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Abstract. We consider pulse-like localized solutions for reaction-diffusion sys-
tems on a half line and impose various boundary conditions at one end of it.
It is shown that the movement of a pulse solution with the homogeneous Neu-
mann boundary condition is completely opposite from that with the Dirichlet
boundary condition. As general cases, Robin type boundary conditions are
also considered. Introducing one parameter connecting the Neumann and the
Dirichlet boundary conditions, we clarify the transition of motions of solutions
with respect to boundary conditions.

1. Introduction. Reaction diffusion systems have been widely treated to describe
and study spatio-temporal patterns in dissipative systems. Among them, many
reaction-diffusion systems which possess various types of localized solutions such
as pulse-like localized solutions and front-like ones have been proposed while we
omit the detail and merely refer to books ([8], [7] ). To understand the dynamics of
such solutions, reaction-diffusion systems have been studied under various situations
such as one or higher dimensional spaces, bounded or unbounded domains, and
the Neumann boundary conditions or the Dirichlet ones according to considered
problems. In fact, the dynamics of solutions drastically change depending on the
situations even if considered equations are same. As one example, we consider in
this paper, the effect of boundary conditions on the dynamics of solutions, which
is also important from a practical point of view. In fact, a boundary condition is
one of the most important factors collateral on e.g. temperature, by which we can
control inside states from outsides. Then we are interested in how inside patterns
are controllable by adjusting boundary conditions.
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Here we show how the dynamics changes drastically depending on the boundary
conditions. Let us consider the following one dimensional problems of the Allen-
Cahn equation on the half line R+ := (0,+∞):

ut = uxx +
1

2
u(1− u2), t > 0, x ∈ R+ (1)

with the Dirichlet boundary condition u = −1 or the Neumann boundary condition
ux = 0 at x = 0, respectively.

Let Φ(z) := tanh(z/2), which is a stable stationary front solution of (1) on the
whole line R. If the initial data of (1) is sufficiently close to Φ(x − l0) for l0 � 1,
then the solution of (1) with the Dirichlet boundary condition moves toward the
right hand side while the solution with the Neumann boundary condition moves
toward the left as in Fig 1.1.

Figure 1.1. Movements of front solutions of (1) on R+. Left
: Neumann boundary condition at x = 0, Right : Dirichlet
boundary condition at x = 0. Solid lines denote the 0-level lines
{x ∈ R+; u(t, x) = 0}.

These phenomena are understood as follows by reducing to the interaction be-
tween two front solutions: The problem with the Neumann boundary condition is
interpreted as the interaction between a kink solution u+(t, x) := Φ(x − l(t)) and
anti-kink solution u−(t, x) := Φ(−x− l(t)), which has been extensively investigated
and attractive interaction was shown ([1], [5] and [6]). That is, the front solution
close to u+(t, x) is attracted to the reflected solution u−(t, x), which means the
front solution approaches the boundary x = 0.

On the other hand, the problem with the Dirichlet boundary condition is essen-
tially interpreted as the interaction between u+(t, x) = Φ(x− l(t)) and −u−(t, x) =
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−Φ(−x− l(t)). The repulsive interaction in this case can be shown in quite a simi-
lar way to the Neumann boundary case. Thus completely opposite motions appear
only by changing boundary conditions.

Motivated by the fact, we introduce one parameter, say β, into boundary condi-
tions as

∂xu = β(u+ 1), x = 0 (2)

and investigate the dependency of motion of a front solution on β because the
parameter β connects the Neumann boundary condition (β = 0) to the Dirichlet
boundary condition (β = ∞). Applying results obtained in Section 2 to the problem
(1) with (2), we can show that the motion of a front solution u(t, x) ∼ Φ(x − l(t))
is essentially given by

dl

dt
= −12(1− β)

1 + β
e−2l,

which gives precise dependency of the motion on β. Specially,
dl

dt
= −12e−2l < 0

when β = 0 and
dl

dt
= 12e−2l > 0 when β = ∞, which correspond to the Neumann

and the Dirichlet boundary conditions, respectively.
In this paper, we deal with fairly general types of reaction-diffusion systems

ut = Duxx + F (u), t > 0, x ∈ R+, u ∈ RN (3)

with boundary conditions at x = 0 and mainly consider the dynamics of a pulse-like
localized solution while a front-like localized solution is also treated by the similar
way, where D := diag{d1, · · · , dN} and F : RN → RN is a sufficiently smooth
function.

First we consider the problem (3) on R

ut = Duxx + F (u), t > 0, x ∈ R, (4)

and assume several conditions for (4) as follows:

A1) There exists a symmetric stationary pulse solution, say S(x), satisfying S(x) →
e−α|x|a as |x| → ∞ for α > 0 and a ∈ RN .

Here we note that F (0) = 0 holds, where 0 := t(0, · · · , 0) ∈ RN . We also
assume the stability of S(x) in L2(R) space as follows: Let L := D∂xx + F ′(S(x)),
the linearized operator of (4) with respect to S(x) and L0 := D∂xx + F ′(0).

A2) The spectrum σ(L) of L is given by σ(L) = σ0 ∪ σ1, where σ0 := {0} and
σ1 ⊂ {Reλ < −γ0} for γ0 > 0. Moreover, 0 is a simple eigenvalue of L.

A2)’ The spectrum σ(L0) satisfies σ(L0) ⊂ {λ ∈ C; Re(λ) < −γ0}.

By A1) and A2), there exists an eigenfunction φ∗(x) of the adjoint operator L∗

of L satisfying L∗φ∗ = 0 and φ∗(x) → e−αxa∗ as x → +∞ for a∗ ∈ RN . Note
that we can take φ∗(x) as an odd function and φ∗(x) is uniquely determined by the
normalization 〈 Sx, φ

∗ 〉L2 = 1.
Under A1), A2) and A2)’, similar phenomena to (1) are observed in (3) accord-

ing to the weak interaction analysis by [3]. If we impose the Neumann bound-
ary condition at x = 0, the solution u(t, x) of (3) is approximated by u(t, x) ∼
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S(x− l(t)) + S(x+ l(t)) and the dynamics is essentially given by

dl

dt
= 2αM0e

−2αl, (5)

where M0 := 〈 Da,a∗ 〉.
In order to consider the Dirichlet boundary condition u(t, 0) = 0, we assume

F (−u) = −F (u) holds for simplicity. Then −S(x) is also a stable stationary
pulse solution of (4) on R and the solution of (3) satisfying the Dirichlet boundary
condition is approximated by u(t, x) ∼ S(x− l(t))− S(x + l(t)) and the dynamics
is essentially given by

dl

dt
= −2αM0e

−2αl (6)

with the same constant M0 as (5) ([3]). Thus, just opposite motions appear by
changing only boundary conditions.

In order to consider the relation between the Neumann and the Dirichlet bound-
ary conditions, we impose the boundary condition

ux = βu + δa, x = 0 (7)

on the problem (3) by introducing parameters β and a sufficiently small δ while
we do not assume F (−u) = −F (u). In fact, β connects the Neumann and the
Dirichlet boundary conditions by taking β = 0 and β = ∞, respectively. δ gives the
perturbation of the boundary conditions from the ground state 0. Then Theorem
2.1 in Section 2 says that the solution u(t, x) of (3) with (7) is close to S(x− l(t))
and the motion of a pulse solution is essentially governed by the ODE

dl

dt
=

2α

α+ β
M0{(α− β)e−2αl − δe−αl} (8)

for the same constant M0. For simplicity, let us consider the case of δ = 0. Then
(8) is

dl

dt
=

2α(α− β)

α+ β
M0e

−2αl,

which implies that the direction of the motion of a pulse solution changes in the
neighborhood of β = α and that the case of β = 0 (the Neumann boundary con-
dition) and the case of β = ∞ (the Dirichlet boundary condition) are with just
opposite signs in the motion. Thus, the connection between two boundary condi-
tions is clearly drawn.

2. Main results. Throughout this paper, we define X+ := L2(R+) with the L2-
norm denoted by ‖ · ‖+ and the inner product in X+ by 〈 u,v 〉+ :=∫ ∞

0

〈 u(x),v(x) 〉 dx for u, v ∈ X+.

2.1. Motion of pulse solution. In this subsection, we will give some preliminaries
and the results on the dynamics of pulse-like localized solutions.

A2)’ means the followings: Let kj(x;λ) (j = 1, 2, · · · , 2N) be the fundamental
functions of the ODE

(L0 − λ)u = 0, x ∈ R. (9)

Then kj(x;λ) ∈ RN for λ ∈ C with Re(λ) > −γ0 are the forms of

kj(x;λ) = (x+ 1)kj(λ)e±µj(λ)xbj(λ), kj(λ) = 0, 1, · · · , bj(λ) ∈ RN , µj(λ) > 0
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by the assumption A2)’. We assume 0 < µ1(λ) ≤ · · · ≤ µN (λ), kj(x;λ) = (x +

1)kj(λ)e−µj(λ)xbj(λ) for j = 1, · · · , N and kj(x;λ) = (x + 1)kj(λ)eµj(λ)xbj(λ) for
j = N + 1, · · · , 2N . Defining αj := µj(0), mj := kj(0), aj := bj(0) and mj(x) :=
kj(x; 0) = (x + 1)kje±αjxaj , we add one more assumption for the operator L0.

A2)” m1(x) = e−αxa and 0 < α1 = α < α2 ≤ · · · ≤ αN .

Remark 1. Assumption A2)” means α in the assumption A1) is a simple root of
det(µ2D + F ′(0)) = 0 and a is an eigenvector satifying (α2D + F ′(0))a = 0.

Next coming back to the original problem (3) on the half line R+, we impose the
boundary condition (7) on it. Then we have

Theorem 2.1. Assume A1), A2), A2)’ and A2)”. If the initial data u(0, x) is
sufficiently close to S(x− l0) for l0 � 1, then the solution u(t, x) of (3) satisfies

‖u(t, ·)− S(· − l(t))‖∞ ≤ O(e−αl(t) + δ)

as long as l(t) > l for l � 1. l(t) satisfies

dl

dt
=

2αM0

α+ β
{(α− β)e−αl − δ}e−αl(1 +O(e−γ′l + δ2))

for a positive constant γ′.

Let H0(l) :=
2αM0

α+ β
{(α− β)e−αl − δ}e−αl. Then

Corollary 1. If there exists l∗ > l such that H0(l
∗) = 0 and

dH0

dl
(l∗) < 0 ( > 0

resp.). Then there exists a stable (unstable resp.) stationary solution u∗(x) of (3)
satisfying

‖u∗ − S(· − l∗)‖∞ ≤ O(e−αl∗ + δ).

2.2. Motion of front solution. Next, we consider the case of front solutions for
(3). We assume the followings for (4) on R.

A3) There exists a stationary front solution, say S(x) satisfying S(x) → S± +

e−α±|x|a± as x → ±∞ for α± > 0, a± ∈ RN and S± ∈ RN .
Here we note that F (S±) = 0 hold. Let L := D∂xx + F ′(S(x)), the linearized

operator of (4) with respect to S(x) and L± := D∂xx + F ′(S±).

A4) The spectrum σ(L) of L is given by σ(L) = σ0 ∪ σ1, where σ0 := {0} and
σ1 ⊂ {Reλ < −γ0} for γ0 > 0. Moreover, 0 is a simple eigenvalue of L.

A4)’ The spectrum σ(L±) satisfies σ(L±) ⊂ {Reλ < −γ0}.
In the following, we only give an assumption for L− for simplicity while we assume

a similar assumption on L+. Let kj(x;λ) (j = 1, 2, · · · , 2N) be the fundamental
functions of the ODE

(L− − λ)u = 0, x ∈ R. (10)

Then kj(x;λ) ∈ RN for λ ∈ C with Re(λ) > −γ0 are the forms of kj(x;λ) =

(x + 1)kj(λ)e±µj(λ)xbj(λ) for kj(λ) = 0, 1, · · · , bj(λ) ∈ RN and µj(λ) > 0 by
the assumption A4)’. We assume 0 < µ1(λ) ≤ · · · ≤ µN (λ), kj(x;λ) = (x +

1)kj(λ)e−µj(λ)xbj(λ) for j = 1, · · · , N and kj(x;λ) = (x + 1)kj(λ)eµj(λ)xbj(λ) for
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j = N + 1, · · · , 2N . Defining αj := µj(0), mj := kj(0), aj := bj(0) and mj(x) :=
kj(x; 0) = (x + 1)kje±αjxaj , we assume:

A4)” m1(x) = e−α−xa and 0 < α1 = α− < α2 ≤ · · · ≤ αN . A similar assumption
is assumed for L+.

By A3) and A4), there exists an eigenfunction φ∗(x) of the adjoint operator L∗ of

L satisfying L∗φ∗ = 0 and φ∗(x) → e−α±|x|a∗
± as x → ±∞ for a∗

± ∈ RN . By the
normalization 〈 Sx, φ

∗ 〉L2 = 1, φ∗(x) is uniquely determined.
Next coming back to the original problem (3) on the half line R+, we impose the

following boundary condition on it:

ux = β(u− S−) + δa−, x = 0 (11)

for sufficiently small δ. Then we have

Theorem 2.2. Assume A3), A4), A4)’ and A4)”. If the initial data u(0, x) is
sufficiently close to S(x− l0) for l0 � 1, then the solution u(t, x) of (3) satisfies

‖u(t, ·)− S(· − l(t))‖∞ ≤ O(e−αl(t))

as long as l(t) > l for l � 1. l(t) satisfies

dl

dt
= −2α−M−

α− + β
{(α− − β)e−2α−l − δe−α−l}(1 +O(e−γ′l + δ2))

for a positive constant γ′, where M− := 〈 Da−,a
∗
− 〉.

Let H0(l) := −2α−M−

α− + β
{(α− − β)e−α−l − δ}e−α−l. Then

Corollary 2. If there exists l∗ > l such that H0(l
∗) = 0 and

dH0

dl
(l∗) < 0 ( > 0

resp.). Then there exists a stable (unstable resp.) stationary solution u∗(x) of (3)
satisfying

‖u∗ − S(· − l∗)‖∞ ≤ O(e−α−l∗ + δ).

Proofs of Theorem 2.2 and Corollary 2 are quite similar to those of Theorem 2.1
and Corollary 1 and we will give proofs only of Theorem 2.1 and Corollary 1 in
Section 4.

3. Applications. In this section, we will apply results in Section 2 to examples of
a front solution for the Allen-Cahn equation and a pulse solution for the Gray-Scott
model.

3.1. Dynamics of a front solution for the Allen-Cahn equation. In this
subsection, we consider the dynamics of a front solution for the Allen-Cahn equation

ut = uxx + f(u), t > 0, x ∈ R+, (12)

where u ∈ R1 and f(u) = 1
2u(1 − u2). Then, the problem (12) on R has a stable

standing front solution S(x) given by

S(x) = tanh
x

2
,

which is linearly stable and connecting S± = ±1 ([4]).
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Let us consider the dynamics of a front solution u(t, x) ∼ S(x− l) for l � 1 with
the boundary condition

ux = β(u + 1) + δa−, x = 0, (13)

where β > 0 and |δ| � 1. The asymptotic form of S(x) as x → ±∞ is

S(x) → ∓2e−|x| ± 1.

On the other hand, the eigenfunction φ∗(x) is easily obtained as

φ∗(x) =
3

2
Sx(x)

together with its asymptotic form φ∗(x) = 3e−|x| as x → ±∞. Thus, all of necessary
quantities in Theorem 2.2 are given by

D = 1, α− = 1, a− = 2, a∗− = 3.

Hence, M− can be calculated as

M− = D · a− · a∗− = 1 · 2 · 3 = 6

and we get the equation of l as

l̇ :=
dl

dt
=

12

1 + β
((β − 1)e−2l + δe−l)(1 +O(e−l + δ2)). (14)

The effect of boundary conditions on the dynamics of a front solution for the Allen-
Chan equation is analyzed by considering the function

qAC(l;β, δ) := (β − 1)e−l + δ.

We consider four cases with respect to the values of β and δ as follows:

(I) If β > 1 and δ > 0, then qAC(l) > 0 for any l. From (14), this implies that the

velocity l̇ is positive for any position l(t) > 0, which means that the front solution
goes away from the boundary x = 0. The direction of this motion is same as the
Dirichlet boundary case(β = +∞).

0

l̇

l

(a) (b)

Figure 3.1. (a) The flow of the ODE (14). ((b) The movement
of a front solution for (12) with (13) in the case of β > 1 and
δ > 0 (β = 20.0 and δ = 0.01). Solid line denotes the 0-level line
{x ∈ R+; u(t, x) = 0}.
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(II) If β > 1 and δ < 0, the sign of qAC(l) depends on the value of l. Now, we define

l∗ := log
1− β

δ
.

If l > l∗, then qAC(l) < 0, which means l̇ < 0. If l < l∗, then qAC(l) > 0, which

means l̇ > 0. That is, l = l∗ is a stable equilibrium of (14), which corresponds to

the stable stationary front solution ū(x) = S(x− l∗) +O(e−l∗ + δ).

0

l̇

l
l
∗

(a) (b)

Figure 3.2. (a) Flows of the ODE (14). (b) Movements of
front solutions for (12) with (13) in the case of β > 1 and δ < 0
(β = 20.0 and δ = −0.01). Solid lines denote the 0-level lines
{x ∈ R+; u(t, x) = 0}.

(III) If 0 < β < 1 and δ > 0, the sign of qAC(l) depends on the value of l, Now, we
define

l∗∗ := log
1− β

δ
.

If l > l∗∗, then qAC(l) > 0, which means l̇ > 0. If l < l∗∗, then qAC(l) < 0, which

means l̇ < 0. That is, l = l∗∗ is an unstable equilibrium of (14), which corresponds

to an unstable stationary front solution ū(x) = S(x− l∗∗) +O(e−l∗∗ + δ).

(IV) If 0 < β < 1 and δ < 0, then qAC(l) < 0 for any l. From (14), this implies

that the velocity l̇ is negative for any position l(t) > 0, which means that the front
solution approaches the boundary x = 0. The direction of this motion is same as
the Neumann boundary case(β = 0).
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0

l̇

l
l
∗∗

(a) (b)

Figure 3.3. (a) Flow of the ODE (14). (b) Movements of front
solutions for (12) with (13) in the case of β < 1 and δ > 0 (β = 0.3
and δ = 0.001).

0

l̇

l

(a) (b)

Figure 3.4. (a) The flow of the ODE (14). (b) The movement
of a front solution for (12) with (13) in the case of β < 1 and δ < 0
(β = 0.3 and δ = −0.001).

3.2. Dynamics of a pulse solution for the Gray-Scott model. In this sub-
section, we consider the dynamics of a pulse solution for the Gray-Scott model

{
ut = uxx − uv2 +A(1 − u),
vt = Dvvxx −Bv + uv2,

t > 0, x ∈ R+ (15)

where u := t(u, v) ∈ R2, A and B are positive constants. For the problem (15) on
R, Doelmann et al. ([2]) showed the existence of a stable standing pulse solution,
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say S(x) under the assumptions

Dv = A = ε2, B = εν

for a small parameter ε > 0 and 0 < ν < 1. The adjoint eigenfunction φ∗(x) was also
calculated under the same assumptions as above in [3]. Since S(x) → t(1, 0) =: S∗

as |x| → +∞, let us consider the dynamics of pulse solutions u(t, x) ∼ S(x− l) for
l � 1 with the boundary condition

ux = β(u− S∗) + δa, x = 0, (16)

where β > 0 and |δ| � 1. The asymptotic forms S(x) and φ∗(x) are respectively
given by [3]

S(x) → e−ε|x|a+ S∗, φ∗(x) → e−ε|x|a∗

as x → ±∞, and all of necessary quantities in Theorem 2.1 are given by

D = diag(1, ε2), α = ε, a = t(−a+, 0), a∗ = t(−ε3/4a∗+, 0)

for positive constants a+, a∗+. Hence, the constant M0 in Theorem 2.1 is

M0 = 〈 Da,a∗ 〉 = ε(−a+)(−ε3/4a∗+) = ε7/4a+a
∗
+ > 0.

Thus, we get the equation of l as

l̇ :=
dl

dt
=

2ε

ε+ β
M0((ε− β)e−2εl − δe−εl)(1 +O(e−εl + δ2)). (17)

The effect of boundary conditions on the dynamics of a pulse solution for the Gray-
Scott model (17) is considered to be captured in

qGS(l;β, δ) := (ε− β)e−εl − δ.

We consider four cases about the value of β and δ as follows:
(I) If 0 < β < ε and δ < 0, then qGS(l) > 0 for any l. From (17), this implies that

the velocity l̇ is positive for any position l(t), which means that the pulse solution
goes away from the boundary x = 0.

0

l̇

l

(a) (b)

Figure 3.5. (a) The flow of the ODE (17). (b) The movement
of a pulse solution for (15) with (16) in the case of β < ε and δ < 0
(β = 0.01, δ = −0.01 and ε = 0.1).

(II) If 0 < β < ε and δ > 0, the sign of qGS(l) depends on the value of l. Now, we
define

l∗ :=
1

ε
log

ε− β

δ
.
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If l > l∗, then qGS(l) < 0, which means l̇ < 0. If l < l∗, then qGS(l) > 0, which

means l̇ > 0. That is, l = l∗ is a stable equilibrium of (17), which shows the

existence of a stable stationary solution ū(x) = S(x− l∗) +O(e−εl∗ + δ).

0

l̇

l
l
∗

(a) (b)

Figure 3.6. (a) Flows of the ODE (17). (b) Movements of
pulse solutions for (15) with (16) in the case of β < ε and δ > 0
(β = 0.01, δ = 0.01 and ε = 0.1).

(III) If β > ε and δ < 0, the sign of qGS(l) depends on the value of l. Now, we
define

l∗∗ :=
1

ε
log

ε− β

δ
.

If l > l∗∗, then qGS(l) > 0, which means l̇ > 0. If l < l∗∗, then qGS(l) < 0, which

means l̇ < 0. That is, l = l∗∗ is an unstable equilibrium of (17), which shows the
existence of an unstable stationary solution ū(x) = S(x− l∗∗) +O(e−εl∗∗ + δ)
(IV) If β > ε and δ > 0, then qGS(l) < 0 for any l. From (17), this implies that

the velocity l̇ is negative for any position l(t), which means that the pulse solution
approaches the boundary x = 0.

4. Proofs.

4.1. Proof of Theorem 2.1. Define the function g(x) = g(x; l) on R+ by the
solution of

{
0 = Dgxx + F ′(0)g, x > 0,
gx = βg + βS − Sx + δa at x = 0, g(∞) = 0,

where S = S(x− l), whose existence is due to A2)’. Since the fundamental functions

of the ODE 0 = Duxx+F ′(0)u are mj(x), g(x; l) =
∑N

j=1 cj(l)mj(x) holds by the
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0

l̇

l
l
∗∗

(a) (b)

Figure 3.7. (a) Flows of the ODE (17). (b) Movements of
front solutions for (15) with (16) in the case of β > ε and δ < 0
(β = 0.2, δ = −0.01 and ε = 0.1).

0

l̇

l

(a) (b)

Figure 3.8. (a) The flow of the ODE (17). (b) The movement
of a front solution for (12) with (13) in the case of β > ε and δ > 0
(β = 0.2, δ = 0.01 and ε = 0.1).

condition g(+∞) = 0. In a neighborhood of x = 0, S(x − l) has the asymptotic
profile as l → ∞

S(x− l) → eα(x−l)a, Sx(x− l) → αeα(x−l)a.

Hence

c1(l) = C(l) :=
1

α+ β
{(α− β)e−αl − δ}, |cj(l)| ≤ O(e−α2l) (j ≥ 2)
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as l → ∞ in order that S(x− l)+ g(x; l) satisfies the boundary condition (7). Thus,

we see g(x; l) = C(l)e−αxa+O(e−α′
2(l+x)) with ‖g‖+ ≤ O(e−αl+ δ) for α′

2 > α. We
put the solution u(t, x) of (3) with (7) as u(t, x) = S(x− l(t)) + g(x; l(t)) + v(t, x).
Substituting it into (3), we have

l̇{−Sx + gl}+ vt = L(l)v + L(l)g +G(g + v), (18)

where L(l) := D∂2
x + F ′(S(x − l)), G(u) = G(u; l) := F (S(x − l) + u) − F (S(x −

l))− F ′(S(x− l))u = O(|u|2) and v satisfies the boundary condition at x = 0

vx = βv. (19)

Lemma 4.1. Let L0 be the operator on X+ = L2(R+) with the boundary condition
(19). Then {λ ∈ C; Re(λ) > −γ1} ⊂ ρ(L0), the resolvent set of L0 and ‖(L0 −
λ)−1‖+ ≤ C1

|λ|+ γ1
holds for λ ∈ C with Re(λ) > −γ1, where 0 < γ1 < γ0 and

C1 > 0.

Proof. Give arbitrary f ∈ X+, λ ∈ C with Re(λ) > −γ1 and consider the equation
(L0 − λ)u = f . We define the operators KN and KD by

KN [f ](x) :=

{
f(x), x > 0,
f(−x), x < 0,

KD[f ](x) :=

{
f(x), x > 0.

−f(−x), x < 0,

Then KN [f ], KD[f ] ∈ L2(R) and by the assumption A2)’, there exist unique
solutions WN , WD ∈ H2(R) satisfying (L0 − λ)WN = KN [f ] and (L0 − λ)WD =
KD[f ], respectively. Since (L0 − λ)(WD − WN ) = 0 holds for x > 0, WD(x) is

represented as WD(x) = WN (x)+

N∑

j=1

ajkj(x;λ) for aj ∈ R. Since WD(0) = 0 and

∂xW
N (0) = 0 hold, we see

WN (0) = −
N∑

j=1

ajkj(0;λ) = −
N∑

j=1

ajbj(λ), ∂xW
D(0) =

N∑

j=1

aj(kj(λ)− µj(λ))bj(λ)

(20)
and there exists a matrix U0 such that U0∂xW

D(0) = WN(0). Here, we note that
we may assume kj(λ)−µj(λ) 6= 0 and we can take U0. In fact, if kj(λ)−µj(λ) = 0
for some j, then it suffices to replace the fundamental function by kj(x;λ) = (x +

a)kj(λ)e−µj(λ)xbj(λ) for an appropriate a such that kj(λ) − aµj(λ) 6= 0. Let U(x)
(x ≥ 0) be a smooth matrix function satisfying U(0) = U0 and U(x) = 0 for x ≥ η
for a sufficiently small η > 0 and define

u = u[f ](x)

:= WN (x) + βU(x)WD(x)

= (L0 − λ)−1KN [f ](x) + βU(x)(L0 − λ)−1KD[f ](x)

for x > 0. Then

∂xu(0) = ∂xW
N (0) + βU0∂xW

D(0) + β∂xU(0)WD(0)

= βWN (0)

= β{WN (0) + βU(0)WD(0)}
= βu(0)

holds. That is, the boundary condition (19) is satisfied by u.
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On the other hand, for x > 0,

(L0 − λ)u = f + β(L0 − λ)U(x)(L0 − λ)−1KD[f ] =: (Id+B)f

holds, where Id denotes identity and B := β(L0 − λ)U(x)(L0 − λ)−1KD. Here
we can take U(x) by taking appropriately small η such that ‖B‖+ becomes small,
which means Id+B is invertible. Then u = u[(Id+B)−1f ] satisfies (L0−λ)u = f

for x > 0 and the boundary condition (19). Thus λ ∈ ρ(L0) and the estimate of the
resolvent is easily shown. The proof is completed.

Lemma 4.2. Let Lb(l) be the operator L(l) on X+ with the boundary condition

(19). Then the spectrum σ(l) of Lb(l) consists of σ0(l) ⊂ {λ ∈ C; |λ| < O(e−
1
2
αl)}

and σ1(l) ⊂ {λ ∈ C; Re(λ) < −γ1}.

Proof. Fix l > 0 sufficiently large and take l > l. Let B(x; l) := F ′(S(x−l))−F ′(0).
Then Lb(l) = L0 +B(l), where L0 = D∂2

x +F ′(0) is the operator on X+ with (19).

Let lj := j
5 l (j = 1, 2, 3, 4), I1 := (l2, l3), I2 := (l1, l4) and χ1(x), χ2(x), χ3(x) be

smooth functions satsfying

χ1(x) =

{
1, x ≤ l2,
0, x ≥ l3,

χ2(x) =

{
0, x ≤ l2,
1, x ≥ l3,

0 ≤ χj(x) ≤ 1, χ1(x) + χ2(x) ≡ 1

and

χ3(x) =

{
1, x ∈ I1,
0, x 6∈ I2,

0 ≤ χ3(x) ≤ 1.

We consider the equation (Lb(l)−λ)u = f for f ∈ X+. Define the operatorD(λ) on
X+ by D(λ) := χ1(L0−λ)−1+χ2(L(l)−λ)−1KN for λ ∈ ρ(L(l))∩ρ(L0), where L(l)
is regarded as the operator on L2(R) here. Then for f ∈ X+, (Lb(l)−λ)D(λ)f = f

holds for x ≥ l3. For 0 < x < l2, D(λ)f = (L0 − λ)−1f and hence

(Lb(l)− λ)D(λ)f = (L0 + B(l)− λ)(L0 − λ)−1f

= f +B(l)(L0 − λ)−1f

= f +O(e−αl)f

holds because |B(x; l)| ≤ O(e−αl) for 0 < x < l2.
Let us consider the case for l2 ≤ x ≤ l3. Let u1 := (L0 − λ)−1f and u2 :=

(L(l)− λ)−1KN [f ]. Then for x > 0,

(L0 − λ)u2 = (Lb(l)−B(l)− λ)(L(l)− λ)−1KN [f ]

= f −B(l)(L(l)− λ)−1KN [f ]

holds. Since |B(x; l)| ≤ O(e−αl) for x ∈ I2 = (l1, l4) and hence |χ3(x)B(x; l)| ≤

O(e−αl) holds for x ∈ R, we have ‖χ3B(l)(L(l) − λ)−1‖+ ≤ C2e
−αl

|λ| and ‖χ3B(l)

(L(l)−λ)−1‖+ ≤ e−
1
2
αl holds for |λ| ≥ C2e

− 1
2
αl. Defining Λ(l) := {λ ∈ C; Re(λ) ≥

−γ1, |λ| ≥ C2e
− 1

2
αl} and g2 := −χ3B(l)(L(l)− λ)−1KN [f ], we let W2 ∈ H2(R+)

be the solution of (L0 − λ)W2 = g2 for λ ∈ Λ(l), which satisfies

‖W2‖H2(R+) ≤ C3‖g2‖+ ≤ C4e
− 1

2
αl‖f‖+

for C3 and C4 > 0. Since (L0 − λ)(u2 − u1) = g2 holds, we see (L0 − λ)(u2 −
u1 −W2) = 0. Then u2 − u1 −W2 is given by the fundamental functions kj(x;λ)
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(j = 1, · · · , 2N) of the ODE (L0 − λ)u = 0 as

u2(x)− u1(x)−W2(x) =

2N∑

j=1

ajkj(x;λ) (21)

for x > 0. Here we note that µj = µj(λ) are positive constants satisfying µj(λ) > γ2
for a constant γ2 > 0 independent of λ ∈ Λ(l) by Re(λ) ≥ −γ1. Since ‖u2(x) −
u1(x)−W2(x)‖H2(R+) ≤ C5‖f‖+ holds, u2(x)−u1(x)−W2(x) is bounded on I2,

specially |u2(x) − u1(x) − W2(x)| ≤ C6‖f‖+ holds at x = l1, l4 for C5, C6 > 0.

This fact and (21) imply ‖u2 − u1 −W2‖H2(I1) ≤ C7e
− 1

5
γ2l‖f‖+ for C7 > 0. Then

χ1(x)u1(x) + χ2(x)u2(x) = χ1(x)u1(x) + χ2(x){u1(x) + u2(x) − u1(x)}
= u1(x) + χ2(x){u2(x)− u1(x)}
= u1(x) +W3(x)

holds on I1, where W3(x) := χ2(x){u2(x) − u1(x)} = χ2(x){u2(x) − u1(x) −
W2(x) +W2(x)} satisfying ‖W3‖H2(I1) ≤ C8e

−γ3l‖f‖+ for 0 < γ3 ≤ min{ 1
2α,

1
5γ2}.

Therefore, it follows that

(Lb(l)− λ)D(λ)f = (Lb(l)− λ)(u1 +W3)

= (L0 − λ+B(l))u1 + (Lb(l)− λ)W3

= f +B(l)u1 + (Lb(l)− λ)W3

= f +O(e−γ3l)f

on I1.
Thus, we have for any x > 0

(Lb(l)− λ)D(λ)f = f +B1(λ; l)f

with ‖B1(λ; l)‖+ ≤ O(e−γ3l). By taking l so large that ‖B1(λ; l)‖+ ≤ 1
2 for l > l,

we see (Id+B1(l))
−1 exists and

(Lb(l)− λ)D(λ)(Id +B1(λ; l))
−1 = Id

holds, which means λ ∈ ρ(Lb(l)) and

(Lb(l)− λ)−1 = D(λ)(Id +B1(λ; l))
−1.

Thus Λ(l) ⊂ ρ(Lb(l)) and the proof is completed

Let Qb(l), Rb(l) respectively be projections on X+ corresponding to spectral
sets σ0(l), σ1(l) and let Q, R respectively be projections on L2(R) corresponding to
spectral sets σ0, σ1 of L. We also define Eb(l) := Qb(l)X+, E

⊥
b (l) := Rb(l)X+, E :=

QL2(R) and E⊥ := RL2(R). Then the assumption A2) implies Qu = 〈 u, φ∗ 〉L2 Sx

for u ∈ L2(R).
By Lemma 4.2, the resolvent (Lb(l)− λ)−1 for λ ∈ Λ(l) is expressed as

(Lb(l)− λ)−1 = D(λ)(Id +B2(λ; l))

with ‖B2(λ; l)‖+ ≤ O(e−γ3l). Then taking the Dunford integral around σ0(l), we
easily know Qb(l) = χ2Q(l)KN + B3(λ; l) with ‖B3(λ; l)‖+ ≤ O(e−γ3l), where
{Q(l)u}(x) := 〈 u, φ∗(· − l) 〉L2 Sx(x − l) for u ∈ L2(R). This means ‖Qb(l) −
Q(l)KN‖+ ≤ O(e−γ3l) � 1 and therefore Eb(l) and Q(l)KNX+ are homeomorphic
each other. Thus, there exist λ0(l) ∈ R, φ(l) ∈ X+ such that σ0(l) = {λ0(l)}
with |λ0(l)| ≤ O(e−

1
2
αl) and Eb(l) = span{φ(l)} with φ(l)(x) = χ2(x)Sx(x − l) +

O(e−γ3l) = Sx(x − l) + O(e−γ3l). The adjoint operator L∗
b(l) of Lb(l) also has the



206 SHIN-ICHIRO EI AND TOSHIO ISHIMOTO

same properties, specially there exists φ∗(l) ∈ X+ satisfying L∗
b(l)φ

∗(l) = λ0(l)φ
∗(l),

〈 φ(l), φ∗(l) 〉+ = 1 and φ∗(l)(x) = φ∗(x− l)+O(e−γ3l). We note that E⊥
b (l) is given

by E⊥
b (l) = {v ∈ X+; 〈 v, φ∗(l) 〉+ = 0}.

Now we consider the solution u = u(t, x) of (3) with the boundary condition
(7) and put u(t, x) = S(x − l(t)) + g(x; l(t)) + v(t, x) with v(t) ∈ E⊥

b (l). Then (3)
becomes (18), that is,

l̇{−Sx + gl}+ vt = Lb(l)v + L(l)g +G(g + v), (22)

where Sx = Sx(x − l(t)). Here we note to distinguish between the operators Lb(l)
and L(l) by regarding them as the operator on X+ with the boundary condition
(19) and the operator on L2(R) restricted within X+, respectively. By operating
Qb(l) and Rb(l) on (22), we have

{
l̇ = H,

Rb(l)vt = Lb(l)v + J,
(23)

where

H = H(l,v) := −
〈 L(l)g +G(g + v), φ∗(l) 〉+
〈 Sx, φ∗(l) 〉+ − 〈 gl, φ∗(l) 〉+

,

J = J(l,v) := Rb(l){L(l)g +G(g + v)}+H(l,v)Rb(l){Sx − gl}.

Lemma 4.3.

H(l,v) = 2αM0C(l)e−αl(1 +O(e−γ4l)) +O((e−2αl + δ2)e−αl + ‖v‖2∞)

holds for γ4 > 0.

Proof. First, we will show | 〈 G(g + v), φ∗(l) 〉+ | ≤ O((e−2αl + δ2)e−αl + ‖v‖2∞).

Since |G(g + v)| ≤ C8(|g|2 + |v|2) holds, it follows that

| 〈 G(g + v), φ∗(l) 〉+ | ≤ C8

∫ ∞

0

{|g(x)|2 + |v(x)|2}|φ∗(l)(x)|dx

≤ C8

∫ ∞

0

|g(x)|2|φ∗(l)(x)|dx + C8‖v‖2∞
∫ ∞

0

|φ∗(l)(x)|dx

≤ C9|C(l)|2
∫ ∞

0

e−2αxe−α|x−l|dx+ C9‖v‖2∞

≤ O(|C(l)|2e−αl + ‖v‖2∞)

≤ O((e−2αl + δ2)e−αl + ‖v‖2∞)

because g(x; l) = C(l)e−αxa + O(e−α′
2(l+x)) with α′

2 > α and |φ∗(l)(x)| ≤
O(e−α|x−l|) hold.

Next, we show 〈 L(l)g, φ∗(l) 〉+ = −2αM0C(l)e−αl(1 + O(e−γ4l)) for γ4 > 0.

As in (21), let k∗
j (x;λ) = (x + 1)kje±µjxb∗j ∈ RN be the fundamental solutions

of the ODE (L∗
0 − λ)u = 0, where µj = µj(λ), kj = kj(λ) and b∗j = b∗j (λ)

with 0 < µ1(λ) ≤ µ2(λ) ≤ · · · . Note that µj(0) = αj and b∗1(0) = a∗. Since
L∗
b(l)φ

∗(l) = λ0(l)φ
∗(l) and φ∗(l)(x) = φ∗(x− l)+O(e−γ3l) hold, we see φ∗(l)(x) =

−eµ1(λ0(l))(x−l)b∗1(λ0(l)) + O(eµ2(λ0(l))(x−l)) as l → ∞, specially

φ∗(l)(0) = −e−µ1(λ0(l))lb∗1(λ0(l)) +O(e−µ2(λ0(l))l) = −e−αla∗(1 +O(e−γ4l)) (24)

and

∂xφ
∗(l)(0) = −αe−αla∗(1 +O(e−γ4l)) (25)
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for γ4 > 0. Here we used µ1(λ0(l)) = α+O(e−
1
2
αl), b∗1(λ0(l)) = a∗ +O(e−

1
2
αl) and

µ2(λ0(l)) > α+ γ4. Hence we have

〈 L(l)g, φ∗(l) 〉+
= [〈 D∂xg(x), φ

∗(l)(x) 〉 − 〈 Dg(x), ∂xφ
∗(l)(x) 〉]∞0 + 〈 g, L∗(l)φ∗(l) 〉+

= −〈 D∂xg(0), φ
∗(l)(0) 〉+ 〈 Dg(0), ∂xφ

∗(l)(0) 〉+ λ0(l) 〈 g, φ∗(l) 〉+
= −2αC(l)e−αl 〈 Da,a∗ 〉 (1 +O(e−γ4l)) +O(|λ0(l)C(l)|le−αl)

= −2αM0C(l)e−αl(1 +O(e−γ4l)).

Finally, the denominator in the definition of H(l,v) is 1 + O(e−αl) because
‖gl‖+ ≤ O(e−αl). Thus the proof is completed.

Remark 2. Let H(l,v) = H0(l) + H1(l,v), where H0(l) := 2αM0C(l)e−αl and
H1(l,v) := H(l,v)−H0(l). Then

|H1(l,v)| ≤ O
(
(e−αl + δ)e−α′l + ‖v‖2∞

)

and

|H1(l,v)−H1(l
′,v′)|

≤O
(
{(e−α′l + δ2)e−αl + (e−α′l′ + δ2)e−αl′}|l− l′|+ (‖v‖∞ + ‖v′‖∞)‖v − v‖∞

)

hold for α′ > α.

Lemma 4.4.

‖J(l,v)‖+ ≤ O((e−αl + δ)e−
3
4
αl + ‖v‖2∞)

holds.

Proof. It suffices to show ‖L(l)g‖+ ≤ O((e−αl+δ)e−
3
4
αl). Since g(x; l) = C(l)e−αxa

+O(e−α2(l+x)) with α2 > α and |S(x− l)| ≤ O(e−α|x−l|) hold, we see

|L(l)g(x)| ≤ |L0g(x)|+ |(L(l)− L0)g(x)|
≤ |F ′(S(x− l))− F ′(0)| · |g(x)|
≤ O(e−α|x−l| · |C(l)|e−αx).

