Effect of boundary conditions on the dynamics of a pulse solution for reaction-diffusion systems

  • Received: 01 February 2012 Revised: 01 January 2013
  • Primary: 35K57; Secondary: 35B25, 35K55.

  • We consider pulse-like localized solutions for reaction-diffusion systems on a half line and impose various boundary conditions at one end of it. It is shown that the movement of a pulse solution with the homogeneous Neumann boundary condition is completely opposite from that with the Dirichlet boundary condition. As general cases, Robin type boundary conditions are also considered. Introducing one parameter connecting the Neumann and the Dirichlet boundary conditions, we clarify the transition of motions of solutions with respect to boundary conditions.

    Citation: Shin-Ichiro Ei, Toshio Ishimoto. Effect of boundary conditions on the dynamics of a pulsesolution for reaction-diffusion systems[J]. Networks and Heterogeneous Media, 2013, 8(1): 191-209. doi: 10.3934/nhm.2013.8.191

    Related Papers:

    [1] Shin-Ichiro Ei, Toshio Ishimoto . Effect of boundary conditions on the dynamics of a pulse solution for reaction-diffusion systems. Networks and Heterogeneous Media, 2013, 8(1): 191-209. doi: 10.3934/nhm.2013.8.191
    [2] François Hamel, James Nolen, Jean-Michel Roquejoffre, Lenya Ryzhik . A short proof of the logarithmic Bramson correction in Fisher-KPP equations. Networks and Heterogeneous Media, 2013, 8(1): 275-289. doi: 10.3934/nhm.2013.8.275
    [3] James Nolen . A central limit theorem for pulled fronts in a random medium. Networks and Heterogeneous Media, 2011, 6(2): 167-194. doi: 10.3934/nhm.2011.6.167
    [4] Toshiyuki Ogawa, Takashi Okuda . Oscillatory dynamics in a reaction-diffusion system in the presence of 0:1:2 resonance. Networks and Heterogeneous Media, 2012, 7(4): 893-926. doi: 10.3934/nhm.2012.7.893
    [5] Kota Kumazaki, Toyohiko Aiki, Adrian Muntean . Local existence of a solution to a free boundary problem describing migration into rubber with a breaking effect. Networks and Heterogeneous Media, 2023, 18(1): 80-108. doi: 10.3934/nhm.2023004
    [6] Marie Henry . Singular limit of an activator-inhibitor type model. Networks and Heterogeneous Media, 2012, 7(4): 781-803. doi: 10.3934/nhm.2012.7.781
    [7] Narcisa Apreutesei, Vitaly Volpert . Reaction-diffusion waves with nonlinear boundary conditions. Networks and Heterogeneous Media, 2013, 8(1): 23-35. doi: 10.3934/nhm.2013.8.23
    [8] Avner Friedman . PDE problems arising in mathematical biology. Networks and Heterogeneous Media, 2012, 7(4): 691-703. doi: 10.3934/nhm.2012.7.691
    [9] Dilip Sarkar, Shridhar Kumar, Pratibhamoy Das, Higinio Ramos . Higher-order convergence analysis for interior and boundary layers in a semi-linear reaction-diffusion system networked by a $ k $-star graph with non-smooth source terms. Networks and Heterogeneous Media, 2024, 19(3): 1085-1115. doi: 10.3934/nhm.2024048
    [10] Peter V. Gordon, Cyrill B. Muratov . Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source. Networks and Heterogeneous Media, 2012, 7(4): 767-780. doi: 10.3934/nhm.2012.7.767
  • We consider pulse-like localized solutions for reaction-diffusion systems on a half line and impose various boundary conditions at one end of it. It is shown that the movement of a pulse solution with the homogeneous Neumann boundary condition is completely opposite from that with the Dirichlet boundary condition. As general cases, Robin type boundary conditions are also considered. Introducing one parameter connecting the Neumann and the Dirichlet boundary conditions, we clarify the transition of motions of solutions with respect to boundary conditions.


    [1] J. Carr and R. L. Pego, Metastable patterns in solutions of $u_t = epsilon^2 u_{x x} + f(u)$, Comm. Pure Appl. Math., 42 (1989), 523-576. doi: 10.1002/cpa.3160420502
    [2] A. Doelman, R. A. Gardner and T. J. Kaper, Stability analysis of singular patterns in the 1-D Gray-Scott model, Physica D, 122 (1998), 1-36. doi: 10.1016/S0167-2789(98)00180-8
    [3] S.-I. Ei, The motion of weakly interacting pulses in reaction-diffusion systems, J. Dynam. Differential Equations, 14 (2002), 85-137. doi: 10.1023/A:1012980128575
    [4] P. C. Fife and J. B. Mcleod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal., 65 (1977), 335-361.
    [5] G. Fusco and J. Hale, Slow motion manifold, dormant instability and singular perturbations, J. Dynamics and Differential Equations, 1 (1989), 75-94. doi: 10.1007/BF01048791
    [6] K. Kawasaki and T. Ohta, Kink dynamics in one-dimensional nonlinear systems, Physica A, 116 (1982), 573-593. doi: 10.1016/0378-4371(82)90178-9
    [7] J. M. Murray, "Mathematical Biology," Springer-Verlag, New York, 1989.
    [8] Y. Nishiura, "Far-From-Equilibrium Dynamics," (Translations of Mathematical Monographs), AMS, 2002.
  • This article has been cited by:

    1. Shin-Ichiro Ei, Ken Mitsuzono, Haruki Shimatani, The dynamics of pulse solutions for reaction diffusion systems on a star shaped metric graph with the Kirchhoff's boundary condition, 2022, 0, 1531-3492, 0, 10.3934/dcdsb.2022209
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4244) PDF downloads(99) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog