite volumes for complex applications. VI. Problems & perspectives. Volume 1, 2, Springer Proc. Math., 4, Springer, Heidelberg, 2011, 513-522. doi: 10.1007/978-3-642-20671-9_54
    [16] N. Gigli, On the heat flow on metric measure spaces: Existence, uniqueness and stability, Calc. Var. Partial Differential Equations, 39 (2010), 101-120. doi: 10.1007/s00526-009-0303-9
    [17] N. Gigli and J. Maas, Gromov-Hausdorff convergence of discrete transportation metrics, SIAM J. Math. Anal., 45 (2013), 879-899. doi: 10.1137/120886315
    [18] D. Hilhorst, H. C. V. Do and Y. Wang, A finite volume method for density driven flows in porous media, in CEMRACS'11: Multiscale Coupling of Complex Models in Scientific Computing, ESAIM Proc., 38, EDP Sci., Les Ulis, 2012, 376-386. doi: 10.1051/proc/201238021
    [19] R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Analysis, 29 (1998), 1-17. doi: 10.1137/S0036141096303359
    [20] M. Liero, Passing from bulk to bulk-surface evolution in the Allen-Cahn equation, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 919-942. doi: 10.1007/s00030-012-0189-7
    [21] M. Liero and A. Mielke, Gradient structures and geodesic convexity for reaction-diffusion systems, Phil. Trans. Royal Soc. A, 371 (2013), 20120346, 28pp. doi: 10.1098/rsta.2012.0346
    [22] M. Liero and U. Stefanelli, Weighted inertia-dissipation-energy functionals for semilinear equations, Boll. Unione Mat. Ital. (9), 6 (2013), 1-27.
    [23] J. Maas, Gradient flows of the entropy for finite Markov chains, J. Funct. Anal., 261 (2011), 2250-2292. doi: 10.1016/j.jfa.2011.06.009
    [24] P. A. Markowich, The Stationary Semiconductor Device Equations, Computational Microelectronics, Springer-Verlag, Vienna, 1986. doi: 10.1007/978-3-7091-3678-2
    [25] D. Matthes and H. Osberger, Convergence of a variational Lagrangian scheme for a nonlinear drift diffusion equation, ESAIM Math. Model. Numer. Anal., 48 (2014), 697-726. doi: 10.1051/m2an/2013126
    [26] A. Mielke, A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems, Nonlinearity, 24 (2011), 1329-1346. doi: 10.1088/0951-7715/24/4/016
    [27] A. Mielke, Geodesic convexity of the relative entropy in reversible Markov chains, Calc. Var. Part. Diff. Eqns., 48 (2013), 1-31. doi: 10.1007/s00526-012-0538-8
    [28] A. Mielke, Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-interface interactions, Discr. Cont. Dynam. Systems Ser. S, 6 (2013), 479-499. doi: 10.3934/dcdss.2013.6.479
    [29] A. Mielke, T. Roubíček and U. Stefanelli, $\Gamma$-limits and relaxations for rate-independent evolutionary problems, Calc. Var. Part. Diff. Eqns., 31 (2008), 387-416. doi: 10.1007/s00526-007-0119-4
    [30] A. Mielke and U. Stefanelli, Weighted energy-dissipation functionals for gradient flows, ESAIM Control Optim. Calc. Var., 17 (2011), 52-85. doi: 10.1051/cocv/2009043
    [31] L. Onsager, Reciprocal relations in irreversible processes, I+II, Physical Review, 37 (1931), 405-426; Part II, 38, 2265-2267.
