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Electronics and Automatics (Technical University)

(Communicated by Leonid Berlyand)

Abstract. Thin periodic structures depend on two interrelated small geomet-
ric parameters ε and h(ε) which control the thickness of constituents and the
cell of periodicity. We study homogenisation of elasticity theory problems on
these structures by method of asymptotic expansions. A particular attention
is paid to the case of critical thickness when lim

ε→0
h(ε)ε−1 is a positive constant.

Planar grids are taken as a model example.

1. Introduction. Figure 1 displays a periodic grid Fh composed of strips of width
2h > 0. The periodicity cell � = [− 1

2 ,
1
2 )2 is shown by a dashed line. As h→ 0, the

thin grid Fh transforms into an infinitely thin grid F 0 = F (see Fig. 1), which is
called a singular grid. This is only a model example. The results presented below
are valid for fairly general grids without symmetries as rich as in the present one.

Figure 1.

Let µh(h ≥ 0 and µ0 = µ) denote a measure supported by Fh proportional to
a two-dimensional Lebesgue measure (for h > 0) or a one-dimensional Lebesgue
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measure (for h = 0), and normalized by the condition
∫

�

dµh = 1.

It is clear that µh ⇀ µ as h ↓ 0. A contraction maps Fh (h > 0) into the ε-periodic
grid Fh

ε = εFh, which supports the measure µh
ε , µ

h
ε (B) = ε2µh(ε−1B) for any Borel

set B ⊂ R
2. Furthermore, we relate the parameters ε and h in such a manner that

h(ε) → 0 as ε→ 0.
It was found in [13], that the elastic properties of periodic structures manifest a

qualitative difference depending on the value of the limit lim
ε
h(ε)/ε, and according

to this, thin structures were classified as
(i) sufficiently thick structures if h(ε)/ε→ ∞;
(ii) structures of critical thickness if h(ε)/ε→ θ > 0;
(iii) sufficiently thin structures if h(ε)/ε→ 0.

Let A = {aijsp} be a symmetric and positive definite elasticity tensor:

aijsp = ajisp = aspij , Aξ · ξ ≥ c0ξ · ξ, c0 > 0.

In the case of an isotropic tensor, we have

Aξ = kξ + k1Etrξ, trξ = ξ11 + ξ22,

E =

(

1 0
0 1

)

, ξ =

(

ξ11 ξ12
ξ12 ξ22

)

, k > 0, k1 ≥ 0.
(1)

A bounded domain Ω ⊂ R
2 with a smooth boundary is associated with a perfo-

rated domain Ωε,h = Ω∩Fh
ε and the space Wε,h that is the closure of C∞

0 (Ω)2 with
respect to the norm

(
∫

Ωε,h

(|ϕ|2 + |e(ϕ)|2)dx

)
1

2

,

where e(ϕ) = 1
2{

∂ϕi

∂xj
+

∂ϕj

∂xi
} is the strain tensor or symmetric gradient of the vector

ϕ.
Consider the problem

uε,h ∈Wε,h,

∫

Ωε,h

Ae(uε,h) · e(ϕ)dx =

∫

Ωε,h

f · ϕdx ∀ϕ ∈ C∞
0 (Ω)2, (2)

where f ∈ C∞(Ω̄)2. This is a generalized or variational statement of the boundary
value problem for the elasticity system in Ωε,h:

−divAe(uε,h) = f in Ωε,h, uε,h|∂Ω∩F h
ε

= 0, Ae(uε,h) · n|∂F h
ε ∩Ω = 0,

with the clamping condition on ∂Ω∩Fh
ε and with no stress condition on the remain-

ing part of the boundary of Ωε,h. Here n is the outward normal to the boundary.
The following Korn inequality is valid, see [15]:

∫

Ωε,h

|ϕ|2dx ≤ C0

(

1 +

(

ε

h

)2) ∫

Ωε,h

|e(ϕ)|2dx ∀ϕ ∈ C∞
0 (Ω)2, C0 = const(Ω, F ).

(3)
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For thin structures Fh
ε of the first two types (i) and (ii) inequality (3) provides the

boundedness of the solutions uε,h:

lim sup
ε→0

1

|Ωε,h|

∫

Ωε,h

(|uε,h|2 + |e(uε,h)|2)dx <∞.

Our goal is to investigate the asymptotic behavior of the sequences uε,h, e(uε,h)
when ε → 0, in other words, to prove homogenization principle. The most compli-
cated is the case of critical thickness. We begin with it. The result can be formulated
and proved by means of the two-scale convergence in a variable L2-spaces on Ω∩Fh

ε

introduced by Zhikov in [13]. This approach (involving the two-scaled convergence)
is the most general, for, it serves under the minimal regularity assumptions (on the
domain Ω, elasticity tensor A and right-side function f in the equation) and can be
adapted to the nonlinear case.

Homogenization for elasticity problems on a plane periodic grid of the critical
thickness was obtained by the method of the two-scale convergence in [16] (as for
three-dimensional structures, see [11]). In the present paper we reject this approach
and return to the classical method of asymptotic expansions. We prove a corrector
theorem that refines the result of [16].

At first we begin with asymptotic expansion

uε,h(x) = u0(x) + εuh
1(x,

x

ε
) + ε2uh

2(x,
x

ε
) + ε3uh

3(x,
x

ε
) + ...

as if h>0 does not depend on ε. This expansion is common for scalar problems and
elasticity problems in classical perforated domains, see [2]. Functions uh

i (x, ·) are
found as solutions of certain periodic problems on Fh. When we try to take here
the limit as h→ 0, there appears difference between scalar and vector problems.

In scalar case the above expansion is uniform in h, and passing to the limit can be
performed in the component uh

i itself, thanks to some uniform estimates. Nothing
depends on how h(ε) → 0.

On contrary, in elasticity problems passing to the limit is possible only in the
products εiuh

i and the relation between h(ε) and ε is essential. For instance, if
h = θε, then θ2ε2uh

2 → χ 6≡ 0 in some sence. So the term χ must be included in the
zero approximation.

Really, we have the following result in the critical case.

Theorem 1.1. There is the convergence

1

|Ωε,h|

∫

Ωε,h

|uε,h(x) − u0(x) − χ(x,
x

ε
)|2dx→ 0. (4)

Here u0(x) is the solution to the usual homogenized problem in the domain Ω, see
(13), and χ(x, ·) is the solution of some periodic equation on the singular structure
F . So, initially χ(x, ·) is found on F , while for integration in (4) it must be defined
on Fh. To this end, we extend χ to Fh in some natural fashion.

For convergence with gradient, the more complicated relation holds.

Theorem 1.2. There is the convergence

1

|Ωε,h|

∫

Ωε,h

|e(uε,h(x) − u0(x) − χ(x,
x

ε
) − εu1(x,

x

ε
) − εg(x,

x

ε
))|2dx→ 0. (5)
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Here, there are correctors for both terms of the zero approximation. The term
εu1(x,

x
ε ) is a classical corrector, i.e. u1(x, y) = eij(u0(x))N

ij(y) and the vector

N ij(y) is the solution of canonical cell problem. The second corrector εg(x, y)
is related to zero term χ(x, y), namely, ey(g)=−ex(χ) on F . For example, on
horizontal link I ⊂ F we have

−ex(χ)|I =

(

0 α(x, y1)
α(x, y1) β(x, y1).

)

=⇒ g(x, y) = y2(2α(x, y1), β(x, y1)).

The result on the homogenization of the problem (1.2) close to ours in its formu-
lation was obtained in [3] by unfolding method related to the two-scale convergence
of Nguetseng and Allaire [8], [1]. The homogenization of elasticity problems on thin
periodic rod structures was studied for the first time in the works of G.P. Panasenko
(see e.g. [9] and given there references), who used to this end the method of asymp-
totic expansions which differs from ours. The main result in [9] also has a different
form. The problem considered there is set on the torus, in absence of the boundary
formal expansions of arbitrary high order are constructed and their closeness to the
exact solution is discussed.

Few words about organisation of this paper. The derivation of homogenisation
theorems is rather complicated. To make it more transparent, we first sketch it
explaining the main ideas. Sections 2-4 are devoted to the direct proof of this limit
result. Here, we unfold the brief survey [12]. Auxiliary material concerning thin
structures Fh is located in Appendices. In order to give a self-contained exposition,
we prefer not to make references to previous papers [16], [12], [17] but reproduce
most of the necessary results from them, with proof.

2. Asymptotic expansions. In this Section we formulate some preliminary ho-
mogenization result for the problem (2), see Th.2.3, and sketch its proof, demon-
strating main ideas of our method.
1◦. We introduce the divergence operator with respect to µh

ε . Given a matrix Φ(x)
and a vector b(x) from L2(Ωε,h), the equality divΦ = b (with respect to µh

ε ) means,
by definition, that the integral identity

∫

Ω

Φ · e(ϕ)dµh
ε = −

∫

Ω

b · ϕdµh
ε ∀ϕ ∈ C∞

0 (Ω)2 (6)

holds true. Now, problem (2) can be written as the equation

uε,h ∈Wε,h, −divAe(uε,h) = f (with respect to µh
ε ). (7)

Define the divergence operator with respect to the periodic measure µh. For
Φ(y), b(y) ∈ L2

per(�, dµ
h), where Φ(y) is a matrix and b(y) is a vector, the equality

divyΦ = b (with respect to µh) means that the integral identity
∫

�

Φ · e(ϕ)dµh = −

∫

�

b · ϕdµh ∀ϕ ∈ C∞
per(�)2 (8)

holds true.
For a symmetric matrix Φ(x, y) (y = ε−1x) that is smooth with respect to x and

1-periodic with respect to y, we use the formula

divΦ = divxΦ + ε−1divyΦ. (9)
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Here, divΦ is the divergence with respect to µh
ε , divyΦ is the divergence with respect

to µh for a fixed x, and divxΦ is the ordinary divergence (i.e., divxΦ =
∂Φij

∂xj
).

Equality (9) means that the integral identity

−

∫

Ω

Φ · e(ϕ)dµh
ε =

∫

Ω

divxΦ · ϕdµh
ε + ε−1

∫

Ω

b · ϕdµh
ε , b = divyΦ

holds for any ϕ ∈ C∞
0 (Ω)2. Its verification is straightforward due to (6), (8) in the

case of factorization Φ(x, y) = ϕ(x)ψ(y) which is sufficient for us. When h(ε) ≡ 0
and µ0

ε = µε is a measure supported on ε-periodic singular structure Fε = F 0
ε , the

relation (9) was proved in [13, Sect.18]. For thin structures, when h > 0, the proof
is similar.
2◦. An approximation to the exact solution of problem (7) is sought in the form

U(x, y) = u0(x) + εuh
1 (x, y) + ε2uh

2(x, y) + ε3uh
3 (x, y), y = ε−1x, (10)

where u0(x) and uh
i (x, y) (i = 1, 2, 3) are smooth functions of x and one-periodic

functions of y ∈ Fh.
It follows from (10) and (9) that

e(U) = ex(u0)+ ey(uh
1 )+ ε(ex(uh

1 )+ ey(uh
2))+ ε2(ex(uh

2 )+ ey(uh
3 ))+ ε3ex(uh

3 ) (11)

divAe(U) = ε−1[divyA(ex(u0) + ey(u
h
1 ))]+

+[divyA(ex(uh
1 ) + ey(u

h
2 )) + divxA(ex(u0) + ey(uh

1))]+

+|ε[divyA(ex(uh
2 ) + ey(u

h
3 )) + divxA(ex(u1) + ey(u

h
2 ))]+

+ε2divxA(ex(uh
2 ) + ey(u

h
3 )) + ε3divAex(uh

3 ).

(12)

Making the residual of U in Eq. (7) small, we obtain problems for determining
u0, u

h
i , i = 1, 2, 3. The function u0(x) solves the homogenized problem

− divxA
home(u0) = f in Ω, u0|∂Ω = 0, (13)

where

Ahomξ · ξ = inf
ϕ∈C∞

per(�)2

∫

�

A(ξ + e(ϕ)) · (ξ + e(ϕ))dµ. (14)

The tensor Ahom
h is defined by a formula similar to (14):

Ahom
h ξ · ξ = inf

ϕ∈C∞

per(�)2

∫

�

A(ξ + e(ϕ)) · (ξ + e(ϕ))dµh. (15)

It is well known [13, Sect. 16] that Ahom
h → Ahom.

The functions uh
i (x, ·) (i = 1, 2, 3) are solutions to the cell problems

uh
1 (x, ·) ∈ H1

per(�, dµ
h)2 divyA(ex(u0) + ey(u

h
1 )) = 0; (16)

uh
2 (x, ·) ∈ H1

per(�, dµ
h)2, −divyA(ex(uh

1 ) + ey(uh
2 )) =

divxA(ex(u0) + ey(u
h
1 )) − divxA

hom
h ex(u0); (17)

uh
3(x, ·) ∈ H1

per(�, dµ
h)2,

−divyA(ex(uh
2 ) + ey(uh

3 )) = divxA(ex(u1) + ey(u
h
2 )) + gh(x),

(18)

where gh(x) = −
∫

�

divxA(ex(uh
1 ) + ey(u

h
2 ))dµh.
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Cell problems are solvable not uniquely. We consider only solutions with zero
mean value over the circle Bh = {x : |x| < h} that may be properly estimated, see.
Sect. 3.3.
3◦. Taking u0 and uh

i from above problems, we obtain (see (12))

divAe(U) − divxA
hom
h ex(u0) =

= ε3divAex(uh
3 ) + ε2divxA(ex(uh

2 ) + ey(u
h
3 )) − εFh(x).

(19)

Via ex(u0), involved in Eq. (16), the solution uh
1 is a function of x, which is

treated as a parameter. The solutions uh
2 and uh

3 are also functions of x. Impor-
tantly, the functions uh

i (x, y) have the sum structure
∑

aj(x)b
h
j (y), aj ∈ C∞(Ω̄), bhj ∈ L2(Y, dµh)2 (20)

where aj(x) are expressed in terms of u0(x), and bhj (y) are solutions to canonical
cell problems.

It follows from (19) that

− divAe(uε,h − U) = rh(x, ε−1x) + divRh(x, ε−1x), (21)

where rh(x, y) = ε2divxA(ex(uh
2 ) + ey(uh

3 )) − εFh(x) − divx(Ahom
h − Ahom)ex(u0)

and Rh(x, y) = ε3Aex(uh
3 ).

In what follows, we say that vε,h(x) ∈ L2(Ωε,h) ≡ L2(Ω, dµh
ε ) converges (strongly)

to zero in L2(Ωε,h): vε,h → 0 in L2(Ωε,h), if
∫

Ω

|vε,h|2dµh
ε → 0.

0ur goal is to prove convergence in L2(Ωε,h):

uε,h(x) − U(x, ε−1x) → 0,

e(uε,h(x) − U(x, ε−1x)) → 0.
(22)

To this end, starting from energy estimates for vε,h ∈ Wε,h, −divAe(vε,h) =
g0 + divg (with respect to µh

ε ), we have to prove, first of all, the convergence
of the functions appearing on the right-hand side of (21): rh(x, ε−1x) → 0 and
Rh(x, ε−1x) → 0 in L2(Ωε,h). Since rh(x, y) and Rh(x, y) have structure (20), the
last relations follow from

∫

�

|rh(x, y)|2dµh(y) → 0,

∫

�

|Rh(x, y)|2dµh(y) → 0 ∀x, (23)

thanks to
The mean value property (see [13, Sect. 12]. Suppose that ah ∈ L1

per(�, dµ
h),

ah ≥ 0, and lim
h→0

∫

�

ahdµh = α <∞. Then

lim
ε→0

∫

Ω

ϕ(x)ah(ε−1x)dµh
ε = α

∫

Ω

ϕ(x)dx, ϕ ∈ C(Ω̄).

4◦. Now we explain how to prove (23). Solutions uh
i (x, ·) have to be analyzed in

detail, because their L2-estimates due to the equations, when based only on Korn’s
inequality, are crude: uh

i (x, ·) ∼ h−i, whence rh ∼ 1 and Rh ∼ 1. However, fine
properties of the equations (16)-(18), we are going to reveal, imply the desired
relations.

Lemma 2.1. For any x, the following convergence holds in L2(�, dµh):

huh
1 → 0, h3uh

3 → 0, h2uh
2 → v 6= 0,

hey(uh
2 ) ⇀ 0, h2(ex(uh

2 ) + ey(uh
3 )) → 0.

(24)
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This lemma is really crucial in our considerations. Its proof is given in Sect.
3.4. Lemma 2.1 makes use of the convergence in the variable space L2(�, dµh), see
[13, 17] and Appendix B.

Definition 2.2. We say that vh ∈ L2(�, dµh) is bounded if lim sup
h→0

∫

�

|vh|2dµh <∞.

Bounded in L2(�, dµh) sequence vh

(i) converges weakly to an element v ∈ L2(�, dµ) : vh⇀v, if
∫

�

vhϕdµh→
∫

�

vϕdµ ∀ϕ ∈

C∞
per(�);

(ii) converges strongly to v ∈ L2(�, dµ) : vh → v, if
∫

�

vhwhdµh →
∫

�

vwdµ whenever

wh ⇀ w.

5◦. In addition to the difficulty concerning the right-hand side of (21), there is
another difficulty, namely, the difference uε,h −U(x, ε−1x) does not satisfy the zero
conditions on ∂Ω. This difficulty is resolved by localization thanks to structural
features of limits of functions being in (24), see Sect.4.

Finally, we come to

Theorem 2.3. Let uε,h be a solution to problem (2.2) and the function U(x, ε−1x)
be defined by (2.5) and (2.8)-(2.13). Then (2.17) holds.

Theorems 1.1 and 1.2 become the corollaries of Th.2.3, see their derivation in
Sect.4. Homogenization result for structures with other type of thickness - not
critical - is also given in Sect.4.

3. Passing to the limit in cell problems.

3.1. About method. Our main goal is to prove Lemma 2.1 and to this end we
need to pass to the limit in the cell problems (16)-(18). Preliminary, we, first,
develop necessary analysis in variable L2-spaces on thin structures, and, second,
investigate the general periodic elasticity problem on thin grid Fh.

Asymptotic analysis on thin structures has been subject matter of a huge number
of publications, among which we mention the monographs by Ciarlet [4], Nazarov
[5], and Panasenko [10], where further references can be found. We would like to
distinguish the interesting works of Nazarov and Slutskii [6, 7] devoted to elasticity
problems on rod junctures, which have most of all influenced our approach to these
problems. In [17] non-periodic elasticity problem (even nonlinear) on thin struc-
ture related to connected finite graph F of generic geometry was studied and limit
equation on F was derived. In Appendices we reproduce for periodic case basic
results from [17]. The solution uh of the elasticity problem on a thin structure Fh

has certain properties of boundedness, say, huh, e(uh) on each rod Ih ⊂ Fh are
bounded in variable L2-norm. It seems natural to consider, first of all, an arbitrary
sequence of vector-valued functions uh with these properties of boundedness. We
derive “structural” theorems of the following type: the limit of every such sequence
satisfies conjugation conditions at the nodes, as well as some other requirements
whose combination determines the “energy space” of the limit problem on F . After
this, passing to the limit in the integral identity (on the basis of some “density the-
orems”) yields a problem on the graph F . As a corollary we extract all the relations
(24) when we take into account the specific features of each cell problem.
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3.2. Structural Theorems for limit of vector-functions. We are going to in-
troduce two spaces of vector-valued functions on the limit structure F . They will
naturally appear in forthcoming structural theorems for limit of periodic vector-
fields convergent in L2(�, dµh) under some boundedness conditions. Here and here-
after often, we make no difference in notation of L2-spaces of scalar- or vector-valued
functions if there is no confusion. In this Section we consider only sequences which
are bounded or convergent in L2(�, dµh), so we say in this situation simply that
sequences are bounded or convergent.

On every link I from F we choose (from two alternatives) a right pair consisting
of a longitudinal and a transverse unit vectors τ , ν. Note that τ = (τ1, τ2).
1◦. The space T is the set of all 1-periodic vector-fields u defined on F and satisfying
the following conditions:

(i) (tangentiality) u · ν = 0 everywhere outside the nodes;
(ii) (smoothness) u · τ ∈ H1(I) for every link I;
(iii) (conjugation at the nodes) for every node O, there is a vector C such that

(u− C) · τj |O = 0, j = 1, 2, . . . ,m, (25)

where I1, ..., Im are all links joining the nodeO with directional unit vectors τ1, ..., τm.
The norm in T is defined as the sum of H1-norms on each link I from F ∩ �.
Let us clarify the conjugation condition (25). Consider two m-dimensional vec-

tors, composed of corresponding coordinates of directional vectors τj :

τ (1) = (τ1
1 , . . . , τ

1
m), τ (2) = (τ2

1 , . . . , τ
2
m).

Then the conjugation condition (25) is equivalent to the condition

(u · τ1, u · τ2, . . . , u · τm)|O ∈ L(τ (1), τ (2)), (26)

where L(τ (1), τ (2)) is the linear hull of τ (1), τ (2) in R
m. Hence, it is easy to see that

in the case of m = 2 condition (25) is always satisfied.
The following proposition gives another representation of the space T .

Theorem 3.1 (Density theorem). The longitudinal components of the vectors from
C∞

per(�)2 are dense in the space T .

This theorem can be obtained as a corollary from a result about Sobolev spaces
of the elasticity theory on singular structures [13, Lemma 6.1]. For the convenience
of the reader, we give a somewhat different proof in Appendix E.

Theorem 3.2. Suppose that the sequence uh∈H1
per(�, dµ

h)2 is such that uh
τ=(uh ·

τ)τ, e(uh) are bounded and uh
τ ⇀ u. Then u ∈ T .

Some remark about the longitudinal component uh
τ = (uh · τ)τ . It can be found

uniquely on each h-rod Ih, related to the link I. But on Fh, in the neighborhood of
nodes, we deal with the bundle of such rods. So at the points, where two or more
h-rods intersect, we sum longitudinal components, defined on each h-rod.

For scalar-valued functions there is a simpler analogue of Theorem 3.2.

Theorem 3.3. Suppose that the sequence uh ∈ H1
per(�, dµ

h) is such that uh, ∇uh

are bounded and uh ⇀ u. Then, u|I ∈ H1(I) at every link I and u is continuous at
every node. Moreover, the convergence of uh to u is strong, uh → u.

2◦. The space N is the set of all 1-periodic vector-fields v defined on F and satisfying
the following conditions:
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(i) (transversality) v · τ = 0 everywhere outside the nodes;
(ii) (smoothness) v · ν ∈ H2(I) for every link I;
(iii) (clamping) v = 0 at every node of F ;
(iv) (conjugation at the nodes) for every node O

(v · νi)
′|O = (v · νj)

′|O, i, j = 1, 2, . . . ,m, (27)

where I1, ..., Im are all links joining the node O and the prime denotes the longitu-
dinal derivative,

(v · ν)′ =
d(v · ν)

dτ
.

The norm in N is defined as the sum of H2-norms on each link I from F ∩ �.
Obviously, the derivative d(v·ν)

dτ = (v · ν)′ does not depend on the choice of the
vector τ . Similarly, the vector ν(v · ν)′′ does not depend on the choice of τ and
is denoted by v′′. Thus, we can define, in an invariant manner, odd derivatives
of the projection, (v · ν)′, (v · ν)′′′, . . . , as well as even derivatives of the vector,
v′′, v′′′′, . . .. The situation is similar with the longitudinal vector u, for which we
can give invariant definitions of (u · τ)′, u′′.

Remark 1. Properties (i)-(iv) imply that in a neighborhood of the node, the vector
v can be well-approximated by rigid displacements

tω(x), ω(x) = (−x2, x1), t ∈ R
1. (28)

Indeed, suppose that the node coincides with the origin. We have on the link Ij

v(x) · νj = vj(s), s = x · τj , 0 ≤ s ≤ 1,

According to (ii)-(iv),

vj ∈ H2(0, 1), vj(0) = 0, v′j(0) = t, j = 1, 2, . . . ,m.

Hence, using the Taylor formula, we get

v(x) · νj = ts+

s
∫

0

(s− θ)v′′j (θ) dθ = tω(x) · νj +O(|s|3/2),

since ts = t(x · τj) = tω(x) · νj .

Theorem 3.4. Let huh, uh
τ , e(uh) be bounded and huh ⇀ v. Then v ∈ N . More-

over, the convergence of huh to v is strong, huh→v.

The derivation of structral theorems is given in Appendix D.

3.3. General periodic problem. Suppose that the vector fh and the matrix Gh

are bounded in L2(�, dµh). We examine the periodic elasticity equation

uh ∈ H1
per(�, dµ

h)2 − divyA(Gh + ey(uh)) = hfh. (29)

To study (29) we need uniform in h Korn inequalities for periodic functions on
Fh. Such inequalities are proved in Appendix A.
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Lemma 3.5. (i) Equation (29) is solvable ⇐⇒
∫

�

fhdµh = 0.

(ii) Its solution satisfies the estimate

∫

�

|e(uh)|2dµh ≤ C

∫

�

(|Gh|2 + |fh|2)dµh, C = const(F,A), (30)

and is unique if it is subjected to the following orthogonality condition
∫

Bh

uhdx = 0, where Bh = {x : |x| < h}. (31)

The proof of this Lemma is straightforward due to inequality (56) and we omit
it.

Suppose that

(fh · ν)ν ⇀ fν , Gh · η ⇀ Gτ , Gh · σh ⇀ Gν , (32)

where
η = τ × τ = {τ iτ j}, σh(y) = −βh(y)η, (33)

and βh(y) = h−1(y · ν) on each h-strip Ih unless y belongs to the intersection of
two or more h-strips, where we assume that βh(y) and σh(y) are zero.

The tensor A is associated with unidimensinal tensor (scalar) ρ(y) = (A−1η ·η)−1

defined on the singular grid F . In the isotropic case (see (6)), the calculations give

the constant ρ(y) ≡ k̂ = k(k+2k1)
k+k1

.

Consider the solution to Eq. (29) subject to the orthogonality condition (31).
From (30) and (56), (57) we derive readily the boundedness of the sequences uh

τ =
(uh · τ)τ, huh, e(uh) in L2(�, dµh).

Theorem 3.6. Under assumptions (3.8) there is the convergence

huh → v, A(Gh + ey(uh)) ⇀ ρ(Gτ + (u · τ)′)η in L2(�, dµh), (34)

where limit functions u and v are the solutions of the following problems

u ∈ T ,

∫

�

ρ(u′ +Gτ τ) · ϕ
′dµ = 0 ∀ϕ ∈ T , (35)

v ∈ N ,

∫

�

ρ(
1

3
v′′ +Gνν) · ψ

′′dµ =

∫

�

fν · ψdµ ∀ψ ∈ N . (36)

The proof of Th. 3.6 is rather technical and is given in Appendix E. Here we
discuss only solvability of the limit equations.

Lemma 3.7. (i) Problem (36) is uniquely sobvable.
(ii) Problem (35) is solvable, but not uniquely. In any case, Gτ ≡ 0 =⇒ u′|I ≡ 0

for every link I.

Proof. In order to obtain (i), let us verify that the expression (
∫

�
|u′′|2 dµ)1/2 defines

an equivalent norm on N . To this end, it suffices to have the estimate
∫

�

(|u|2 + |u′|2) dµ ≤ k

∫

�

|u′′|2 dµ, u ∈ N , k = const(F ),

which is established by method ex contrario with the help of compactness argu-
ments.

Assertion (ii) is proved similarly.
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3.4. Taking the limit in cell problems. We are in a position to prove Lemma
2.1. To this end we use Th. 3.6. and the main work is checking of assumptions (32)
for Eq. (16)-(18).
1◦. Begin with equation for uh

1 . Since ξ = ex(u0(x)) is independant on y, and hence
ξ · σh(y) ⇀ 0 (see (33)2), the relations (34), (35) take form

huh
1 → 0, A(ξ + ey(u

h
1 )) ⇀ ρ(ξ · η + (u1 · τ)′)η

u1 ∈ T ,
∫

�

ρ(u′1 + (ξ · η)τ) · ϕ′dµ = 0 ∀ϕ ∈ T .
(37)

It can be shown also that

ex(huh
1 ) → 0, ∇xex(huh

1 ) → 0. (38)

2◦. From (17), we have the following equation for vh
2 ≡ huh

2

vh
2 ∈ H1

per(�, dµ
h)2, −divyA(ex(huh

1 ) + ey(vh
2 )) = hfh,

fh = f + divx(Ahom −Ahom
h )ex(u0) + divxA(ex(u0) + ey(uh

1 )) = f + fh
1 + fh

2 .
(39)

Our aim is to prove the limit relations

hvh
2 → v 6≡ 0, ey(vh

2 ) ⇀ 0, (40)

v ∈ N ,
1

3

∫

�

ρv′′ · ψ′′dµ =

∫

�

f · ψdµ ∀ψ ∈ N . (41)

By Th. 3.6, for (40)1 coupling with (41), it is enough (see (38)1) to deduce that

fh
1 → 0; fh

2 (x, ·) → t(x, ·), where t(x, ·) · ν = 0. (42)

But (42)1 follows from the convergence of tensors Ahom
h → Ahom. To derive (42)2

take into account the structure of limit in (37)2. Namely, A(ex(u0)+ey(uh
1 ))(x, ·) ⇀

a(x, ·)η for some scalar function a(x, y), where

η = τ × τ =

(

(τ1)2 τ1τ2

τ1τ2 (τ2)2

)

.

Hence, divx(a(x, y)η) = ∂a
∂x1

τ1τ+ ∂a
∂x2

τ2τ is a tangential vector, and we obtain (42)2.

The relation (40)1, (41) are proved.
Turn to (40)2. In the case of the problem (39), because of (38)1, the limit

equation (35) contains Gτ = lim
h→0

ex(huh
1 ) · η = 0. So by Lemma 3.7 (ii),

A(ex(huh
1 ) + ey(v

h
2 )) ⇀ 0 =⇒ ey(v

h
2 ) ⇀ 0.

We have completed the proof of (40). In other terms, relations (24)3, (24)4 are
verified.

It can be shown also that

∇xey(huh
2 ) ⇀ 0; ex(h2uh

2 ) is bounded. (43)

Moreover,

ex(h2uh
2 ) → z(x, ·), where z(x, ·) · η ≡ 0. (44)

The last structural property is determined by structure of the limit vector v from
(24)3. Namely,

v(x, y) =
∑

aj(x)bj(y), bj ∈ N , aj is a scalar function =⇒

z(x, y) = ex(v(x, y)) =
∑

1
2 (∇xaj(x) × bj(y) + bj(y) ×∇xaj(x)) ⊥ η.
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For example, on the horisontal link, denoting bj = b, aj = a, we have

b(y) = β(y)ν, ν = (0, 1), η =

(

1 0
0 0

)

=⇒

ex(a(x)b(y)) = β(y)ex(a(x)ν) = β(y)

(

0 1
2

∂a
∂x1

1
2

∂a
∂x1

1
2

∂a
∂x2

)

⊥ η.

3◦. From (18) we deduce equation for vh
3 ≡ h2uh

3 . Namely,

vh
3 ∈ H1

per(�, dµ
h)2, −divA(y)(ex(h2uh

2) + ey(vh
3 )) = hfh,

fh = divxA(ex(huh
1) + ey(huh

2)) + hgh(x).
(45)

Here fh ⇀ 0 due to (38)2, (43)1. Hence, (see also (43)2) by Lemma 7.5, ey(vh
3 )

and hvh
3 are bounded, and thus the integral identity for vh

3 with the test function
vh
3 implies the convergence

∫

�

A(ex(h2uh
2 ) + ey(v

h
3 )) · ey(vh

3 )dµh → 0. (46)

Thanks to the structural property (44) and the relation fh ⇀ 0, we have Gν ≡ 0
and fν ≡ 0 in the limit equation (36). From here, hvh

3 → 0 and we obtain the
convergence (24)3.

It remains to deduce only the last relation in (24). Again recall the structural
condition (44) for the matrix z which implies some recovering property we are going
to present. In order to prove it, we use natural extension bh of b ∈ L2(�, dµ) to
the support of the measure µh. Here we give its

Definition 3.8. Extend given function b ∈ L2(�, dµ), defined on F , to the sup-
port of the measure µh, that is Fh, as follows. Take a separate h-rod Ih ⊂ Fh,
corresponding to the link I ⊂ F, and let the extension of b|I to Ih be constant in
the transverse direction. In the neighborhood of nodes, at the points where two
or more h-rods intersect, sum these extensions. The result is denoted by bh and is
called natural extension. We have convergence bh → b, see Appendix B.

Lemma 3.9. Let symmetric matrix z ∈ L2(�, dµ) and z · η = 0. Then there exists
a sequence wh ∈ H1

per(Y, dµ
h)2, such that wh → 0 and ey(w

h) → z in L2(�, dµh).

Proof. We can use wh(y) = hζh(y)βh(y)kh(y), where βh(y) is defined in Section 3.3
after (33); ζh(y) ∈ C∞

per(Y ) is such that ζh = 0 in the 2h-neighborhood of the nodes,

ζh = 1 outside the 4h-neighborhood of the nodes and |h∇ζh| < 2; kh is the natural
extension on Fh of some vector k (calculated from z on each link of F ). For exam-
ple, on the horizontal link I (with the longitudinal coordinate y1), we have z|I =
(

0 α
α γ

)

, where α, γ ∈ L2(Y, dµ). Then, k|I = (2α, γ) and, on the corresponding

h-strip, kh|Ih(y) = (2α(y1), γ(y1)), w
h|Ih(y) = ζh(y)(2y2α(y1), y2γ(y1)).

Verification of the desired properties for wh is straightforward and we omit it.
Return to the proof of (24)5. To this end, test Eq. (45) with vector wh from

Lemma 3.9, corresponding to the matrix z from (44). Then
∫

�

A(ex(h2uh
2) + ey(vh

3 )) · ey(w
h)dµh =

∫

�

hfh · whdµh → 0,
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and, because of the equality ey(w
h) = zh + o(1) = ex(h2uh

2) + o(1) in L2
per(�, dµ

h),
we obtain

lim
h→0

∫

�

A(ex(h2uh
2 ) + ey(vh

3 )) · ex(h2uh
2)dµh = 0.

In combination with (46) this implies

lim
h→0

∫

�

A(ex(h2uh
2 ) + ey(vh

3 ) · (ex(h2uh
2)) + ey(vh

3 ))dµh = 0 =⇒ (24)5.

Lemma 2.1 is proved.
4◦. Now examine the relations (37). For model grid, or even for every grid composed
of lines, the solution of Eq. (37)2 is trivial, i.e. u′1 = 0. Hence, in addition to (37)1
we have

ey(uh
1 ) → p(y, ξ), p(y, ξ) = ρ(ξ · η)A−1η − ξ ⊥ η. (47)

At first, we can speak only about weak convergence in (47). Applying Lemma 3.9
to the matrix p, we find the vector wh = wh(·, ξ), such that

wh → 0, ey(wh) → p in L2(�, dµh), (48)

and test with wh Eq. (16), setting ξ = e(u0(x)). Hence,
∫

�

Aey(uh
1)·ey(wh)dµh = −

∫

�

Aξ ·ey(wh)dµh =⇒

∫

�

Ap·pdµ = −

∫

�

Aξ ·pdµ. (49)

Here taking the limit is possible, since ey(u
h
1 ) ⇀ p and ey(w

h) → p. On the other
hand, from the energy equality for (16), we deduce

∫

�

Aey(u
h
1 ) · ey(uh

1 )dµh = −

∫

�

Aξ · ey(u
h
1 )dµh → −

∫

�

Aξ · pdµ.

In combination with (49), this leads to the relation

lim
h→0

∫

�

Aey(uh
1 ) · ey(uh

1 )dµh =

∫

�

Ap · pdµ,

and (47)1 is thereby true (see the strong convergence criterion in Appendix B).
We conclude our considerations of uh

1 by equality (see (47), (48))

ey(u
h
1 ) = ey(wh(y, ξ)) + o(1) = ey(ū

h
1 (x, y)) + o(1) in L2(�, dµh),

ūh
1(x, y) = wh(y, ξ)|ξ=e(u0(x)),

(50)

where the vector wh is calculated from the matrix p, given in (47), according to the
rule described in proof of Lemma 3.9.

4. Justification of asymptotic expansions.

4.1. Proof of Theorem 2.3. sketched in Sect.2.2 is performed here in several
steps.
1◦. First we point out some properties of convergence in L2(Ωε,h).

Lemma 4.1. Suppose bh → b, ch ⇀ c in L2(�, dµh). Then the following relations
hold:

(i) lim
ε→0

∫

Ω

ϕ(x)bh(x
ε )ch(x

ε )dµh
ε =

∫

Ω

∫

�

ϕ(x)b(y)c(y)dµ(y)dx, ϕ ∈ C(Ω̄);
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(ii) lim
ε→0

∫

Ω

vε,h(x)(bh(x
ε ) − bh(x

ε ))dµh
ε = 0,

where vε,h is bounded in L2(Ω, dµh
ε ) and bh is a natural extension of b on Fh.