Then it follows that ‖L(l)g‖+ ≤ O(|C(l)|
√
le−αl) ≤ O((e−αl + δ)e−

3
4
αl).

Now we define the map Π(l) : E⊥
b (l) → E⊥

b (l) by v(l) := Π(l)w for w ∈ E⊥
b (l),

where v(l) is the solution of
{ dv

dl
= −〈 v, φ∗

l (l) 〉+ φ(l),

v(l) = w ∈ E⊥
b (l).

The existence of Π−1(l) is obvious because the solution v(l) in the above equation
is solvable in the inverse direction with respect to l. Tranforming (23) by v(t) =
Π(l(t))w(t), we have {

l̇ = H∗,
wt = A(l)v + J∗,

(26)

where H∗ = H∗(l,w) := H(l,Π(l)w), J∗ = J∗(l,w) := Π−1(l)J(l,Π(l)w) and
A(l) := Π−1(l)Lb(l)Π(l). Let X

ω (1/4 < ω < 1) be the fractional powered space of
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X+ by A(l) embedded into L∞(R+) whose norm is denoted by ‖ · ‖ω. Since
‖J(l,v)− J(l′,v′)‖+

≤O
(
{(e−αl + δ)e−

3
4
αl + (e−αl′ + δ)e−

3
4
αl′}|l − l′|+ (‖v‖∞ + ‖v′‖∞)‖v − v‖∞

)

hold, J∗ also have the estimates

‖J∗(l,v)− J∗(l′,v′)‖+ (27)

≤ O
(
{(e−αl + δ)e−

3
4
αl + (e−αl′ + δ)e−

3
4
αl′}|l− l′|+ (‖v‖ω + ‖v′‖ω)‖v − v‖ω

)

Here we may assume the estimates of Lemmas 4.3, 4.4 and (27) for any l ∈ R by
using appropriate cut-off functions.

Let W (D1, D2) := {w(·) ∈ C(R;E⊥
b (l) ∩Xω); ‖w(l)‖ω ≤ D1((e

−αl + δ)e−
3
4
αl),

‖w(l)−w(l′)‖ω ≤ D2{(e−αl+ δ)e−
3
4
αl+(e−αl′ + δ)e−

3
4
αl′}|l− l′|}. Then by quite a

similar way to the proof of Theorem 2.1 in [3], we can show the existence of an ex-
ponentially attractive invariant manifold M := {(l,Σ(l)); l ∈ R, Σ ∈ W (D1, D2)}
for (26) by taking appropriate positive constants D1 and D2. Thus u(t, x) =
S(x − l(t)) + g(x; l(t)) + (Π(l(t))Σ(l(t)))(x) is the solution of (3) and the proof
is completed. �

4.2. Proof of Corollary 1. The dynamics on the manifold M constructed in the
proof of Theorem 2.1 is given by

dl

dt
= H(l) := H∗(l,Π(l)Σ(l)). (28)

As in the Remark 2, we see H(l) = H0(l) + H1(l) with H1(l) := H1(l,Π(l)Σ(l))
and H1(l) satisfies

|H1(l)−H1(l
′)|

≤ O
(
{(e−α′l + δ2)e−αl + (e−α′l′ + δ2)e−αl′}|l − l′|

+(‖Σ(l)‖∞ + ‖Σ(l′)‖∞)‖Σ(l)− Σ(l′)‖∞)

≤ O
(
{(e−α′l + δ2)e−αl + (e−α′l′ + δ2)e−αl′}|l − l′|

+{(e−αl + δ)e−
3
4
αl + (e−αl′ + δ)e−

3
4
αl′}

×{(e−αl + δ)e−
3
4
αl + (e−αl′ + δ)e−

3
4
αl′}|l− l′|

)

≤ O
(
{(e−α′′l + δ2)e−αl + (e−α′′l′ + δ2)e−αl′}|l − l′|

)

for α′′ > α. Let l∗ > l be the value satisfying H0(l
∗) = 0 and

dH0

dl
(l∗) =: −γ∗ < 0.

We shall show the existence of an equilibrium l̂ of H satisfying l̂ = l∗(1 +

O(e−γ5l
∗

)) for γ5 > 0 and H(l) is monotone decreasing in the neighborhood of

l̂, which means l̂ is a stable equilibrium of the ODE (28).

Substituting l̂ = l∗ + h into H(l∗ + h) = 0 for |h| � 1, we have 0 = −γ∗h +
O(h2) +H1(l

∗ + h) and

h =
1

γ∗
H1(l

∗ + h) +O(h2). (29)

Since γ∗ = O
(
(e−αl∗ + δ)e−αl∗

)
, H1(l

∗ + h) = O
(
(e−αl∗ + δ)e−α′l∗

)
and α′ > α,

1
γ∗H1(l

∗ + h) = O(e−γ6l
∗

) holds for γ6 > 0, which means to become sufficiently
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small by taking l∗ > l sufficiently large. Then it is easy to show the right hand side
of (29) is contraction in the set W1 := {|h| ≤ D3e

−γ6l
∗} for an appropriate D3 > 0.

Thus the fixed value, say h∗ = O(e−γ6l
∗

) gives the equilibrium l̂ = l∗ + h∗ of H(l).

In the neighborhood of l̂, H(l) is written as

H(l̂ + h) = −γ∗h+O(h2 + (h∗)2) +H1(l
∗ + h∗ + h)− γ∗h∗.

Hence by the estimate of |H1(l)−H1(l
′)|, we have

H(l̂ + h)−H(l̂ + h′) = {−γ∗ +O
(
|h|+ |h′|+ (e−α′′l∗ + δ2)e−αl∗

)
}(h− h′).

α′′ > α means H(l̂ + h) is monotone decreasing for sufficiently small h and h′.
Other cases are similarly shown. �
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