    [32] F. Otto, Dynamics of labyrinthine pattern formation in magnetic fluids: A mean-field theory, Arch. Rational Mech. Anal., 141 (1998), 63-103. doi: 10.1007/s002050050073
    [33] F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174. doi: 10.1081/PDE-100002243
    [34] E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math., 57 (2004), 1627-1672. doi: 10.1002/cpa.20046
  • This article has been cited by:

    1. Jan Maas, Daniel Matthes, Long-time behavior of a finite volume discretization for a fourth order diffusion equation, 2016, 29, 0951-7715, 1992, 10.1088/0951-7715/29/7/1992
    2. Antonio Esposito, Francesco S. Patacchini, André Schlichting, Dejan Slepčev, Nonlocal-Interaction Equation on Graphs: Gradient Flow Structure and Continuum Limit, 2021, 240, 0003-9527, 699, 10.1007/s00205-021-01631-w
    3. Dominik Forkert, Jan Maas, Lorenzo Portinale, Evolutionary $\Gamma$-Convergence of Entropic Gradient Flow Structures for Fokker--Planck Equations in Multiple Dimensions, 2022, 54, 0036-1410, 4297, 10.1137/21M1410968
    4. Peter Gladbach, Eva Kopfer, Jan Maas, Lorenzo Portinale, Homogenisation of one-dimensional discrete optimal transport, 2020, 139, 00217824, 204, 10.1016/j.matpur.2020.02.008
    5. Martin Heida, Markus Kantner, Artur Stephan, Consistency and convergence for a family of finite volume discretizations of the Fokker–Planck operator, 2021, 55, 0764-583X, 3017, 10.1051/m2an/2021078
    6. Jan Maas, Alexander Mielke, Modeling of Chemical Reaction Systems with Detailed Balance Using Gradient Structures, 2020, 181, 0022-4715, 2257, 10.1007/s10955-020-02663-4
    7. Mark A. Peletier, André Schlichting, Cosh gradient systems and tilting, 2022, 0362546X, 113094, 10.1016/j.na.2022.113094
    8. Matthias Liero, Alexander Mielke, Mark A. Peletier, D. R. Michiel Renger, On microscopic origins of generalized gradient structures, 2017, 10, 1937-1179, 1, 10.3934/dcdss.2017001
    9. Matthias Erbar, Martin Rumpf, Bernhard Schmitzer, Stefan Simon, Computation of optimal transport on discrete metric measure spaces, 2020, 144, 0029-599X, 157, 10.1007/s00211-019-01077-z
    10. Rui Che, Wen Huang, Yao Li, Prasad Tetali, Convergence to global equilibrium for Fokker–Planck equations on a graph and Talagrand-type inequalities, 2016, 261, 00220396, 2552, 10.1016/j.jde.2016.05.003
    11. Peter Gladbach, Eva Kopfer, Jan Maas, Scaling Limits of Discrete Optimal Transport, 2020, 52, 0036-1410, 2759, 10.1137/19M1243440
    12. André Schlichting, Christian Seis, The Scharfetter–Gummel scheme for aggregation–diffusion equations, 2022, 42, 0272-4979, 2361, 10.1093/imanum/drab039
    13. Fabio A. C. C. Chalub, Léonard Monsaingeon, Ana Margarida Ribeiro, Max O. Souza, Gradient Flow Formulations of Discrete and Continuous Evolutionary Models: A Unifying Perspective, 2021, 171, 0167-8019, 10.1007/s10440-021-00391-9
    14. Peter Gladbach, Eva Kopfer, Jan Maas, Lorenzo Portinale, Homogenisation of dynamical optimal transport on periodic graphs, 2023, 62, 0944-2669, 10.1007/s00526-023-02472-z
    15. Anastasiia Hraivoronska, Oliver Tse, Diffusive Limit of Random Walks on Tessellations via Generalized Gradient Flows, 2023, 55, 0036-1410, 2948, 10.1137/22M1478306
    16. Jean-Baptiste Casteras, Léonard Monsaingeon, Hidden Dissipation and Convexity for Kimura Equations, 2023, 55, 0036-1410, 7361, 10.1137/22M1529270
    17. Simone Di Marino, Lorenzo Portinale, Emanuela Radici, Optimal transport with nonlinear mobilities: A deterministic particle approximation result, 2024, 0, 1864-8258, 10.1515/acv-2022-0076
    18. Antonio Esposito, László Mikolás, On evolution PDEs on co-evolving graphs, 2024, 0, 1078-0947, 0, 10.3934/dcds.2024041
    19. Lorenzo Portinale, Filippo Quattrocchi, Discrete-to-continuum limits of optimal transport with linear growth on periodic graphs, 2024, 0956-7925, 1, 10.1017/S0956792524000810
    20. Antonio Esposito, Georg Heinze, André Schlichting, Graph-to-local limit for the nonlocal interaction equation, 2025, 00217824, 103663, 10.1016/j.matpur.2025.103663
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4453) PDF downloads(184) Cited by(19)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog