Loading [MathJax]/jax/output/SVG/jax.js

Asymptotic analysis in elasticity problems on thin periodic structures

  • Received: 01 May 2009 Revised: 01 May 2009
  • Primary: 58F15, 58F17; Secondary: 53C35.

  • Thin periodic structures depend on two interrelated small geometric parameters ε and h(ε) which control the thickness of constituents and the cell of periodicity. We study homogenisation of elasticity theory problems on these structures by method of asymptotic expansions. A particular attention is paid to the case of critical thickness when limε0h(ε)ε1 is a positive constant. Planar grids are taken as a model example.

    Citation: S. E. Pastukhova. Asymptotic analysis in elasticity problems on thin periodic structures[J]. Networks and Heterogeneous Media, 2009, 4(3): 577-604. doi: 10.3934/nhm.2009.4.577

    Related Papers:

    [1] S. E. Pastukhova . Asymptotic analysis in elasticity problems on thin periodic structures. Networks and Heterogeneous Media, 2009, 4(3): 577-604. doi: 10.3934/nhm.2009.4.577
    [2] Grigory Panasenko, Ruxandra Stavre . Asymptotic analysis of a non-periodic flow in a thin channel with visco-elastic wall. Networks and Heterogeneous Media, 2008, 3(3): 651-673. doi: 10.3934/nhm.2008.3.651
    [3] V. V. Zhikov, S. E. Pastukhova . Korn inequalities on thin periodic structures. Networks and Heterogeneous Media, 2009, 4(1): 153-175. doi: 10.3934/nhm.2009.4.153
    [4] Lifang Pei, Man Zhang, Meng Li . A novel error analysis of nonconforming finite element for the clamped Kirchhoff plate with elastic unilateral obstacle. Networks and Heterogeneous Media, 2023, 18(3): 1178-1189. doi: 10.3934/nhm.2023050
    [5] Ciro D’Apice, Umberto De Maio, T. A. Mel'nyk . Asymptotic analysis of a perturbed parabolic problem in a thick junction of type 3:2:2. Networks and Heterogeneous Media, 2007, 2(2): 255-277. doi: 10.3934/nhm.2007.2.255
    [6] Mustapha El Jarroudi, Youness Filali, Aadil Lahrouz, Mustapha Er-Riani, Adel Settati . Asymptotic analysis of an elastic material reinforced with thin fractal strips. Networks and Heterogeneous Media, 2022, 17(1): 47-72. doi: 10.3934/nhm.2021023
    [7] Grigory Panasenko, Ruxandra Stavre . Asymptotic analysis of the Stokes flow with variable viscosity in a thin elastic channel. Networks and Heterogeneous Media, 2010, 5(4): 783-812. doi: 10.3934/nhm.2010.5.783
    [8] Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, Adrian Muntean . Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers. Networks and Heterogeneous Media, 2014, 9(4): 709-737. doi: 10.3934/nhm.2014.9.709
    [9] Debora Amadori, Stefania Ferrari, Luca Formaggia . Derivation and analysis of a fluid-dynamical model in thin and long elastic vessels. Networks and Heterogeneous Media, 2007, 2(1): 99-125. doi: 10.3934/nhm.2007.2.99
    [10] Antoine Gloria Cermics . A direct approach to numerical homogenization in finite elasticity. Networks and Heterogeneous Media, 2006, 1(1): 109-141. doi: 10.3934/nhm.2006.1.109
  • Thin periodic structures depend on two interrelated small geometric parameters ε and h(ε) which control the thickness of constituents and the cell of periodicity. We study homogenisation of elasticity theory problems on these structures by method of asymptotic expansions. A particular attention is paid to the case of critical thickness when limε0h(ε)ε1 is a positive constant. Planar grids are taken as a model example.


  • This article has been cited by:

    1. Kirill Cherednichenko, Shane Cooper, HOMOGENIZATION OF THE SYSTEM OF HIGH‐CONTRAST MAXWELL EQUATIONS, 2015, 61, 0025-5793, 475, 10.1112/S0025579314000424
  • Reader Comments
  • © 2009 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3765) PDF downloads(105) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog