
NETWORKS AND HETEROGENEOUS MEDIA doi:10.3934/nhm.2015.10.233
c©American Institute of Mathematical Sciences
Volume 10, Number 2, June 2015 pp. 233–253

ON GRADIENT STRUCTURES FOR MARKOV CHAINS AND

THE PASSAGE TO WASSERSTEIN GRADIENT FLOWS

Karoline Disser and Matthias Liero

Weierstrass Institute
Mohrenstraße 39

10117 Berlin, Germany

(Communicated by Benedetto Piccoli)

Abstract. We study the approximation of Wasserstein gradient structures by

their finite-dimensional analog. We show that simple finite-volume discretiza-
tions of the linear Fokker-Planck equation exhibit the recently established en-

tropic gradient-flow structure for reversible Markov chains. Then we reprove
the convergence of the discrete scheme in the limit of vanishing mesh size using

only the involved gradient-flow structures. In particular, we make no use of

the linearity of the equations nor of the fact that the Fokker-Planck equation
is of second order.

1. Introduction. In this work we consider gradient structures for reversible con-
tinuous-time Markov chains on finite sets arising from finite-volume discretizations
of drift-diffusion equations. We treat the simplest drift-diffusion problem, namely
the linear Fokker-Planck equation with a drift coming from a given, sufficiently
smooth potential Φ:

U̇ = (U ′ + UΦ′)′ in ]0, T [× Ω, (1)

under suitable initial conditions and no-flux boundary conditions on an interval
Ω ⊂ R. Since the seminal work of Otto [32, 19, 33] it is known that the Fokker-
Planck equation can be interpreted as a (metric) gradient flow in the space of
probability measures X equipped with the Wasserstein distance dW and with the
relative entropy E : X → R as driving functional. Recently, in [26] it was shown that
general reaction-diffusion systems with reactions of mass-action type, satisfying the
detailed-balance condition, can also be written as gradient systems with respect to
the relative entropy. The dissipation mechanism is given in terms of a so-called
Onsager operator, i.e., the evolution of the system can be written in the form

u̇ = −K(u)DE(u) =: −∇G E(u) ⇔ G(u)u̇ = −DE(u), (2)

where the Onsager operator K(u) is a symmetric, positive semidefinite and, in
general, state-dependent operator which maps thermodynamic forces to rates (see
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also [31]). Moreover, G(u) denotes the metric tensor corresponding to K(u) and ∇G
denotes the metric gradient.

The reversible Markov chains discussed in this paper are special cases of reversible
reactions, namely exchange reactions with a rate matrix A ∈ Rn×n that lead to the
linear ODE system u̇ = Au in the state space

Xn = {u ∈ Rn|ui > 0,
∑n
i=1 ui = 1}.

Here, reversibility means that there exists a unique positive steady state w ∈ Xn

such that

Aijwj = Ajiwi for all i, j ∈ {1, . . . , n}.
(we include the irreducibility – the uniqueness of w – into the definition of reversibil-
ity). Thus, reversible Markov chains are a special case of more general reaction-
diffusion systems with the gradient structure in the sense of (2) given in terms of
the relative entropy En and the Onsager matrix Kn(u):

En(u) =

n∑
i=1

ui log(ui/wi) and Kn(u) =
∑
i<j

AijwjΛ( ui

wi
,
uj

wj
)(ei−ej)⊗(ei−ej),

where Λ(a, b) = (a−b)/ log(a/b) denotes the logarithmic mean. By duality theory
and chain rule, the finite-dimensional metric gradient flow in Xn can be equivalently
formulated as entropy/entropy-dissipation balance

En(u(T )) +

∫ T

0

[
Rn(u, u̇) +R∗n(u,−DEn(u))

]
dt = En(u(0)), (3)

where Rn(u, ·) and R∗n(u, ·) are Legendre duals. We note that this entropic gradient
structure for reversible Markov chains was found independently in [27, 23, 8]. We
will review some of their results in Section 2.

In our case, (3) arises from a two-point flux finite-volume discretization scheme
for the Fokker-Planck equation with the transmission rate coefficients containing
the drift and the geometric information of the mesh. We (re)prove the convergence
of the scheme by establishing a Γ-convergence-type result for the discrete entropy
and dissipation functionals, hereby relying only on the structure in (3) (see e.g. [11,
Theorem 4.2] for a convergence result based on classical PDE methods). In the
limit of vanishing mesh size we obtain the integrated Wasserstein formulation of
the Fokker-Planck equation, namely

E(U(T )) +
1

2

∫ T

0

∫
Ω

[
U |V |2 +

|U ′ + UΦ′|2

U

]
dx dt ≤ E(U(0)) (4)

(we refer to Subsection 2.4 for a precise definition). Thus, we show that the Markov
gradient structure gives a discrete counterpart to the continuous Wasserstein for-
mulation. A crucial point here is that we do not exploit classical a priori estimates
or compactness properties in Sobolev spaces.

We highlight that a related result was recently established in [17]. It is based on
the results in [23] which characterize the Riemannian distances dn on the manifolds
Xn induced by the metric tensors Gn(u) = Kn(u)−1, where by definition and the
positivity of u ∈ Xn, K(u) is invertible with respect to the subspace of Rn of
rates preserving mass. It is shown in [17] that the metric spaces (Xn,dn) converge
in the sense of Gromov-Hausdorff to the (continuous) Wasserstein space (X ,dW).
Combined with the abstract convergence result in [16] for metric gradient flows with



MARKOV CHAINS AND WASSERSTEIN GRADIENT FLOWS 235

geodesically convex and Γ-converging driving functionals the limit passage for the
discretized pure diffusion equation on the d-dimensional torus is shown.

In contrast, our result does not use the geodesic convexity of the relative en-
tropies, a property that is hard to show and seems to hold in our setting only for
(almost) equidistant discretizations (see [27, 9]). This makes our approach interest-
ing for the extension to driving functionals which are even in the equidistant case
not geodesically convex, see e.g. [10] for an important example. Moreover, we allow
for a drift given by the gradient of the potential Φ, opposed to the diffusion-only
case in [17].

In [25] another interesting numerical scheme for a nonlinear drift-diffusion equa-
tion on an interval is considered using the Lagrangian formulation of the problem.
The discretization is based on the time-incremental formulation of the equation’s
gradient flow structure with respect to the (continuous) Wasserstein distance. In
particular, no gradient structure of the discrete problems is exploited.

The limit passage in terms of gradient structures we present here is interesting for
a number of reasons. The first is that the Wasserstein gradient structure provides
a natural and physically meaningful formulation of the problem (see e.g. [1] for the
connection to large deviation principles for particle systems). It would be interesting
to investigate if this meaning is reflected in the discretized structure.

The second reason is that Wasserstein gradient structures for diffusion problems
and the related structures for reaction-diffusion systems introduced in [26] can be
found in a wide range of problems. Therefore, any method that uses only the
structural properties of the systems has the potential for a wide application and
helps to devise more efficient numerical schemes for reaction-diffusion problems.

Finally, it is in general of great interest to use variational tools such as Γ-
convergence to pass to the limit in nonlinear time evolving systems that are driven
by functionals, see e.g. [34, 29, 30, 22, 20].

The outline of the paper is as follows. In Section 2 we briefly discuss the general
setting of gradient systems upon which our result is based. We explain the well-
known Wasserstein formulation of the Fokker-Planck equation in (4) and present
the framework and the notation for gradient systems introduced in [26] for reversible
Markov chains using Onsager operators.

The Markov chains we consider here arise from finite-volume schemes of the
Fokker-Planck equation. We discuss their derivation in Section 3. In particular,
the Markov chains satisfy the reversibility condition by construction and we can
rewrite the finite-volume scheme as a gradient-flow equation with respect to the
relative entropy. The discrete steady state is given by the discretization of its
continuous counterpart. Moreover, we comment on the possibility of using different
upwinding schemes such as the renowned Scharfetter-Gummel scheme. Finally, the
main result is given in Theorem 3.1.

The limit passage is shown in Section 4. The crucial point is to establish lower
liminf estimates for the discrete entropies and dissipation functionals in terms of
the Wasserstein gradient structure. The first step consists of constructing suitable
interpolants for the discrete quantities, where suitable means that the convergence
of the interpolants is compatible with the variational convergence of the entropy and
dissipation functionals. The lower estimate for the relative entropies follows easily
from their lower semicontinuity properties with respect to weak* convergence in the
space of probability measures. In order to prove the corresponding lower bound for
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the discrete dissipation functionals we exploit a useful lower semicontinuity result
for the Wasserstein distance, which is an adaption of [2, Theorem 5.4.4].

2. Abstract gradient flows. We first briefly discuss gradient flows on a smooth
n-dimensional Riemannian manifold X in order to fix some notation and give heuris-
tics for the well-known Wasserstein gradient structure of the Fokker-Planck equation
and for the recent entropic gradient flow approach to its discretization. For a similar
presentation we refer to [3].

2.1. Riemannian point of view. On a smooth n-dimensional manifold X we
consider a differentiable energy functional E : X → R and a Riemannian metric
g, i.e., a family of state-dependent inner products gu(v1, v2) = 〈G(u)v1, v2〉 on the
tangent spaces TuX ' Rn at u via a Riemannian tensor G(u). Here, 〈·, ·〉 denotes
the Euclidean inner product in Rn which gives the dual pairing on TuX × T∗uX.
The gradient flow of E in X is then given by the equation

u̇(t) = −∇GE(u(t)) ∈ Tu(t)X. (5)

Here and in the following we use overdots to denote time differentiation. The
gradient ∇GE(u) is characterized as the unique element of TuX such that

〈DE(u), v〉 = gu(v,∇GE(u)) for all v ∈ TuX.

It is given by G(u)−1DE(u) with DE(u) ∈ T∗uX being the (Fréchet) differential of
E. We can use the equivalence

u̇ = −∇GE(u)⇔ gu(u̇,−∇GE(u)) ≥ 1

2
gu(u̇, u̇) +

1

2
gu(∇GE(u),∇GE(u))

for the inner products to show that by the chain rule d
dtE(u) = 〈DE(u), u̇〉 the

formulation

E(u(T )) +
1

2

∫ T

0

[
gu(u̇, u̇) + gu(∇GE(u),∇GE(u))

]
dt ≤ E(u(0)), (6)

is equivalent to (5) for smooth solutions u : [0, T ]→ X.

2.2. Onsager point of view. When considering Markov chains on finite domains,
we will take on an “inverse” perspective. Given an equation in the form

u̇ = −K(u)DE(u), (7)

where K(u) is a linear, symmetric, and positive definite operator for all u ∈ X,
we call K(u) an Onsager operator and (X,E,K) an Onsager system in relation
to Onsager’s famous principle [31]. To this system we associate the dissipation
potential

R(u; v) =
1

2
〈K(u)−1v, v〉 for v ∈ TuX.

and the dual dissipation potential given by Legendre transform,

R∗(u; ξ) = sup
{
〈ξ, v〉 −R(u; v) | v ∈ TuX

}
=

1

2
〈ξ,K(u)ξ〉.

Then, as before, an equivalent formulation of the gradient flow equation (7) is

E(u(T )) + J(u; 0, T ) ≤ E(u(0)),

where the dissipation functional

J(u; 0, T ) =

∫ T

0

[
R(u, u̇) +R∗(u,−DE(u))

]
dt (8)
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gives the total dissipation along a curve. If K(u)−1 =: G(u) defines a Riemannian
metric on X, this is equivalent to (6).

The advantage of the Onsager formulation is that in the case of the Wasserstein
and Markov chain gradient flows the operator K is explicitly given. Moreover,
the Onsager structure allows in general for easy and thermodynamically consistent
modeling e.g. of reaction-diffusion systems (see [28]).

2.3. Abstract metric setting. The above approaches in terms of the functional
J can be generalized to an infinite-dimensional and non-smooth setting, given a
topological space X and a suitable metric d : X × X → [0,∞[. The square norm
of the gradient in (6) can be generalized by the square of the so-called metric slope
|∂E|d of E : X → ]−∞,∞], given by

|∂E|d(u) := lim sup
ũ→u

(
E(u)− E(ũ)

)
+

d(u, ũ)
. (9)

Moreover, the square norm of the velocity vector of a curve u can be generalized to
the square of the metric velocity |u̇|d of u via

|u̇|d(t) := lim
h→0

d(u(t), u(t+ h))

|h|
, (10)

which exists for a.e. t ∈ ]0, T [ if u ∈ AC(0, T ; (X ,d)) is an absolutely continuous
curve in X with respect to the distance d, see [2, Theorem 1.1.2].

The dissipation functional J given in (8) is generalized to

J (u; 0, T ) :=
1

2

∫ T

0

[
|u̇|2d + |∂E|d(u)2

]
dt. (11)

We use the following definition of a metric gradient flow and refer to [2] for an
extensive survey on this topic.

Definition 2.1. Let (X , d) be a metric space, E : X → ]−∞,∞] and J as in
(11). Then a curve u ∈ AC(0, T ; (X ,d)) is called a solution of the gradient system
(X , E ,d) if E(u(0)) <∞ and

E(u(T )) + J (u; 0, T ) ≤ E(u(0)). (12)

In particular, the gradient flow satisfies the identity, if the additional property

E(ũ(s1)) + J (ũ; s0, s1) ≥ E(ũ(s0)) (13)

holds for all ũ ∈ C([s0, s1];X ). This is guaranteed if the metric slope |∂E|d is a
strong upper gradient for E in (X ,d), cf. [2, Definition 1.2.1].

In the subsequent section, we briefly recall the Wasserstein formulation of the
Fokker-Planck equation in the space of probability measures with respect to the
relative entropy functional. Then we consider suitable finite-volume discretizations
of this equation which carry an analog gradient structure in the space of probability
measures on the finite domain.

2.4. Wasserstein formulation of the Fokker-Planck equation. In a bounded
domain Ω ⊂ Rd we consider the Fokker-Planck equation

U̇ = div(∇U + U∇Φ) in Ω, (14)

subject to the non-flux boundary condition (∇U+U∇Φ)·ν = 0. Here, for simplicity,
the drift potential Φ is assumed to satisfy

Φ ∈ C1(Ω;R) ∩ Cb(Ω), (15)
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such that the system has the steady state W (x) = cΦe−Φ(x), bounded from above
and strictly positive. Here, cΦ := 1/

∫
Ω

e−Φ(x) dx is the normalization constant.
In order to introduce the gradient structure of [19, 33], we define the space of
probability measures on Ω

X := {µ ∈M≥0(Ω) |µ(Ω) = 1},

where M≥0(Ω) denotes the set of nonnegative Borel measures on Ω. The relative
entropy functional on X with respect to the equilibrium density W is defined as

E(µ) :=

{∫
Ω
U(x) log(U(x)/W (x)) dx if µ = Udx,

+∞ otherwise.

In the following, we will simply write E(µ) = E(U) if µ is absolutely continuous with
density U and do not distinguish between measures and densities in this case. The
space X is endowed with the weak* topology of measures and is (pseudo-)metrized
by the 2-Wasserstein distance dW. It is well-known that dW admits two interesting
characterizations. The first is based on the theory of optimal transport, while the
second is given in the form of a dynamical characterization and is well adapted to
the gradient-flow setting. We briefly recall this characterization, which gives rise to
a Riemannian structure in X , see [4, 19].

Definition 2.2. Let µ : ]s0, s1[→ X be a family of measures and V : ]s0, s1[×Ω→
Rd a measurable velocity field such that∫ s1

s0

∫
Ω

|V (s, x)|µ(s,dx) ds < +∞.

We say that (µ, V ) ∈ CE (CE for Continuity Equation), if µ and V satisfy the
continuity equation in the sense of distributions, i.e.∫ s1

s0

∫
Rd

(Ψ̇(s, x) + V (s, x) · ∇Ψ(s, x))µ(t,dx) dt = 0,

for all Ψ ∈ C∞c (]s0, s1[×Rd), where µ and V are trivially extended by 0 outside of
Ω.

For two measures µ0 and µ1 in X the distance dW can be defined in terms of
couples (µ, V ) by the famous Benamou-Brenier characterization [4]

dW(µ0, µ1)2 = min
{ ∫ 1

0

∫
Ω
|V (t, x)|2µ(t, dx) dt

∣∣ (µ, V ) ∈ CE, µ(0)=µ0, µ(1)=µ1

}
.

In particular, this identifies V as (Wasserstein) velocity field tangent to the curve
µ. Moreover, this interpretation is reflected in the characterization of the metric
time derivative in (10). We quote the following result from [2, Theorem 8.3.1].

Proposition 2.3. If µ ∈ C(s0, s1;X ) and V are such that (µ, V ) ∈ CE, then
µ ∈ AC(s0, s1;X) and |µ̇|dW(t) ≤

∫
Ω
|V (t, x)|2µ(t,dx) for almost all t ∈ ]s0, s1[.

Following Otto’s formalism we can associate an Onsager operator K(µ) with
the Wasserstein distance. In particular, the velocity fields V are chosen to be the
gradient of a function Ξ such that µ̇ = −div(µ∇Ξ) =: K(µ)ξ. Then, the metric
tensor G(µ) = K(µ)−1 is induced by the identification µ̇ 7→ ∇Ξµ̇ as follows:

〈G(µ)ν1, ν2〉 =

∫
Ω

∇Ξν1(x) · ∇Ξν2(x)µ(dx).
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In the sense of Definition 2.1, we recover the gradient system (X , E ,G) for the
Fokker-Planck equation,

E(U(T )) + J (U ; 0, T ) ≤ E(U(0)), where

J (U ; 0, T ) =
1

2

∫ T

0

∫
Ω

[
U |V |2 +

1

U
|W∇(U/W )

∣∣2] dxdt,

with (U, V ) ∈ CE.

(16)

Here, F(U) = 1
2

∫
Ω
|W∇(U/W )|2/U dx is the Fisher information, which gives the

square of the metric slope of E (see (9)). Note that F(U) = 2
∫

Ω
W |∇

√
U/W |2 dx,

so that F(U) is finite if and only if U ∈W1,1(Ω). We refer to [2] for a comprehensive
survey on the theory of Wasserstein gradient flows.

We call (16) the entropy/entropy-dissipation formulation of the Fokker-Planck
equation in (14). Note that dissipation has the physical dimension of energy over
time. Since the entropy has the dimension energy over temperature, we introduce
the term “entropy-dissipation” to reflect this conceptual difference to energy dissi-
pation.

2.5. Entropic gradient structure for reversible Markov chains. It was shown
in [23, 27, 8] that the structure of the entropic Wasserstein gradient flows can be
carried over from the continuum equation to Markov chains on finite domains. We
will first briefly discuss a general class of reversible Markov chains in this context
and then later on consider processes which appear as finite-volume discretizations
of equation (16) only. On {1, . . . , n}, n ∈ N, we introduce the space

Xn := {u ∈ Rn |ui > 0,
∑n
i=1 ui = 1}.

The evolution of a time-continuous Markov chain is given by the ODE system with
transmission matrix A ∈ Rn×n, where Aij is the rate for a particle moving from
position j to i, viz.

u̇ = Au, where Aij ≥ 0 for i 6= j and Aii = −
∑
j:j 6=i

Aji. (17)

Many different gradient structures for the Markov chain (17) can be written down
(see Remark 2.4). However, we are interested in a discrete Wasserstein-type gradient
structure with respect to the discrete relative entropy functional. This entropic
gradient structure was discovered in [26, Section 3.1] and independently in [23, 8].
The geodesic convexity of the relative entropy with respect to the Markov gradient
structures was studied in [27] (see also [21]). In order to state them we make two
basic assumptions: (i) The Markov process is irreducible, i.e., for all i and j there is
a path connecting both states.. (ii) The matrix A satisfies the reversibility condition
also called detailed-balance condition, i.e.,

πij := Aijwj = Ajiwi for all i, j ∈ {1, . . . , n}. (18)

Clearly, conditions (i) and (ii) imply the existence of a unique strictly positive steady
state w ∈ Xn such that Aw = 0. With this we define the discrete relative entropy
functional via

En(u) =

n∑
i=1

ui log(ui/wi).
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Using reversibility and the calculation rules for the logarithm it is straightforward
to check that (17) has the Onsager structure

u̇ = −Kn(u)DEn(u), (19)

where DEn(u) = (log ρi)i is the differential of En on Xn with ρi := ui/wi denoting
the relative density. The Onsager operator Kn(u) is given via

Kn(u) =
∑
i<j

πijΛ(ρi, ρj)(ei−ej)⊗(ei−ej) ∈ Rn×nsym,≥0 (20)

with ei being the standard unit vectors in Rn. Moreover, the function Λ : ]0,∞[
2 →

]0,∞[ is the logarithmic mean of a and b and is given by

Λ(a, b) =
a− b

log a− log b
for a 6= b and Λ(a, a) = a. (21)

Clearly, for each u ∈ Xn, Kn(u) is a symmetric and positive semidefinite matrix
with kerKn(u) = span{(1, . . . , 1)T}.

As in Subsection 2.2, we define the dual dissipation potential associated with the
Onsager operator Kn(u) via

R∗n(u; ξ) =
1

2
〈ξ,Kn(u)ξ〉 =

1

2

∑
i<j

πijΛ(ρi, ρj)(ξi − ξj)2.

The dissipation potential Rn is given by Legendre transform

Rn(u; v) = R∗n(u; ξv) with v = Kn(u)ξv.

As before, it follows that an equivalent formulation of (19) is given by

En(u(T )) +

∫ T

0

[
Rn(u; u̇) +R∗n(u;−DEn(u))

]
dt ≤ En(u(0)). (22)

As in the Wasserstein case, we call (22) the (discrete) entropy/entropy-dissipation
formulation of the Markov chain equation in (17). Note that this structure on the
open simplex Xn is also Riemannian in the sense of Subsection 2.1 with tensor
Gn(u) = Kn(u)−1 and inner products gnu(v1, v2) = 〈v1, Gn(u)v2〉 on the tangent
space

Rn−1 '
{
v ∈ Rn |

∑n
i=1 vi = 0

}
' Rn \ kerKn(u).

As in Definition 2.2 for the Wasserstein case we introduce the discrete continuity
equation and write

(u, ξ) ∈ CEn if u ∈ C1
p(0, 1;Xn), u̇ = Kn(u)ξ. (23)

Here, C1
p(0, 1;Xn) denotes the piecewise C1 curves in Xn with respect to the euclid-

ian metric. In particular, the matrix Kn(u) induces a distance dn, which is given
by a discrete version of the Benamou-Brenier formula

dn(u0, u1)2 = min
{ ∫ 1

0

〈
ξ,Kn(u)ξ

〉
ds | u̇ = Kn(u)ξ

}
,

where the minimization is over all curves u ∈ C1
p(0, 1;Xn) connecting u0 and u1. We

refer to [23] for an extensive and rigorous study of Xn equipped with this structure.

Remark 2.4. The ODE system in (17) is induced by many different gradient
systems if the reversibility condition (18) holds. Indeed, for φ : R+ → R strictly
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convex and twice differentiable we consider the driving functional given by Eφn(u) =∑n
i=1 φ(ui/wi)wi. Moreover, we define the Onsager matrix via

Kφ
n(u) =

∑
i<j

πijΘ( ui

wi
,
uj

wj
)(ei−ej)⊗(ei−ej),

where Θ(a, b) = (a−b)/(φ′(a)−φ′(b)) and Θ(a, a) = 1/φ′′(a). Then, it is easy to
check that the system (Xn, E

φ
n ,K

φ
n) also induces (17).

3. Discretization scheme. In this section we discuss the finite-volume discretiza-
tion of the Fokker-Planck equation in (14) using a simple two-point flux scheme.
In particular, we highlight that the ODE system arising from this discretization
scheme exhibits the Markov chain gradient structure detailed in Section 2.5.

Finite-volume methods are well adapted to drift-diffusion problems as they au-
tomatically conserve the local numerical fluxes between cells and hence the total
mass. Moreover, they can be built to also conserve the positivity of solutions. These
features make finite-volume methods quite attractive when modeling problems for
which the flux is of importance, such as in fluid mechanics, semiconductor device
simulation, heat and mass transfer, etc. (see e.g. [5, 6, 18, 7, 15, 13, 12]). The good
properties of the finite-volume method are due to its balance approach: a local
balance is stated on each control volume. By the divergence formula, an integral
formulation of the fluxes over the boundary of the control volume is then obtained.
We refer to [11] for a survey on finite-volume methods and to [14] for a discussion
of the properties of some finite-volume schemes.

3.1. Finite-volume discretization. In the open interval Ω = ]0, 1[ we consider
for each n ∈ N a partition Πn = {xni }ni=1 such that 0 = xn1 < xn2 < . . . < xnn = 1.
Given such a partition, we introduce the n+1 midpoints between the vertices xni
via

σn0 = 0, σnn = 1, σni := 1
2 (xni+1 + xni ) for i = 1, . . . , n−1.

In view of finite-volume schemes in higher dimensions we shall call σni (Voronoi)
edge between xni and xni+1. In particular, the open interval ωni = ]σni−1, σ

n
i [ denotes

the Voronoi control volume with respect to the vertex xni . We denote the length of
the control volume ωni by hni = σni −σni−1 and set hn = maxi h

n
i , the fineness of the

partition. In particular, we assume that the partitions satisfy hn → 0 as n→∞.
As in Subsection 2.4 we consider a potential Φ ∈ C1(Ω)∩Cb(Ω) with which we

associate the equilibrium density W (x) = cΦe−Φ(x). We rewrite the Fokker-Planck
equation in (14) using W and find

U̇ =
(
W (U/W )′

)′
in Ω and (U/W )′(t, x) = 0 for x ∈ {0, 1}. (24)

Integrating the equation in (24) over the control volume ωni gives

d
dt

∫
ωn

i
U(t, x) dx = fi − fi−1,

where fi = (W (U/W )′)(σni ) denotes the flux across the edge σni . We expect ui(t) to
approximate

∫
ωn

i
U(t, x) dx and that the fluxes fi can be approximated by κi(

ui+1

wi+1
−

ui

wi
). Here, w denotes the discrete counterpart of the steady state W which we set

to wi = cnW (xni )hni with cn such that w ∈ Xn. In particular, cn tends to 1 as
n→∞ by definition. Moreover, κi are given transmission coefficients satisfying the
consistency condition κi(x

n
i+1−xni )/W (σi) → 1. Many different choices for κi are
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possible (see Subsection 3.2 for a discussion). Following [27, Section 5] we use for
simplicity the geometric mean of W (xni+1) and W (xni ), i.e.,

κi =

√
W (xni+1)W (xni )

xni+1−xni
, for i = 1, . . . , n−1. (25)

which obviously gives a consistent discretization scheme in the above sense.
Introducing the rate coefficients αi = κi/wi and βi = κi/wi+1 for i = 1, . . . , n−1

we can write the discretization of the Fokker-Planck equation in (24) as

u̇i = αi−1ui−1 − (αi+βi−1)ui + βiui+1 for i = 2, . . . , n−1, (26)

while at the boundary we have u̇1 = β1u2 − α1u1 and u̇n = αn−1un−1 − βn−1un.
For the initial value, given U0 ∈ X such that E(U0) <∞, we define

(un0 )i :=
∫
ωn

i
U0(x) dx, (27)

which yields un0 ∈ Xn.
From this discretization scheme we obtain a Markov chain with tridiagonal trans-

mission matrix Q ∈ Rn×n, viz.

Q =



−α1 α1 0 . . . 0

β1 −(α2+β1) α2

...

0
. . .

. . .
. . . 0

... βn−2 −(αn−1+βn−2) αn−1

0 . . . 0 βn−1 −βn−1


.

Obviously, the detailed balance condition αiwi = βiwi+1 is automatically satisfied.
Hence, we are in the situation of Subsection 2.5 and can provide an entropic gradient
structure for the finite-volume discretization. In particular, the Onsager matrix
takes the form

Kn(u) :=

n−1∑
i=1

κiΛ(ρi+1, ρi)(ei+1−ei)⊗(ei+1−ei),

where as before ei ∈ Rn is the ith unit vector, ρi = ui/wi are the relative densities,
and Λ(a, b) denotes the logarithmic mean of a and b. With the Onsager matrix
Kn(u) we can associate the total dissipation functional for a curve u ∈ C1

p(0, T ;Xn),
cf. (23), which is given by

Jn(u; 0, T ) :=

∫ T

0

[
Rn(u, u̇) + Fn(u)

]
dt,

where Rn(u, u̇) = 1
2 〈Kn(u)−1u̇, u̇〉 and Fn(u) = 1

2 〈DEn(u),Kn(u)DEn(u)〉 are the
discrete dissipation potential and the discrete Fisher information, respectively. The
former can be written as

Rn(u, u̇) =
1

2

n−1∑
i=1

q2
i

κiΛ(ρi+1, ρi)
with qi =

i∑
k=1

u̇k (28)

and the latter as

Fn(u) =
1

2

n−1∑
i=1

κi(ρi+1 − ρi)2

Λ(ρi+1, ρi)
. (29)
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Following Definition 2.1, we say that un ∈ C([0, T ];Xn) is a solution for the gradient
flow problem associated with (26) if

En
(
un(T )

)
+ Jn(un; 0, T ) ≤ En

(
un0
)
. (30)

By classical Markov theory, for every n ∈ N, given a partition Πn and an initial
value un0 ∈ Xn, a solution un of (30) exists and even equality is satisfied in (30).
We prove the convergence of the piecewise constant interpolant associated with un

to a solution U of (16) using only the gradient structure of (30). In particular, the
main result reads as follows.

Theorem 3.1. Let the potential Φ be given as in (15), let the initial value U0 ∈
X be such that E(U0) < ∞, and consider a sequence of partitions (Πn)n∈N such
that hn → 0 as n → ∞. Moreover, let (un)n∈N be a sequence of solutions of the
entropy/entropy-dissipation formulation (30) with initial values (un0 )n∈N as in (27).
Then, denoting by Un(t, x) = uni (t)/hni for x ∈ ωni the piecewise constant interpolant

in X one has up to subsequences Un
∗
⇀ U in M≥0([0, T ]×Ω) with U ∈ AC(0, T ;X )

solving

E
(
U(T )

)
+

1

2

∫ T

0

∫
Ω

[
U |V |2 +

|U ′ + UΦ′|2

U

]
dxdt ≤ E(U0),

where (U, V ) ∈ CE, i.e., V gives the metric time derivative of U .

3.2. On the choice of transmission coefficients. In the last section we chose
the transmission coefficients κi to be given by the geometric mean in the form

κi =
θgeo

(
W (xni+1),W (xni )

)
xni+1−xni

with θgeo(a, b) =
√
ab.

However, other choices of mean functions θ are possible. Indeed, the specific form
of θ is crucial for the properties of the finite volume discretization (see e.g. [14]).
Numerical stability for the drift-diffusion equations is increased substantially by the
use of upwind schemes in general. Here, “upwind” refers to the property that the
direction of the drift is respected by the discretization.

It will become clear in the proof of the convergence result in the subsequent
section that we only need the mean function θ to have the natural property

min{a, b} ≤ θ(a, b) ≤ max{a, b}. (31)

An important example with excellent stability properties is given by the Scharfetter-
Gummel scheme (see e.g. [24, 5]), which is widely used in semiconductor device
simulation. In our setting the Scharfetter-Gummel scheme reads

θSG(a, b) = Λ
(

1
a ,

1
b

)−1
,

where Λ denotes as before the logarithmic mean. We easily check that this particular
choice is also admissible in the sense of (31).

4. Limit passage. In this section we connect the gradient structures of the Fokker-
Planck equation in Subsection 2.4 and of Markov chains in Subsection 2.5 by prov-
ing the limit passage stated in Theorem 3.1. As described above, the motivating
question is whether we may pass to the limit in the entropy/entropy-dissipation
formulation for the Markov chain in (30). This question has two parts: (i) Do
(interpolants of) solutions of (30) with uniformly bounded initial entropies have
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beneficial compactness properties that allow us to extract subsequences converging
in a suitable topology τ? (ii) Using this topology can we show the lower estimate

un
τ−→ U : lim inf

n→∞
Jn(un; 0, T ) ≥ J (U ; 0, T ),

where Jn is the dissipation functional in the discrete case and J its Wasserstein
counterpart in (16)? Our answers to these questions are affirmative. In particular,
we use only information associated with the gradient structures for the proofs.

4.1. Interpolation of discrete quantities on Ω. The first step in the conver-
gence proof is the embedding of the discrete problems introduced in the last section
into the continuum setting. The crucial point is the construction of interpolants de-
fined on the whole of Ω. We show that the interpolants converge in a suitable sense
to limits which permit lower liminf estimates for the discrete dissipation functionals
and relative entropies.

With a given vector u = (u1, . . . , un) ∈ Xn we associate the piecewise constant
interpolant Un via

Un(x) = Ui := ui/h
n
i for x ∈ ωni . (32)

Analogously, we define the piecewise constant interpolant Wn(x) = Wi := wi/h
n
i

for x ∈ ωni , such that Wn → W in L∞(Ω), as W is uniformly continuous on Ω. In
particular, this definition allows us to rewrite the discrete relative entropy as

En(u) = En(Un) :=

∫
Ω

Un log(Un/Wn) dx. (33)

In order to prove lower limits for the dissipation potentials we have to find a suitable
estimate for the logarithmic mean Λ(ρi+1, ρi). Here, in view of the elementary esti-
mate Λ(a, b) ≤ (a+b)/2 it is natural to define interpolants by taking the maximum
value with respect to adjacent control volumes, i.e.

Ũn(x) := max{Ui−1, Ui, Ui+1} for x ∈ ωni , i = 2, . . . , n−1, (34a)

while at the boundary cells we set

Ũn(x) :=

{
max{U1, U2} for x ∈ ωn1 ,
max{Un−1, Un} for x ∈ ωnn .

(34b)

Replacing max with min and Ui with Wi in the definition above we define the

interpolant x 7→ W̃n(x) analogously. It is easy to check that W̃n → W in L∞(Ω),

too. Using the definitions of Ũn and W̃n we arrive at the estimate

W̃n(x)/Ũn(x) ≤ 1/Λ(ρi±1, ρi) for x ∈ ωni , i = 2, . . . , n−1.

Finally, we introduce the discrete gradient of the relative density ρi = ui/wi and the
interpolantQn for the discrete fluxes qi in (28) as the piecewise constant interpolants
Gn, Qn via

Gn(x) =
ρi+1 − ρi
xni+1 − xni

and Qn(x) = qi for x ∈
]
xni , x

n
i+1

[
, i = 1, . . . , n−1.

(35)
We are now in a position to state the following result which gives a lower estimate
for the discrete dissipation functional Rn in (28) and the discrete Fisher information
Fn in (29) for fixed n.
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Lemma 4.1. For a curve u ∈ C1
p(0, T ;Xn) let Ũn, Gn and Qn be the interpolants

defined in (34) and (35), then for all t ∈ [0, T ],

Rn(u(t), u̇(t)) ≥ γn
2

∫
Ω

|Qn(t)|2

Ũn(t)
dx and Fn(u(t)) ≥ 1

2

∫
Ω

(W̃n)2

Ũn(t)
|Gn(t)|2 dx

with γn → 1 for n→∞.

Proof. For notational simplicity we drop the dependence on t in the following. We
use the following estimate for the logarithmic mean

Λ(ρi+1, ρi) ≤
1

2

(
Ui+1

Wi+1
+
Ui
Wi

)
≤ max{Ui+1, Ui}

2

(
1

Wi+1
+

1

Wi

)
.

In particular, using the definition of the transmission coefficients κi in (25) we
obtain

λi := κi Λ(ρi+1, ρi) ≤
1

2

(√
Wi+1

Wi
+

√
Wi

Wi+1

)
max{Ui+1, Ui}
xni+1−xni

.

Due to the assumptions on the potential Φ the term in the parentheses tends to 2
uniformly in i. Hence, we can assume that γnλi ≤ max{Ui+1, Ui}/(xni+1−xni ) with
constants γn satisfying γn → 1 as n → ∞. Summing over cells instead of edges
(hence counting each edge twice) we estimate

Rn(u, u̇) =
1

4

q2
1

λ1
+

1

4

n−1∑
i=2

(
q2
i−1

λi−1
+
q2
i

λi

)
+

1

4

q2
n−1

λn−1

≥ γn
2

n∑
i=1

∫ σn
i

σn
i−1

|Qn|2

Ũn
dx =

γn
2

∫
Ω

|Qn|2

Ũn
dx,

where we have used that xni −σni−1 = (xni −xni−1)/2 for i = 2, . . . , n and σni −xni =
(xni+1−xni )/2 for i = 1, . . . , n−1.

The proof of the estimate for the discrete Fisher information follows along the
same lines noting that the estimate

1

κi
Λ(ρi+1, ρi) ≤

1

xni+1−xni
max{Ui+1, Ui}

min{Wi+1,Wi}2
for i = 1, . . . , n−1

is satisfied.

Combining (33) and Lemma 4.1 we arrive at the following proposition which is
the starting point for the limit passage n→∞ in the subsequent section.

Proposition 4.2. Let u ∈ C1
p(0, T,Xn) denote a solution of the discrete entropy/en-

tropy-dissipation formulation in (30). Then, the interpolants Un, Ũn, Gn and Qn

in (32), (34) and (35) satisfy the entropy/entropy-dissipation formulation

En
(
Un(T )

)
+

1

2

∫ T

0

∫
Ω

1

Ũn

[
|Qn|2 + (W̃n)2|Gn|2

]
dxdt ≤ En(Un0 ) (36)

with Qn associated with U̇n in virtue of

U̇n(t, xni ) =
Qn(t, σi)−Qn(t, σi−1)

σi − σi−1
for i = 1, . . . , n (37)

with boundary conditions Qn(t, σ0) = Qn(t, σn) ≡ 0.
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4.2. Proof of the main result. In this section we provide the actual proof of
the limit passage stated in Theorem 3.1. The main step relies in establishing a
lower liminf estimate for the entropies and dissipation functionals Jn. The notion of
convergence that we use here is that of weak* convergence in the space of probability

measures X . More precisely, we write µn
∗
⇀ µ in X if

∀Ψ ∈ Cb(Ω) :
∫

Ω
Ψ(x)µn( dx) −→

∫
Ω

Ψ(x)µ( dx) as n→∞.

Note that since the domain Ω is bounded, X is compact within this topology by
Prokhorov’s theorem.

After having embedded the discrete solutions of the Markov chain the next step
consists of describing the compactness properties of the interpolants Un. More
precisely, we show that we can extract (not relabeled) subsequences which converge
pointwise for each t ∈ [0, T ] in X . In particular, we show that the limit is continuous
with respect to the 1-Wasserstein distance. Here, we follow the proof of [3, Theorem
3.1] which is based on the dual formulation of the 1-Wasserstein distance:

dW1
(µ1, µ2) = sup

{ ∫
Ω

Ψ(x)µ1(dx)−
∫

Ω
Ψ(x)µ2(dx)

∣∣Ψ ∈ C0,1(Ω), ‖Ψ′‖∞ ≤ 1
}
.

We show that the family of discrete solutions is equicontinuous with respect to dW1

and apply a metric Arzelà-Ascoli theorem. To shorten notation we introduce the
open set ΩT = ]0, T [× Ω.

Proposition 4.3. With the same assumptions as in Theorem 3.1 let un be the
solution of the discrete entropy/entropy-dissipation formulation in (30) and Un the

associated piecewise constant interpolant, then, up to subsequences, Un(t)
∗
⇀ µ(t)

in X for all t ∈ [0, T ] and the limit measure satisfies µ ∈ C(0, T ;X ).

Proof. We consider Ψ ∈ C0,1(Ω) satisfying |Ψ′(x)| ≤ 1 for every x ∈ Ω. As before we
set Ψi = Ψ(xni ) and define the piecewise constant interplant Ψn(x) = Ψi for x ∈ ωni .
The dual formulation of the 1-Wasserstein distance gives for 0 ≤ t0 < t1 ≤ T

dW1

(
Un(t0), Un(t1)

)
≤
∫

Ω

Ψn(x)Un(t0, x) dx−
∫

Ω

Ψn(x)Un(t1, x) dx+ εn

=

∫ t1

t0

∫
Ω

Ψn(x)U̇n(t, x) dxdt+ εn,

where εn = 2‖Ψ−Ψn‖∞. Using summation by parts, the discrete continuity equa-
tion in (37) then yields∫ t1

t0

∫
Ω

Ψn(x)U̇n(t, x) dx dt = −
∫ t1

t0

∫
Ω

Qn(t, x)Ψ′(x) dxdt

≤
∫ t1

t0

n−1∑
i=1

(xni+1−xni )|qi(t)|dt ≤ C
√
t1−t0

(∫ T

0

n−1∑
i=1

|qi(t)|2

κiΛ(ρi+1(t), ρi(t))
dt

)1/2

.

Here, we used Hölder’s inequality and the conservation of total mass
∑n
i=1 ui = 1.

Indeed, exploiting Λ(a, b) ≤ (a+b)/2 and ρi = ui

Wihn
i

, we obtain the estimate

n−1∑
i=1

(xni+1−xni )
√
Wi+1Wi Λ(ρi+1, ρi) ≤

n−1∑
i=1

xni+1−xni
2

(√
Wi+1

Wi

ui
hni

+

√
Wi

Wi+1

ui+1

hni+1

)
.

Noting that hni+1 ≥ (xni+1−xni )/2 and hni ≥ (xni+1−xni )/2 we see that the sum is

uniformly bounded. Finally, since Rn(u, u̇) is uniformly bounded in L1(0, T ) we
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have shown the equicontinuity of t 7→ Un(t) ∈ X . Applying the metric Arzelà-
Ascoli theorem [2, Proposition 3.3.1] we obtain a (not relabeled) subsequence with

Un(t)
∗
⇀ µ(t) in X for all t ∈ [0, T ] and µ ∈ C(0, T ;X ).

Using the lower semicontinuity properties of the relative entropies (see e.g. [2,
Lemma 9.4.3]) and the convergence Wn → W in L∞(Ω) we obtain the following
corollary.

Corollary 4.4. The limit µ in Proposition 4.3 satisfies

for all t ∈ [0, T ] : lim inf
n→∞

En
(
un(t)

)
≥ E

(
µ(t)

)
.

It is easy to see that the limiting measures µ(t) are absolutely continuous with
respect to the Lebesgue measure on Ω and we denote µ(t, dx) = U(t, x) dx. In-
deed, let us consider the time-reversed curves ûn(t) = un(T−t), which satisfy
Jn(ûn; 0, T ) = Jn(un; 0, T ). Using the property (13) and the uniform boundedness
of the initial entropies and the dissipation functional we get supnEn(un(t)) < ∞
for every t ∈ [0, T ].

Moreover, we can canonically identify the curves Un with elements inM≥0(ΩT ).
In particular, we also have the weak* convergence of Un in this space, i.e.,

∀Ψ ∈ C(ΩT ) : limn→∞
∫ T

0

∫
Ω

ΨUn dxdt =
∫ T

0

∫
Ω

ΨU dxdt. (38)

Also note that the construction of the initial values un0 in (27) yields Un0
∗
⇀ U0

in X . Moreover, Un0 is a recovery sequence for En
Γ→ E , namely, using Jensen’s

inequality we obtain

lim sup
n→∞

En(un0 ) = lim sup
n→∞

En(Un0 ) ≤ E(U0) <∞. (39)

In the following lemma we show that the interpolant Ũn defined in (34) also
converges weakly* to U .

Lemma 4.5. With the same assumptions as in Theorem 3.1 let Un and Ũn be the
interpolants, given via (32) and (34), associated with the solution un of the discrete

entropy/entropy-dissipation formulation in (30), then Un − Ũn → 0 in L1(ΩT ) for
n→∞.

Proof. We again start out from a pointwise estimate in time (omitting again the

dependence on t if possible). Denoting Ũi = Ũn(x) for x ∈ ωni we compute∥∥Un − Ũn∥∥
L1(Ω)

=

n∑
i=1

hni
∣∣Ui − Ũi∣∣ ≤∑

i∈I+

hni
∣∣Ui−Ui+1

∣∣+
∑
i∈I−

hni
∣∣Ui−Ui−1

∣∣,
where the index sets I± correspond to the cases in which the maximum in (34)
is attained at the left and right of i, respectively. The relative densities ρi sat-
isfy Ui = Wiρi. Hence, the discrete analog of the product rule fi+1gi+1−figi =
fi+1(gi+1−gi) + gi(fi+1−fi) leads to the estimate∑

i∈I+

hni
∣∣Ui−Ui+1

∣∣ ≤∑
i∈I+

hni

(
ρi
∣∣Wi+1−Wi

∣∣+Wi+1

∣∣ρi+1−ρi
∣∣)

≤
∑
i∈I+

(
ui
∣∣ Wi

Wi+1
−1
∣∣+ hnWi+1|ρi−ρi+1|

)
,
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where we used that ui = hni Ui and hn = maxi h
i
n. The first term vanishes as n→∞

due to the continuity of x 7→ W (x) and
∑n
i=1 u

n
i = 1, which holds at every time.

The second term can be estimated from above using the inequality,

hn
∑
i∈I+

Wi+1|ρi−ρi+1| ≤ hn
∑
i∈I+

κi(ρi+1−ρi)2

Λ(ρi+1, ρi)

1/2∑
i∈I+

W 2
i+1

κi
Λ(ρi+1, ρi)

1/2

(40)
The first term is the square root of the discrete Fisher information Fn(u). It is
uniformly bounded in L2(0, T ) by assumption. Using the definition of κi in (25)
and that

∑n
i=1 ui = 1, we find that the second term is even uniformly bounded in

time. More precisely, we compute

W 2
i+1

κi
Λ(ρi+1, ρi) ≤

(xni+1−xni )W 2
i+1

2
√
Wi+1Wi

( Ui+1

Wi+1
+
Ui
Wi

)
≤
xni+1−xni

2hni+1

(Wi+1

Wi

) 1
2

ui+1 +
xni+1−xni

2hni

(Wi+1

Wi

) 3
2

ui,

where we used the elementary estimate Λ(a, b) ≤ (a+b)/2 again. Hence, we have

shown the strong convergence Un − Ũn → 0 in L1(ΩT ).

Corollary 4.6. The interpolant Ũn in (34) associated with the solution u of the
discrete entropy/entropy-dissipation formulation in (30) converges to U as in (38).

We are now in position to proof the lower liminf estimate for the dissipation
functional. The proof of the following proposition is based on [2, Theorem 5.4.4.].

Proposition 4.7. With the same assumptions as in Theorem 3.1 let un be the
solution of the discrete entropy/entropy-dissipation formulation in (30) and U the
limit in (38), then

lim inf
n→∞

∫ T

0

[
Rn(un, u̇n) +Fn(un)

]
dt ≥ 1

2

∫ T

0

∫
Ω

[
U |V |2 +

|U ′+UΦ′|2

U

]
dxdt, (41)

where (U, V ) ∈ CE, see Definition 2.2.

Proof. We define the velocity fields V n = Qn/Ũn and V̂ n = W̃nGn/Ũn. In partic-
ular, due to (36) and the boundedness of the initial entropies we have

sup
n

∫ T

0

∫
Ω

[
|V n|2 + |V̂ n|2

]
Ũn dx dt <∞. (42)

We proceed in four steps:
1. Extraction of converging subsequences. Here, we only argue for V n, the

case of V̂ n being analog. For brevity we denote y = (t, x) ∈ ΩT . Moreover, in
the space M≥0(ΩT×R) we introduce the family of measures given by the push-

forward µn = (id×V n)#Ũ
n. In particular, for all suitably integrable functions

g : ΩT × R→ R we have∫
R

∫
ΩT

g(y, v)µn(dy,dv) =

∫
ΩT

g
(
y, V n(y)

)
Ũn(y) dy.

We aim to show that the family of measures µn converges weakly* (up to sub-
sequences) to a limit µ ∈ M≥0(ΩT×R) and that a limit velocity field V can be
recovered from µ. For this we denote by π1(y, v) = y and π2(y, v) = v the canon-
ical projections onto ΩT and R, respectively. We note that the first marginal of
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π1
#µ

n = Ũn converges weakly in M≥0(ΩT ). Moreover, the second marginal satis-

fies due to (42)

sup
n

∫
R
|v|
(
π2

#µ
n
)
(dv) = sup

n

∫
ΩT

∣∣V n(y)
∣∣ Ũn(y) dy < +∞.

Hence, by [2, Lemma 5.2.2] the sequence µn is relatively compact inM(ΩT×R) and
we can find a (not relabeled) subsequence and a limit µ ∈ M≥0(ΩT×R) such that

µn
∗
⇀ µ inM≥0(ΩT×R). In particular, since by (42) v 7→ |v| is uniformly integrable

with respect to µn and by [2, Proposition 5.1.10], this yields the convergence

lim
n→∞

∫
R

∫
ΩT

Ψ(y)v µn(dy, dv) =

∫
R

∫
ΩT

Ψ(y)v µ( dy, dv), (43)

where Ψ ∈ C(ΩT ) is an arbitrary test function.
Let us denote by µy ∈M≥0(R) the disintegration of µ with respect to the limit

measure µ(dy)=U(y)dy, which is µ-a.e. uniquely determined, see [2, Section 5.3]. In
particular, for every bounded or nonnegative measurable function f : ΩT ×R→ R,
the disintegration satisfies∫

R

∫
ΩT

f(y, v)µ( dy, dv) =

∫
ΩT

[∫
R
f(y, v)µx(dv)

]
U(y) dy.

Choosing f(y, v) = v gives the barycentric projection V (y) =
∫
R v µy(dv) of the

measure µ. Now, using the definition of µn and the convergence in (43) with
Ψ ∈ C(ΩT ) arbitrary we arrive at

lim
n→∞

∫
ΩT

Ψ(y)V n(y)Ũn(y) dy =

∫
ΩT

Ψ(y)V (y)U(y) dy.

2. Lower liminf estimate. Let g : R → [0,∞[ be convex. Part (d) of
Lemma 5.1.12 in [2] and Jensen’s inequality yield

lim inf
n→∞

∫
ΩT

g
(
V n(y)

)
Ũn(y) dy = lim inf

n→∞

∫
R

∫
ΩT

g(v)µn( dy, dv)

≥
∫
R

∫
ΩT

g(v)µ( dy, dv) ≥
∫

ΩT

g

(∫
R
v µy(dv)

)
U(y) dy

=

∫
ΩT

g(V (y))U(y) dy.

In particular, for g(v) = |v|2 we obtain

lim inf
n→∞

∫ T

0

[
Rn(u, u̇) + Fn(u)

]
dt ≥ 1

2

∫ T

0

∫
Ω

U(t, x)
[
|V (t, x)|2 + |V̂ (t, x)|2

]
dxdt.

