SIR Rumor spreading model with trust rate distribution

  • Received: 01 December 2017 Revised: 01 March 2018
  • Primary: 34D20, 34C12; Secondary: 34C23

  • In this paper, we study a rumor spreading model in which several types of ignorants exist with trust rate distributions $λ_i $, $≤ i≤ N$. We rigorously show the existence of a threshold on a momentum type initial quantity related to rumor outbreak occurrence regardless of the total initial population. We employ a steady state analysis to obtain the final size of the rumor. Using numerical simulations, we demonstrate the analytical result in which the threshold phenomenon exists for rumor size and discuss interaction between the ignorants of several types of trust rates.

    Citation: Bum Il Hong, Nahmwoo Hahm, Sun-Ho Choi. SIR Rumor spreading model with trust rate distribution[J]. Networks and Heterogeneous Media, 2018, 13(3): 515-530. doi: 10.3934/nhm.2018023

    Related Papers:

    [1] Ahmed A. Gaber, Abdul-Majid Wazwaz . Dynamic wave solutions for (2+1)-dimensional DJKM equation in plasma physics. AIMS Mathematics, 2024, 9(3): 6060-6072. doi: 10.3934/math.2024296
    [2] Shami A. M. Alsallami . Investigating exact solutions for the (3+1)-dimensional KdV-CBS equation: A non-traveling wave approach. AIMS Mathematics, 2025, 10(3): 6853-6872. doi: 10.3934/math.2025314
    [3] Xiaoli Wang, Lizhen Wang . Traveling wave solutions of conformable time fractional Burgers type equations. AIMS Mathematics, 2021, 6(7): 7266-7284. doi: 10.3934/math.2021426
    [4] Ajay Kumar, Esin Ilhan, Armando Ciancio, Gulnur Yel, Haci Mehmet Baskonus . Extractions of some new travelling wave solutions to the conformable Date-Jimbo-Kashiwara-Miwa equation. AIMS Mathematics, 2021, 6(5): 4238-4264. doi: 10.3934/math.2021251
    [5] Mohammed Aly Abdou, Loubna Ouahid, Saud Owyed, A. M. Abdel-Baset, Mustafa Inc, Mehmet Ali Akinlar, Yu-Ming Chu . Explicit solutions to the Sharma-Tasso-Olver equation. AIMS Mathematics, 2020, 5(6): 7272-7284. doi: 10.3934/math.2020465
    [6] Cheng Chen . Hyperbolic function solutions of time-fractional Kadomtsev-Petviashvili equation with variable-coefficients. AIMS Mathematics, 2022, 7(6): 10378-10386. doi: 10.3934/math.2022578
    [7] Sixing Tao . Breather wave, resonant multi-soliton and M-breather wave solutions for a (3+1)-dimensional nonlinear evolution equation. AIMS Mathematics, 2022, 7(9): 15795-15811. doi: 10.3934/math.2022864
    [8] Yunmei Zhao, Yinghui He, Huizhang Yang . The two variable (φ/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations. AIMS Mathematics, 2020, 5(5): 4121-4135. doi: 10.3934/math.2020264
    [9] Chun-Ku Kuo, Dipankar Kumar, Chieh-Ju Juan . A study of resonance Y-type multi-soliton solutions and soliton molecules for new (2+1)-dimensional nonlinear wave equations. AIMS Mathematics, 2022, 7(12): 20740-20751. doi: 10.3934/math.20221136
    [10] Mustafa Inc, Hadi Rezazadeh, Javad Vahidi, Mostafa Eslami, Mehmet Ali Akinlar, Muhammad Nasir Ali, Yu-Ming Chu . New solitary wave solutions for the conformable Klein-Gordon equation with quantic nonlinearity. AIMS Mathematics, 2020, 5(6): 6972-6984. doi: 10.3934/math.2020447
  • In this paper, we study a rumor spreading model in which several types of ignorants exist with trust rate distributions $λ_i $, $≤ i≤ N$. We rigorously show the existence of a threshold on a momentum type initial quantity related to rumor outbreak occurrence regardless of the total initial population. We employ a steady state analysis to obtain the final size of the rumor. Using numerical simulations, we demonstrate the analytical result in which the threshold phenomenon exists for rumor size and discuss interaction between the ignorants of several types of trust rates.



    Fixed point theory is an extensively used mathematical tool in various fields of science and engeneering [1,2,3] Many researchers have generalized Banach contraction principle in various directions. Some have generalized the underlying space while some others have modified the contractive conditions [4,5,6,7].

    Zadeh [8] initiated the notion of fuzzy set which lead to the evolution of fuzzy mathematics. Kramosil and Michalek [9] generalized probabilistic metric space via concept of fuzzy metric. George and Veeramani [10] defined Hausdorff topology on fuzzy metric space after slight modification in the definition of fuzzy metric presented in [9]. Heilpern [11] defined fuzzy mapping and establish fixed point result for it. Subsequently many concepts and results from general topology were generalized to fuzzy topological space.