To prove assertions (i),(ii) use the mean value property and the definition of
convergence in L2(�, dµh).
2◦. Pass to the direct proof of the theorem 2.3. Take the function

vε,h ∈Wε,h, −divAe(vε,h) = rh(x, ε−1x) + divRh(x, ε−1x),

where rh(x, y), Rh(x, y) are the same as in (21). Due to the energy estimate, we
have

lim sup
ε→0

∫

Ω

(|vε,h|2 + |e(vε,h)|2)dµh
ε = 0.

Obviously, if ūε,h = U − vε,h, then uε,h − ūε,h satisfies Eq. (7) with zero rightside
function. Hence,

∫

Ω

Ae(uε,h − ūε,h) · e(uε,h − ũε,h)dµh
ε = 0,

where ũε,h(x) = u0(x) + ψ(x)Ũ − vε,h(x), Ũ = εuh
1 + ε2uh

2 + ε3uh
3 , ψ ∈ C∞

0 (Ω),
0 ≤ ψ ≤ 1 and uε,h − ũε,h can really serve as a test function for (7). Since

uε,h − ũε,h = (uε,h − ūε,h) + (ūε,h − ũε,h),

ũε,h − ūε,h = (ψ − 1)Ũ , e(ũε,h − ūε,h) = (ψ − 1)e(Ũ) + (∇ψ × Ũ)s,

where (∇ψ × Ũ)s = 1
2 (∇ψ × Ũ + Ũ ×∇ψ), it follows that
∫

Ω

Ae(uε,h − ūε,h) · e(uε,h − ūε,h)dµh
ε =

=

∫

Ω

Ae(uε,h − ūε,h) · (∇ψ × Ũ)dµh
ε +

∫

Ω

Ae(uε,h − ūε,h) · e(Ũ)(ψ − 1)dµh
ε =

= I(ε) + II(ε).

Here and hereafter, we use matrix equality S · B = S · Bs, where S is symmetric
and Bs = 1

2 (B +BT ).
It remains to examine terms I(ε), II(ε).

3◦. Starting from boundedness of e(uε,h − ūε,h) in L2(Ω, dµh
ε ), we deduce that

|II(ε)|2 ≤ C

∫

Ω

(ψ − 1)2|e(Ũ)|2dµh
ε ≡ C

∫

Γ

Φh(x,
x

ε
)dµh

ε ,

where Γ = supp(1−ψ)∩Ω. Covering Γ with quadrates ε�i of area ε2, we split the
latter integral into the sum and obtain the estimate

|II(ε)| ≤ C
∑

i

∫

ε�i

Φh(x,
x

ε
)dµh

ε = C
∑

i

ε2
∫

�i

Φh(εy, y)dµh(y) ≤ C′|Γ|λ < δ

for arbitrary small δ. Here, lim sup
h→0

∫

�

Φh(x, y)dµh(y) ≤ λ ∀x and Lebesque mea-

sure |Γ| of the set Γ may be done arbitrary small by appropriate choice of ψ.
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4◦. Split the term I(ε) into the following sum

I(ε) =

=

∫

Ω

Ae(uε,h − ūε,h) · (∇ψ × (εuh
1 + ε3uh

3 ))dµh
ε −

∫

Ω

Ae(ūε,h) · (∇ψ × ε2uh
2 )dµh

ε+

+

∫

Ω

Ae(uε,h) · (∇ψ × ε2uh
2 )dµh

ε = I1(ε) − I2(ε) + I3(ε).

From boundedness of e(uε,h − ūε,h) in L2(Ω, dµh
ε ) and (24)1, (24)2, we have

|I1(ε)|
2 ≤ C

∫

Ω

|∇ψ × (εuh
1 + ε3uh

3 )|2dµh
ε → 0.

To study the term I2(ε) make the following simplification

I2(ε) =

∫

Ω

A(ex(u0) + ey(uh
1 )) · (∇ψ × ε2uh

2 )dµh
ε + o(1)

using properties of constituents of ūε,h, and note that

A(ex(u0) + ey(uh
1 ))(x, ·) ⇀ a(x, ·)η, (∇ψ × h2uh

2)s(x, ·) → (∇ψ × v)s ≡ z, (51)

by virtue of (37)3, (24)2,. Here, v ∈ N , therefore z ⊥ η (see derivation of (44)) and

lim
ε→0

I2(ε) =

∫

Ω

∫

�

a(x, y)η · zdxdµ = 0.

By Lem. 4.1 (ii) and relation (4.1)2

I3(ε) =

∫

Ω

Ae(uε,h) · (∇ψ × ε2uh
2 )dµh

ε =

∫

Ω

Ae(uε,h) · zhdµ
h
ε + o(1).

Applying Lemma 3.9 to the matrix z, find vector wh(x, y), such that wh(x, ·)→0,
ey(w

h(x, ·))→z(x, ·) in L2(�, dµh). Moreover, being finite in Ω, wh(x, x
ε ) can be

taken to test (7). Consequently,

I3(ε) =
∫

Ω

Ae(uε,h) · ey(wh)dµh
ε + o(1) =

∫

Ω

Ae(uε,h) · e(εwh)dµh
ε + o(1) =

= ε
∫

Ω

f · whdµh
ε + o(1) =⇒ I3(ε) → 0.

Gathering the results of sections 2◦ − 4◦, we come to the limit relation (22).

4.2. Approximations by means of solutions to the problems on singular

structure. In this Section we define similar to (10) expansions in terms of solutions
to periodic problems on the singular grid F that are extended in the natural or
special manner to the thin grid Fh. We aim at different type approximations.
Recall that lim

ε→0
h(ε)/ε = θ.

1◦. Simplifying, by virtue of (24)1-(24)3, the expansion U(x, ·) from (10), one
“descends” to the singular structure F in the following way

U(x, ·) = u0(x) + θ−2vh(x, ·) + o(1) in L2(�, dµh). (52)

Here, v(x, ·) is the solution of Eq. (36) and vh(x, ·) denotes its natural extension
to Fh (see definition 3.8). The simplified expansion (52) ensures L2-approximation
only to the solution uε,h but not to its gradient. As a result, we derive Th.1.1.
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2◦. By properties (24) of the gradients of uh
i , we derive from (22)2 the weak two-

scale convergence

e(uε,h(x))
2
⇀ e(u0(x)) + z(x, y), (53)

where z(x, y) = p(y, ξ)|ξ=e(u0(x)), p(y, ξ) is defined in (47).

Recall [13, 17] that convergence vε,h(x)
2
⇀ v(x, y) means

∫

Ω

vε,h(x)ϕ(x)b(
x

ε
)dµh

ε →

∫

Ω

∫

�

v(x, y)ϕ(x)b(y)dxdµ(y)

for every ϕ ∈ C∞
0 (Ω) and b ∈ C∞

per(�). The relation (53) is well-known and was
proved earlier in [13] by method of two-scale convergence.
3◦. A “singular” analoque of (10) for approximation of uε,h with gradient (see
(22)) involves the same, as in (52), functions u0(x) and v(x, ·) and, in addition to
them, two correctors, which stem from the terms uh

1 and uh
3 of (10):

Ū(x, y) = u0(x) + εūh
1(x, y) + θ−2vh(x, y) + εθ−2gh(x, y). (54)

One can calculate both correctors through the same procedure starting from the
given matrices orthogonal to η at each link of F . Here, ūh

1(x, y) is defined (see (50))
in terms of matrix p(x, y), given in (47), and gh(x, ·) is defined in terms of matrix
ex(v(x, ·)) (see Lemma 3.9).

Finally, vh(x, ·) denotes in (54) the special extension to Fh of v(x, ·), defined
on F as the solution of Eq. (36). Let us describe this extension. Firstly, one
finds approxmation ṽh ∈ N , such that ṽh → v in N , ṽh coincides with rigid
displacement in h-neighborhood of each node and with v outside 5h-neighborhood
of nodes. Secondly, one extends ṽh from each link I of grid F to the corresponding
h-rod Ih of Fh according to the Lemma C.6. Further details and justification are
left out.

We can conclude our considerations. If in (54) we set χ(x, y) = θ−2v(x, y) and
omit symbols of extension, we come to (5).

4.3. About structures sufficiently thick and thin. According to the classifi-
cation of thin periodic structures there are three types of them, see Sect.1. Before,
we have studied the most complicated structures of critical thickness.

On the sufficiently thin structures, instead of (2), we consider the following prob-
lem

uε,h ∈Wε,h,

∫

Ωε,h

Ae(uε,h) · e(ϕ)dx =
h

ε

∫

Ωε,h

f · ϕdx ∀ϕ ∈ C∞
0 (Ω), (55)

where f ∈ C∞(Ω̄)2. By the method of the two-scale convergence, as in [16], or by
the method of asymptotic expansions, as above, one can prove

Theorem 4.2. Let h(ε)/ε → 0. Then for the solution of (55) there is the conver-
gence

1

|Ωε,h|

∫

Ωε,h

|
h

ε
uε,h(x) − χh(x,

x

ε
)|2dx→ 0,

where χ(x, ·) is the solution of periodic problem

χ(x, ·) ∈ N ,
1

3

∫

�

ρχ′′(x, ·) · ψ′′dµ =

∫

�

f(x) · ψdµ ∀ψ ∈ N ,
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and χh(x, ·) in the natural extension of χ(x, ·) on Fh.

For sufficiently thick structure we consider the problem (2) and derive from
Th.2.3 the following result.

Theorem 4.3. Let h(ε)/ε→ ∞. Then for the solution of the problem (2) there is
the convergence

1

|Ωε,h|

∫

Ωε,h

|uε,h(x) − u0(x)|
2dx→ 0,

where u0(x) is the solution of homogenized problem (13).

5. Appendix A. Korn inequelities for periodic functions on thin struc-

tures. Consider plane periodic grid Fh of thickness h≥0, �=[0,1)2 is a periodicity
cell. So F 0=F is 1-periodic graph. Begin with description of thin grids. If F is
not composed of only lines, we make the following convention how to construct Fh

using F. For this purpose, we elongate each link I in both sides by h
2 so that a

segment I ′ of length |I| + h will be obtained. Construct a strip Ih of width h with
middle line I ′. The union of all these strips Ih defines the grid Fh. Note that each
node of the singular grid F belongs to the grid Fh, together with the circle of radius
h
2 , by construction.

Now we are going to introduce rigid grids. We try ascribe the mark (or label)
k = 0, 1, . . . to each node of the grid F , proceeding by induction. Consider in F
any subgraph F ′, generated by two noncollinear lines, and assign zero label only
to the nodes of F ′. Let all the nodes to which one can ascribe the marks k ≤ N
be defined. Then we ascribe the mark N + 1 to the yet unmarked node if one can
go out from it along two noncollinear links into the neighboring nodes that already
have marks. Graph F is called rigid if for some pair of lines chosen at the beginning
the above labelling procedure labells all the nodes of F .

From now on, F is assumed to be rigid. Suppose also that origin coinsides with
“zero” node.

Theorem 5.1. The following inequlities are valid for u ∈ C∞
per(�)2:

h2

∫

�∩F h

(|u|2 + |∇u|2)dx ≤ C0

∫

�∩F h

|e(u)|2dx, C0 = const(F ), (56)

∫

Ih

|u · τ |2dx ≤ C1

∫

�∩F h

|e(u)|2dx, C1 = const(F ), (57)

where
∫

Bh

udx = 0, Bh = {x : |x| <
h

2
}, (58)

Ih is arbitrary h-rod in Fh and τ is the longitudinal orth on it.

We only sketch the proof of this theorem. First, the “tangential” inequality (57)
is establisted for the strips Ih containing the circle Bh from (58), and to this end
we use the method of contraction of variable strip Ih to fixed rectangle. Then we
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spread inequality (57) step by step to other strips of Fh following the proceedure
of labelling the nodes in rigid graph F . At the same time we derive the inequality

1

h

∫

Bh
i

|u|2dx ≤ c0

∫

�∩F h

|e(u)|2dx, c0 = const(F ), whenever

∫

Bh

udx = 0.

(59)
Here and hereafter, Bh

i denotes the circle of radius h
2 centered at arbitrary node in

� ∩ F .
Similarly the following inequalities

∫

�∩F h

|u|2dx ≤ c1(

∫

�∩F h

|∇u|2dx+
∑

i

1

h

∫

Bh
i

|u|2dx), c1 = const(F ), (60)

∫

�∩F h

|∇u|2dx ≤ c2(
1

h2

∫

�∩F h

|e(u)|2dx+
∑

i

1

h

∫

Bh
i

|u|2dx), c2 = const(F ), (61)

can be obtained. Finally, the estimates (59)-(61) imply (56).
Following the derivation of non-periodic analogs of (59)-(61) in [15, Sect.2], one

can restore omitted details of the proof of Th.A.1.

6. Appendix B. L2-convergence in a variable space. Let us make some re-
marks about convergence of sequence uh ∈ L2(�, dµh) see Definition 2.2.
1◦. Here we consider arbitrary plane graph F and related thin grid Fh. We assume
that each h-rod Ih of Fh has the corresponding link I of F as the midline. Measures
µh and µ, supported on Fh and F , respectively, are defined in Sect. 1.

Note the following properties of convergence in L2(�, dµh) [13, 17]:
(i) any bounded sequence contains a weakly convergent subsequence;
(ii) uh → u ⇐⇒ uh ⇀ u and

∫

�

|uh|2dµh →
∫

�

|u|2dµ (strong convergence crite-

rion).
Example 1. For given function b ∈ L2(�, dµ) consider its natural extension bh ∈
L2(�, dµ), see definition 3.8. The natural extension preserves the mean value:
∫

�

bhdµ
h =

∫

�

b dµ. Hence, simple calculations show that

bh ⇀ b,

∫

�

|bh|
2dµh →

∫

�

|b|2dµ.

Therefore, see (ii), bh → b (strong convergence of natural extension).
2◦. Definition 2.2 is general and admits arbitrary 1-periodic Borel measure µh ⇀ µ.
In our case, when µh is related to the thin grid Fh, it is possible to introduce the
convergence in the variable space L2(�, dµh) otherwise. We shall do this in two
steps.

Step 1. Start with the convergence on a single rod Ih. For the sake of clarity, we
discuss the case of a horizontal rod Ih = I × [−h, h], I = [0, 1].

We say that a sequence uh ∈ L2(Ih) is bounded if h−1
∫

Ih

|uh|2 dx ≤ C, where C

does not depend on h. A bounded sequence uh is said to be weakly convergent to
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u ∈ L2(I), uh ⇀ u, if the sequence of transverse averages

ūh = ūh(x1) =
1

2h

h
∫

−h

u(x1, x2) dx2

is weakly convergent to u in L2(I).
We say that uh is strongly convergent to u, uh → u, if lim

h→0

1
h

∫

Ih

|uh − u|2 dx = 0.

Example 2. If uh has the following structure: uh(x1, x2) = b
(

x1,
x2

h

)

, where b ∈

L2(I×[−1, 1]), then uh ⇀ u = u(x1) = 1
2

1
∫

−1

b(x1, x2) dx2 and the strong convergence

is observed only if b = b(x1) is independent of x2.
Step 2. It is natural to untroduce

Definition 6.1. We say that a sequence uh ∈ L2(�, dµh) is bounded, if the re-
strictions uh|Ih on every rod Ih are bounded in the above sense. Bounded sequence
uh ∈ L2(�, dµh) weakly (or strongly) converges to u ∈ L2(�, dµ), if uh|Ih ⇀ u|I
(or uh|Ih → u|I) on every rod Ih.

Proposition 1. The convergence in the sense of Definition 2.2 is equivalent to the
convergence in the sense of Definition 6.1.

See proof in [17].

7. Appendix C. Asymptotic analysis on a single rod. 1◦. Consider more
closely the convergence of functions vh on Ih = I × [−h, h] to a function v on the
segment I. At first, note some basic properties of this convergence, introduced in
Appendix B.

Lemma 7.1. Let vh ∈ H1(Ih) and suppose that vh, ∂vh

∂x1

are bounded. Then, we

have (up to a subsequence)

vh ⇀ v,
∂vh

∂x1
⇀

∂v

∂x1
, where v ∈ H1(I).

Moreover, the convergence of the transverse averages v̄h is uniform on I.

Proof. Since

∂v̄h

∂x1
=

1

2h

h
∫

−h

∂

∂x1
vh(x1, x2) dx2, (62)

it suffices to refer to the simplest properties of the Sobolev space H1(I).

Lemma 7.2. If vh, ∇vh are bounded, then vh is compact with respect to strong
convergence.

Proof. From (62), it follows that v̄h is bounded inH1(I), and therefore, it is compact
in L2(I). By the Poincaré inequality, we have

h
∫

−h

|vh(x1, x2) − v̄h(x1)|
2 dx2 ≤ ch2

h
∫

−h

∣

∣

∣

∣

∂vh

∂x2

∣

∣

∣

∣

2

dx2,

1

2h

∫

Ih

|vh − v̄h|2 dx ≤ ch

∫

Ih

∣

∣

∣

∣

∂vh

∂x2

∣

∣

∣

∣

2

dx ≤ c1h,
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and now the compactness of vh becomes evident.

2◦. Now take on a horizontal rod Ih a sequence of vector-fields uh such that

e(uh), uh
1 , huh

2 , h∇uh are bounded. (63)

It can be assumed (see Lemmas 7.1, 7.2) that over a subsequence

uh
1 ⇀ u1, huh

2 → u2, u1, u2 ∈ H1(I). (64)

Lemma 7.3. The component u2 belongs to H2(I) and there is strong convergence

uh
1 (x1, hx2) → u1(x1) − x2

∂u2

∂x1
(x1) in L2(Q), Q = I × [−1, 1]. (65)

Proof. Changing the variables y1 = x1, y2 = h−1x2, v1 = u1, v2 = hu2, for a
vector-field vh = vh(y) defined on a fixed rectangle Q = I × [−1, 1], we have, by
virtue of (63),

∫

Q

|vh|2 dy ≤ C,

∫

Q

[

(

∂vh
1

∂y1

)2

+ h−2

(

∂vh
1

∂y2
+
∂vh

2

∂y1

)2

+ h−4

(

∂vh
2

∂y2

)2
]

dy ≤ C,

Without loss of generality, we can assume that vh ⇀ v in H1(Q)2. Now, we get

v2 = v2(y1),
∂v1

∂y2

+ ∂v2

∂y1

= 0, whence

v1 = −y2
∂v2
∂y1

+ g(y1), g(y1) =
1

2

1
∫

−1

v1 dy2,

1

2

1
∫

−1

y2v1 dy2 = −
1

2

1
∫

−1

y2
2

∂v2
∂y1

dy2 = −
1

3

∂v2(y1)

∂y1
,

and finally, v2∈H2(I). Let us verify the relations g=u1, v2=u2, see (64). For
α∈C∞

0 (I), we have

∫

I

uh
1αdx1 =

1

2h

∫

Ih

uh
1αdx =

1

2

∫

Q

vh
1αdy →

1

2

∫

Q

v1αdy =

1
∫

0

g(x1)α(x1) dx1,

which yields the convergence ūh
1 ⇀ g in L2(I) and the relation u1 = g. The equality

u2 = v2 is established in a similar way. The lemma is proved.

Lemma 7.4. Under assumptions (62), (63), the following relations hold:

uh
1 − u1 +

x2

h

∂u2

∂x1
→ 0,

x2

h
uh

1 ⇀ −
1

3
u′2,

x2

h

∂uh
1

∂x1
⇀ −

1

3
u′′2 . (66)

Proof. Relation (65) implies (66)1. It suffices to prove only (66)2, since the last
statement will then follow from Lemma 4.6 applied to the sequence vh = x2

h u
h
1 .

For α ∈ C∞
0 (I), using strong convergence (66)1, we find that for h→ 0,

1
∫

0

(

1

2h

h
∫

−h

x2

h
uh

1 dx2

)

α(x1) dx1 =
1

2h

∫

Ih

x2

h
uh

1α dx =
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=
1

2h

∫

Ih

x2

h
u1(x1)α(x1) dx−

1

2h

∫

Ih

(x2

h

)2 ∂u2

∂x1
(x1)α(x1) dx1 + o(1) =

= −
1

3

∫

I

∂u2

∂x1
α dx1 + o(1),

since
1
∫

−1

y2 dy2 = 0,
1
∫

−1

y2
2 dy2 = 2

3 . The lemma is proved.

3◦. Now we restrict the Eq.(29) to the single rod Ih, let it be horizontal at first, and
study the behavior of its solution. Thus, no conditions are imposed on the edges of
Ih, and only integral identity in R

2

∫

A(Gh + e(uh)) · e(ϕ)dµh =

∫

hfh · ϕdµ (67)

holds for smooth vectors ϕ vanishing near the edges. Here

dµh =
d x

2h
|Ih ⇀ µ = d x1|I and fh, Gh are bounded in L2(Ih, dµh).

Since the Korn inequality is absent in this case, we require for the solution, in
addition to (67), some properties from (63),(64).

Lemma 7.5. Suppose that e(uh) is bounded and uh
1 ⇀ u1, G

h
11 ⇀ G11 in L2(Ih, dµh).

Then

A(Gh + e(uh)) ⇀ ρ(G11 +
∂uh

1

∂x1
)η, η =

(

1 0
0 0

)

.

Proof. One can assume that e(uh) ⇀ p, where p11 = ∂u1

∂x1

, see Lemma 7.1, and

Gh ⇀ G. Passing to the limit in (67) yields
∫

A(G + p) · e(ϕ) dµ = 0.

Take ϕ = (2α(x1)x2, β(x1)x2) with arbitrary α, β ∈ C∞
0 (I). Since e(ϕ)|I =

(

0 α
α β

)

, we derive

A(G+ p) = aη =⇒ (G+ p) · η = aA−1η · η =⇒ G11 +
∂u1

∂x1
=

= aA−1η · η =⇒ a = ρ(G11 +
∂u1

∂x1
),

and the proof is complete.

In order to examine the behavior of the transverse component uh
2 , we need special

extensions (to the strip Ih) of transverse vector-fields defined on the segment I.

Lemma 7.6. For a smooth vector-field g(x1) = (0, ψ(x1)) defined on the closed
segment I, there is an extension gh to the strip Ih such that

(i) Ae(gh) = −x2ρψ
′′(x1)η +O(h2),

(ii) gh
1 = −x2ψ

′(x1) +O(h2),

(iii) gh
2 = ψ +O(h2).
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Proof. Set

gh(x) =

(

−x2ψ
′(x1) − γψ′′(x1)x

2
2, ψ(x1) − αψ′′(x1)

x2
2

2

)

, (68)

where α, γ are constants to be determined. Calculations show that

−e(gh) =

(

ψ′′(x1)x2 γψ′′(x1)x2

γψ′′(x1)x2 αψ′′(x1)x2

)

+O(h2) = ψ′′(x1)x2

(

1 γ
γ α

)

+O(h2).

Let us require that the matrix A

(

1 γ
γ α

)

be proportional to η =

(

1 0
0 0

)

. We have

A

(

1 γ
γ α

)

= cη =⇒

(

1 γ
γ α

)

= cA−1η =⇒ c = (A−1η · η)−1 = ρ.

Thus, the constants α, γ are determined in a unique way and all the properties
(i)-(iii) are ensured.

Lemma 7.7. Suppose that solution of Eq. (67) satisfies conditions (63), (64) and
fh
2 ⇀ f2, −

x2

h G
h
11 ⇀ Gν . Then
∫

I

ρ(
1

3
u′′2 +Gν)ψ′′d x1 =

∫

I

f2ψdx1 ∀ψ ∈ C∞
0 (I).

Proof. Find for a vector-field g = (0, ψ(x1)) the extension gh constructed in Lemma
7.6 and test Eq. (67) with ε = gh. Transforming both sides of the identity

∫

A(Gh+e(uh)) · e(gh) dµh=

∫

(Gh+e(uh)) · Ae(gh) dµh=

= −h

∫

ρ(Gh
11+

∂uh
1

∂x1
)
x2

h
ψ′′dµh+O(h2),

∫

hfh · gh dµh = h

∫

fh
2 ψ dµ

h +O(h2)

and dividing them by h, we obtain

−

∫

ρ(Gh
11+

∂uh
1

∂x1
)
x2

h
ψ′′(x1) dµ

h =

∫

fh
2 ψ dµ

h +O(h).

Passing to the limit as h → 0, thanks to (66)3 and conditions on fh and Gh,
completes the proof.

4◦. In conclusion we formulate some of the above results on a rod of an arbitrary
direction and, to this end, use notation from the Sect.3.2. Consider vector-field uh

such that e(uh) is bounded and

uh
τ = (uh · τ)τ ⇀ u, huh → v. (69)

The general variant of relations (66)2, (66)3 is following:

βhuh ⇀ −
1

3
(v · ν)′, βhe(uh) · η ⇀ −

1

3
(v · ν)′′. (70)

For a vertical rod with τ = (0, 1), ν = (−1, 0), we have βh(x) = −x1

h and

x1

h
uh

2 ⇀ −
1

3

∂u1

∂x2
. (71)

The results for the Eq.(67) on the rod Ih (see Lemmas 7.5, 7.7) are summarized
in
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Lemma 7.8. Under assumptions (32), for the solution of Eq.(67) we have conver-
gences (69) and in addition them the limit relation

A(Gh + ey(uh)) ⇀ ρ(Gτ + (u · τ)′)η.

The limit functions from (69) satisfy integral identities
∫

ρ((u · τ)′ +Gτ )ϕ′dµ = 0,

∫

ρ(
1

3
(v · ν)′′ +Gν)ϕ′′dµ =

∫

fν · ν ϕ dµ

for ϕ ∈ C∞(R2) vanishing near endpoints of I.

8. Appendix D. Proof of structural theorems. Structural theorems are valid
in the case of arbitrary connected graph F , and in order to prove them, it is enough
to consider only a bundle of segments I1, ..., Im, joining the node O. This structure
of F will be assumed in the sequel throughout this section.
1◦. Let us prove Theorem 3.2. Since the inclusion u · τj ∈ H1(Ij) follows from the
corresponding results for a segment (see Appendix C), we have to verify the conju-
gation condition (25) or equivalent condition (26). To this end, take an arbitrary
vector

b ∈ L(τ (1), τ (2))⊥, i.e. b = (b1, · · · , bm),

m
∑

i=1

biτi = 0. (72)

Denote by Qh the union of all “short” (i.e., of length 4h) h-rods issueing from
the node O, and let Γi (i = 1, . . . ,m) be the outer edges of these rods (see Fig.2
corresponding to the case m = 3). Assume that the node O coincides with the
origin.

Figure 2.

Consider the Neumann problem

w ∈ H1(Qh)2, div e(w) = 0 in Qh, e(w)n|∂Qh
= g, (73)
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g =

{

biτi on Γi (i = 1, 2, . . . ,m),

0 on the rest of ∂Qh,

where n is the unit outward normal to ∂Qh. This problem has a solution, since the
function g satisfies the condition

∫

∂Qh

g(x) · r(x) dσ = 0, (74)

where r(x) is an arbitrary rigid displacement on the plane, r(x) = c + tω, ω(x) =
(−x2, x1), c ∈ R

2, t ∈ R
1. Indeed,

∫

∂Qh

g·r dσ =
∑

i

(
∫

Γi

biτi·c dσ+tbi

∫

Γi

τi·ω dσ

)

= 2hc·
∑

biτi+t
∑

bi

∫

Γi

νi·xdx = 0,

where we have used condition (72) and the relation τi · ω = νi · x.
The solution of problem (73) is determined to within a rigid displacement. Let us

prove the following estimate for the solution w orthogonal to all rigid displacements
on Qh:

∫

Qh

|e(w)|2 dx ≤ Ch2. (75)

From the integral identity for the solution of problem (73), we have
∫

Qh

|e(w)|2 dx =

∫

∂Qh

e(w)n · w dσ =
∑

i

∫

Γi

biτi · w dσi ≤ Ch1/2

(
∫

∂Qh

|w|2 dσ

)1/2

.