3. Identification of the limit V . In this step we verify that the limits U and V
satisfy the Wasserstein continuity equation, i.e., (U, V ) ∈ CE. To this end, let us
consider a test function Ψ ∈ C∞c (]0, T [×R) and define Ψi(t) = Ψ(t, xni ) as well as
the piecewise constant interpolant Ψn, i.e., we have Ψn(t, x) = Ψi(t) for x ∈ ωni .
Using integration by parts and (37) we obtain

−
∫ T

0

∫
Ω

Un(t, x)Ψ̇(t, x) dxdt =

∫ T

0

n∑
i=1

Ψi(t)
{
Qn(σi, t)−Qn(σi−1, t)

}
dt− εn,
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where εn = ‖Ψ̇−Ψ̇n‖∞ → 0 as n → ∞. Hence, summation by parts leads to the
identity

−
∫ T

0

∫
Ω

Un(t, x)Ψ̇(t, x) dxdt+ εn =

∫ T

0

n−1∑
i=1

Qn(t, σi)
{

Ψi(t)−Ψi+1(t)} dt

= −
∫ T

0

∫
Ω

V n(t, x)Ψ′(t, x)Ũn(t, x) dt,

(44)

where we have used the boundary conditions Qn(t, σ0) = Qn(t, σn) = 0. Now, using

the convergence of Un, Ũn and V n as in (43), we can pass to the limit in (44) to
find ∫ T

0

∫
Ω

U(t, x)Ψ̇(t, x) dxdt =

∫ T

0

∫
Ω

V (t, x)Ψ′(t, x)U(t, x) dt,

which is the verification of the continuity equation. Notice that although Ω is
bounded, the continuity equation is posed on the whole real line R and therefore
provides a weak formulation of the Neumann boundary conditions.

4. Identification of the limit V̂ . We show that V̂ = U ′/U + Ψ′, which identifies
the continuum Fisher information. We fix again a smooth test vector field Ψ ∈
C∞c (]0, T [× Ω) and using (35) we compute∫ T

0

∫
Ω

V̂ nΨŨn dxdt =

∫ T

0

n−1∑
i=1

ρi+1−ρi
xni+1 − xni

∫ xn
i+1

xn
i

W̃nΨ dxdt

=

∫ T

0

n−1∑
i=1

(
ρi+1(t)−ρi(t)

){
W (σi)Ψ(t, σi)

+
1

xni+1 − xni

∫ xn
i+1

xn
i

[
W̃n(x)Ψ(t, x)−W (σi)Ψ(t, σi)

]
dx
}

dt.

Due to the assumptions on the potential Φ and the smoothness of the test field Ψ
the last term in the braces vanishes as n → ∞. Hence, with summation by parts
we obtain∫ T

0

∫
Ω

V̂ nΨŨn dxdt = −
∫ T

0

n∑
i=1

ρi(t)
{
W (σi)Ψ(t, σi)−W (σi−1)Ψ(t, σi−1)

}
dt+ εn

=

∫ T

0

∫
Ω

Un
(WΨ)′

Wn
dxdt+ εn.

Finally, passing to the limit n → ∞ and exploiting that 1/W ∈ L∞(Ω) yields the
identity∫ T

0

∫
Ω

V̂ΨU dxdt = −
∫ T

0

∫
Ω

U
(WΨ)′

W
dxdt = −

∫ T

0

∫
Ω

U(Ψ′−Φ′Ψ) dxdt.

Hence, we obtain V̂ = U ′/U + UΦ′.

Proof of Theorem 3.1. Since the limit satisfies (U, V ) ∈ CE, i.e., the Wasserstein
continuity equation is satisfied, we have U ∈ AC(0, T ;X ) by Proposition 2.3. More-
over, combining Corollary 4.4, Proposition 4.7, and the limsup estimate for the
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initial entropies in (39) we arrive at

E(U(T )) + J (U ; 0, T ) ≤ lim inf
n→∞

[
En
(
un(T )

)
+ Jn(un; 0, T )

]
≤ lim sup

n→∞
En(un(0)) ≤ E(U0).

Hence, with Definition 2.1 we have shown that U is a solution for the Wasserstein
formulation of the Fokker-Planck equation.

4.3. Recovery sequences for the dissipation functional. For the limit passage
in the proof of Theorem 3.1 we only need to proof the lower estimate for the dissi-
pation functional. However, to complete the picture we provide the construction of
recovery sequences to show that the converse estimate is also satisfied.

Proposition 4.8 (Recovery sequence). For all µ ∈ AC2(0, T ;X ) with µ(dx) = Udx

there exists a sequence ûn ∈ C1([0, T ];Xn) such that Ûn(t)→ µ(t) in X and

lim sup
n→∞

Jn(ûn; 0, T ) ≤ J (U ; 0, T ). (45)

Proof. Let U ∈ AC2(0, T ;X ) be such that J (U ; 0, T ) is finite, which yields U ∈
L1(0, T ; W1,1(Ω)), cf. (16). By adapting the mollification argument of Lemma 8.1.9
in [2] we find smooth approximations Uδ and Vδ satisfying Uδ ∈ C1(0, T ; C∞(Ω))
and (Uδ, Vδ) ∈ CE. Moreover, we have Uδ > 0, Uδ(t) → U(t) in X , for δ → 0, as
well as the estimates∫ T

0

∫
Ω

Vδ(t, x)2Uδ(t, x) dxdt ≤
∫ T

0

∫
Ω

V (t, x)2U(t, x) dx dt

and∫ T

0

∫
Ω

W (x)2

Uδ(t, x)

(
(Uδ(t, x)/W (x))′

)2
dxdt ≤

∫ T

0

∫
Ω

W (x)2

U(t, x)

(
(U(t, x)/W (x))′

)2
dxdt

(see also [2, Lemma 8.1.10]). Hence, by a simple diagonal argument it suffices to
construct a recovery sequence for every smooth U ∈ C1(0, T ; C∞(Ω)).

In this case we define ûni (t) = ĉnh
n
i U(t, xni ), where ĉn is chosen such that ûn ∈

Xn, i.e.
∑n
i=1 û

n
i = 1. Using Λ(a, b) ≥

√
ab and denoting ρ̂ni = ûni /w

n
i we proceed

similar to the proof of Proposition 4.7 to verify that

lim
n→∞

∫ T

0

n−1∑
i=1

κni
(
ρ̂ni+1(t)−ρ̂ni (t)

)2
Λ(ρ̂ni+1(t), ρ̂ni (t))

dt =

∫ T

0

∫
Ω

W (x)2

U(t, x)

(
(U(t, x)/W (x))′

)2
dxdt.

(46)

Moreover, with q̂i(t) := cn
∑i
k=1

˙̂u
n

k (t) for i = 1, . . . , n−1 we have that the asso-

ciated piecewise constant interpolant defined by Q̂(t, x) = q̂i(t) for x ∈ ]xni , x
n
i+1]

converges uniformly to Q with Q(t, x) =
∫ x

0
U̇(t, y) dy for all t ∈ [0, T ]. From this,

we infer that

lim
n→∞

∫ T

0

n−1∑
i=1

q̂i(t)
2

κni Λ(ρ̂ni+1(t), ρ̂ni (t))
dt =

∫ T

0

∫
Ω

Q(t, x)2

U(t, x)
dxdt, with U̇ = Q′.

Hence, combined with (46) this gives the upper estimate (45).
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