    N$ \check{a} $d$ \check{a} $ban [12] generalized $ b $-metric space by introducing fuzzy $ b $-metric space in the setting of fuzzy metric space initiated by Michalek and Kramosil. Faisar Mehmood et al.[13] generalized fuzzy $ b $-metric by introducing the concept of extended fuzzy $ b $-metric. In this article we present the idea of $ \mu $-extended fuzzy $ b $-metric space which extends the concepts of fuzzy $ b $-metric and extended fuzzy b-metric spaces. We also establish a Banach-type fixed point result in the context of $ \mu $-extended fuzzy $ b $-metric space.

    First we recollect basic definitions and results which will be used in the sequel.

    Definition 1.1. [14] A binary operation $ *:[0, 1]^2\to [0, 1] $ is said to be continuous t-norm if $ ([0, 1], \leq\; ,*) $ is an ordered abelian topological monoid with unit 1.

    Some frequently used examples of continuous t-norm are $ x*_Ly = \max\{x+y-1, 0\} $, $ x*_Py = xy $ and $ x*_My = \min\{x, y\} $. These are respectively called Lukasievicz t-norm, product $ t $-norm and minimum t-norm

    Definition 1.2. [9] A fuzzy metric space is 3-tuple $ (S, \varsigma, *) $, where $ S $ is a nonempty set, $ * $ is continuous $ t $-norm and $ \varsigma $ is a fuzzy set on $ S\times S\times [0, \infty) $ which satisfies the following conditions, for all $ p, q, r\in S $,

    $ (KM1) \; \varsigma(p, q, 0) = 0; $

    $ (KM2) \; \varsigma(p, q, \ell) = 1, $ for all $ \ell > 0 $ if and only if $ p = q; $

    $ (KM3) \; \varsigma(p, q, \ell) = \varsigma(q, p, \ell); $

    $ (KM4) \; \varsigma(p, r, \ell +t)\geq\varsigma(p, q, \ell)*\varsigma(q, r, t) $, for all $ \ell, t > 0; $

    $ (KM5) \; \varsigma(p, q, .): [0, \infty)\to [0, 1] $ is non-decreasing continuous;

    $ (KM6) \; \underset{\ell\to \infty}{\lim} \varsigma(r, y, \ell) = 1 $.

    Note that $ \varsigma(p, q, \ell) $ indicates the degree of closeness between $ p $ and $ q $ with respect to $ \ell\geq 0 $.

    Remark 1.1. For $ p\neq q \; and \; \ell > 0 $, it is always true that $ 0 < \varsigma(p, q, \ell) < 1 $.

    Lemma 1.1. [15] Let $ S $ be a nonempty set. Then $ \varsigma(p, q, .) $ is nondecreasing for all $ p, q\in S. $

    Example 1.1. [16] Let $ S $ be a nonempty set and $ \varsigma: S\times S\times (0, \infty)\to [0, 1] $ be fuzzy set defined on a metric space $ (S, d) $ such that

    $ ς(x,y,)=pqpq+rd(x,y),x,ySand>0,
    $

    where $ p, q $ and $ r $ are positive real numbers, and $ * $ is product $ t $-norm. This is a fuzzy metric induced by the metric $ d $. The above fuzzy metric is also defined if minimum t-norm is used instead of product $ t $-norm.

    If we take $ p = q = r = 1 $, then the above fuzzy metric becomes standard fuzzy metric.

    Definition 1.3. [12] Let $ S $ be a non-empty set and $ b\geq 1 $ be a given real number. A fuzzy set $ \varsigma: S\times S \to [0, \infty) $ is said to be fuzzy $ b $-metric if for all $ p, q, r\in S $, the following conditions hold:

    $ (FbM_1) \; \varsigma(p, q, 0) = 0; $

    $ (FbM_2) \; \varsigma(p, q, \ell) = 1, $ for all $ \ell > 0 $ if and only if $ q = p; $

    $ (FbM_3) \; \varsigma(p, q, \ell) = \varsigma(q, p, \ell); $

    $ (FbM_4) \; \varsigma(p, r, b(\ell+t)\geq \varsigma(p, q, \ell)*\varsigma(q, r, t), $ for all $ \ell, t > 0; $

    $ (FbM_5) \; \varsigma(p, q, .): (0, \infty)\to [0, 1] $ is continuous and $ \underset{\ell\to \infty}{\lim}\varsigma(p, q, \ell) = 1. $

    Faisar Mehmood et al. [13] defined extended fuzzy $ b $-metric as.