Now, in order to obtain the estimate (75), it suffices to use the inequality for the
trace

∫

∂Qh

|w|2 dσ ≤ hC

∫

Qh

|∇w|2 dx

and also the Korn inequality
∫

Qh

|∇w|2 dx ≤ C

∫

Qh

|e(w)|2 dx.

Due to the Gauss formula,

1

2h

∫

Qh

e(uh) · e(w) dx =
∑

i

bi
1

2h

∫

Γi

uh · τi dσ.

The left-hand side of this relation tends to zero as h→ 0, since we have the estimate
(75) and the sequence e(uh) is bounded. The right-hand side contains transverse
averages converging to u·τi|O. Thus, we find that the vector (u·τ1, u·τ2, . . . , u·τm)|O
is orthogonal to the vector b. Since b ∈ L(τ (1), τ (2))⊥ is arbitrary, it follows that
(26) holds. Theorem 3.2 is proved.

The scalar version of this theorem, namely, Theorem 3.3 is simpler. Its proof can
be obtained following the same method, with great simplifications, for instance, one
may restrict oneself to two rods while proving coinsideness of values at the node
attained by function along the different rods.
2◦. Now let us prove Theorem 3.4. We have to verify only conditions at the node,
since the other statements follow from the results for a single rod. By Th.3.3, our
assumptions imply continuity and transversality of the vector v at the same time,
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which is possible only, if v|O = 0 and clamping condition is checked. It remains to
show conjugation condition (27). It suffices to consider two noncollinear links joined
at the node O. For simplicity, let it be segments I1, I2 issuing from the origin in the
directions of the coordinate axes. Therefore, τ = (1, 0), ν = (0, 1) and τ = (0, 1),
ν = (−1, 0) on I1 and I2, respectively, and u · ν|I1=u2(x1, 0), u · ν|I2=−u1(0, x2),
and we have to verify the relation

∂u2

∂x1
(x1, 0)

∣

∣

∣

∣

0

+
∂u1

∂x2
(0, x2)

∣

∣

∣

∣

0

= 0. (76)

The domain Qh (introduced in Sect. 1◦) corresponding to this case is a “small
angle” with the edges Γ1, Γ2 (see Fig.3). In Qh, consider the Neumann problem
(73) with

Figure 3.

g =















x2

h τ1 on Γ1,

x1

h τ2 on Γ2,

0 on the rest of ∂Qh.

It is easy to check that the vector-field g satisfies condition (74) ensuring the solv-
ability of problem (73). In the same way as in Sect. 1, we establish the estimate
(75) for the solution w orthogonal to all rigid displacements on Qh.

By the Gauss formula, we have

1

2h

∫

Qh

e(uh) · e(w) dx =
1

2h

∫

Γ1

x2

h
uh

1 dσ +
1

2h

∫

Γ2

x1

h
uh

2 dσ.

The left-hand side of this equality tends to zero, since we have the estimate (75)
and the sequence e(uh) is bounded. Let us find the limit of each term on the right-

hand side. From (66)2, we get zh
1 ≡ x2

h u
h
1 ⇀ − 1

3
∂u2

∂x1

. Since the sequence
∂zh

1

∂x1

is

bounded, the convergence of the transverse averages z̄h
1 → − 1

3
∂u2

∂x1

is uniform on I1
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(see Lemma 7.1). Hence, we deduce that

lim
h→0

1

2h

∫

Γ1

x2

h
uh

1 dσ = −
1

3

∂u2

∂x1

∣

∣

∣

∣

O

.

In a similar way, we obtain the following relation, see (70):

lim
h→0

1

2h

∫

Γ2

x1

h
uh

2 dσ = −
1

3

∂u1

∂x2

∣

∣

∣

∣

O

,

and therefore, (76) holds. The theorem is proved.

9. Appendix E. Passing to the limit in the general periodic elasticity

problem. 1◦. Throughout this Section suppose that F is a rigid graph. This
condition ensures Korn inequalities (56), (57) that allow, under assumption (32),
to derive for solution uh of Eq. (29) boundedness of sequences uh

τ , huh, h∇uh,
e(uh) in L2(�, dµh)2. One can extract (see Appendix B and Th.3.2, Lem. 7.5) the
subsequence of solutions, denoted again as uh, such that huh → v, uh

τ ⇀ u. Let
us identify limit functions u and v as solutions of the problems (35), (36).
2◦. We begin with function v that is the element of N , by Th. 3.4. Derivation of
equation (3.12) requires some density and extension assertions for the space N .

Denote by D the set of all vectors in N that are smooth outside the neighborhood
of nodes and linear on the links near each node. It is easy to see that D is dense in
N , see Remark in Sect.3.2.

Lemma 9.1. Any vector-field ψ ∈ D admits an extension ψh = ψh(x) to the grid
Fh, such that

(i) e(ψh) = 0 in a neighborhood of every node;
(ii) Ae(ψh) = −hρ(ψ · ν)′′βhη +O(h2);
(iii) ψh = ψ +O(h), ψh

τ = −hβh(ψ · ν)′τ +O(h2).

Proof. On every separate rod, we extend ψ with the help of Lemma 7.6 and its
variant for the rod arbitrary directed, then check whether the extensions coincide
on the intersection of the rods. It suffices to consider the case of two rods, one
horizontal and another vertical, with the node being the origin. Starting with

ψ|I1 = (0, a1(x1)), 0 ≤ x1 ≤ 1, ψ|I2 = (a2(x2), 0), 0 ≤ x2 ≤ 1,

where the functions a1, a2 are linear near zero, and the conjugation conditions
ensure that

a2(0) = a1(0) = 0, −a′2(0) = a′1(0) = t,

take ψh|Ih
1

=(−x2a
′
1−γ1a

′′
1x

2
2, a1−α1a

′′
1

1
2x

2
2), ψ

h|Ih
2

=(a2−α2a
′′
2

1
2x

2
1,−x1a

′
2−γ2a

′′
2

1
2x

2
1).

We have near the node ψh|Ih
1

=ψh|Ih
2

=(−x2t, tx1), i.e. ψh coinsides with rigid dis-

placement (28).
The lemma is proved.

Turn to the direct proof of (36). To this end, test Eq. (29) with the function
ψh(x) that is the extension to Fh of arbitrary ψ(x)∈D constructed in Lemma 9.1.
This implies

h

∫

F h

fh · ψh dx =

∫

F h

A(e(uh) +Gh) · e(ψh) dx =

∫

F h

(e(uh) +Gh) ·Ae(ψh) dx.
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Let us transform both sides of this relation, using the properties of involved func-
tions. Then,

−h

∫

F h

(e(uh) +Gh) · ηβh(ψ · ν)′′ dx = = h

∫

F h

(fh · ν)ν · ψ dx+O(h3).

Dividing this expression by h2 and passing to the limit as h → 0 (use assumptions
(32) on fh, Gh and convergence (70)2 on every h-rod) lead to the identity (36) with
the test function ψ ∈ D. Recalling that D is dense in N , we obtain the desired
result. One part of the Th.3.6 is proved.
3◦. In order to prove another part of Th. 3.6, test Eq. (29) with function ψ ∈
C∞

per(�)2 and pass to the limit in it as h → 0. By Th.3.2, Lemma 7.8 and Th.3.1,
we derive that the limit function u belongs to T and satisfies integral identity (35)
for test functions ϕ, which are the longitudinal components of the vectors from
C∞

per(�)2 and, thus, by density arguments for any element ϕ ∈ T .
It remains to give

Proof of Theorem 3.1. Denote by T ′ the closure in T of longitudinal components
of vector-fields in C∞

per(�)2. Since the convergence in the T -norm implies uniform
convergence, the function u ∈ T ′ inherits the property (25) from the sequence
uδ ∈ C∞

per(�)2 converging to u. Therefore, T ′ ⊂ T . Suppose that

∃u ∈ T \ T ′ : (u, ϕ) ≡

∫

(u′ · ϕ′ + u · ϕ) dµ = 0 ∀ϕ ∈ T ′. (77)

We can assume that C = 0 in condition (25) for the function u. Moreover, let
the origin coincide with the node O. Take χh(x) = χ(h−1|x|), where χ(t) = 0 for
t < 1

2 , χ(t) = 1 for t > 1. Then, χhu ∈ T ′ and by the Cauchy inequality we have

|u(x)|2 = O(h) for |x| < h. Hence, taking ϕ = χhu in (77), we find that
∫

χh(|u′|2 + |u|2) dµ = −

∫

u′ · uχ′
h dµ ≡ J(h),

where

|J(h)|2 ≤

∫

|x|≤h

|u′|2 dµ · Ch−2

∫

|x|≤h

|u|2 dµ = o(1) as h→ 0.

Passing to the limit, we get (u, u) = 0, and therefore, u ≡ 0, i.e., T = T ′. The
theorem is proved.
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