    Definition 1.4. [13] The ordered triple $ (S, \varsigma, *) $ is called extended fuzzy $ b $-metric space by function $ \alpha: S\times S \to [1, \infty) $, where $ S $ is non-empty set, $ * $ is continuous $ t $-norm and $ \varsigma: S\times S \to [0, \infty) $ is fuzzy set such that for all $ x, y, z\in S $ the following conditions hold:

    $ (FbM_1) \; \varsigma_{\alpha}(p, q, 0) = 0; $

    $ (FbM_2) \; \varsigma_{\alpha}(p, q, \ell) = 1, $ for all $ \ell > 0 $ if and only if $ q = p; $

    $ (FbM_3) \; \varsigma_{\alpha}(p, q, \ell) = \varsigma_{\alpha}(q, p, \ell); $

    $ (FbM_4) \; \varsigma_{\alpha}(p, r, \alpha(p, r)(\ell+t)\geq \varsigma_{\alpha}(p, q, \ell)*\varsigma_{\alpha}(q, r, t), $ for all $ \ell, t > 0; $

    $ (FbM_5) \; \varsigma_{\alpha}(p, q, .): (0, \infty)\to [0, 1] $ is continuous and $ \underset{\ell\to \infty}{\lim}\varsigma_{\alpha}(p, q, \ell) = 1. $

    The authors in [13] established the following Banach type fixed point result in the setting of extended fuzzy $ b $-metric space.

    Theorem 1.1. Let $ (S, \varsigma_{\alpha}, *) $ be an extended fuzzy-$ b $ metric space by mapping $ \alpha:X\times S \to [1, \infty) $ which is $ G $-complete such that $ \varsigma_{\alpha} $ satisfies

    $ limtςα(p,q,t)=1, p,qSandt>0.
    $
    (1.1)

    Let $ f:S\to S $ be function such that

    $ ςα(fp,fq,kt)ςα(p,q,t), p,qSandt>0,
    $
    (1.2)

    where $ k\in (0, 1). $ Moreover, if for $ b_0\in S $ and $ n, p\in N $ with $ \alpha(b_n, b_{n+p}) < \frac{1}{k}, $ where $ b_n = f^nb_o $. Then $ f $ will have a unique fixed point.

    Motivated by the concept presented in [13], we present $ \mu $-extended fuzzy $ b $-metric space and generalize Banach contraction principle to it using the approach of Grabiec [17].

    Definition 2.1. Let $ \alpha, \mu: X\times X \to [1, \infty) $ defined on a non-empty set $ X $. A fuzzy set $ \varsigma_{\mu}: X\times X \times [0, \infty) \to [0, 1] $ is said to be $ \mu $-extended fuzzy $ b $-metric if for all $ p, q, r\in X $, the following conditions hold:

    $ (\mu E_1) \; \varsigma_{\mu}(p, q, 0) = 0; $

    $ (\mu E_2) \; \varsigma_{\mu}(p, q, \ell) = 1, $ for all $ \ell > 0 $ if and only if $ q = p; $

    $ (\mu E_3) \; \varsigma_{\mu}(p, q, \ell) = \varsigma_{\mu}(q, p, \ell); $

    $ (\mu E_4) \; \varsigma_{\mu}(p, r, \alpha(p, r)\ell+\mu(p, r)\jmath)\geq \varsigma_{\mu}(p, q, \ell)*\varsigma_{\mu}(q, r, \jmath), $ for all $ \ell, t > 0; $

    $ (\mu E_5) \; \varsigma_{\mu}(p, q, .): (0, \infty)\to [0, 1] $ is continuous and $ \underset{\ell\to \infty}{\lim}\varsigma_{\mu}(p, q, \ell) = 1. $

    And $ (X, \varsigma_{\mu}, *, \alpha, \mu) $ is called $ \mu $-extended fuzzy $ b $-metric space.

    Remark 2.1. It is worth mentioning that fuzzy $ b $-metric and extended fuzzy $ b $-metric are special types of $ \mu $-extended fuzzy $ b $-metric when $ \alpha(x, y) = \mu(x, y) = b, $ for some $ b\geq 1 $ and $ \alpha(x, y) = \mu(x, y) $, respectively.

    In the following we exemplify Definition 2.1.

    Example 2.1. Let $ S = \{1, 2, 3\} $ and $ \alpha, \mu: S\times S \to [1, \infty) $ be two functions defined by $ \alpha(m, n) = 1+m+n $ and $ \mu(m, n) = m+n-1 $. If $ \varsigma_{\mu}: S\times S \times [0, \infty)\to [0, 1] $ is a fuzzy set defined by

    $ ςμ(m,n,)=min{m,n}+max{m,n}+,
    $

    where contiuous t-norm $ * $ is defined as $ t_1*t_2 = t_1\times t_2 $, for all $ t_1, t_2\in \left[0, 1\right] $ We show that $ (S, \varsigma_{\mu}, *, \alpha, \mu) $ is $ \mu $-extended fuzzy $ b $-metric space. Clearly $ \alpha(1, 1) = 3, \ \ \alpha(2, 2) = 5, \ \ \alpha(3, 3) = 7, \; \alpha(1, 2) = \alpha(2, 1) = 4, \ \ \alpha(2, 3) = \alpha(3, 2) = 6, \ \ \alpha(1, 3) = \alpha(3, 1) = 5, $ and $ \mu(1, 1) = 1, \ \ \mu(2, 2) = 3, \ \ \mu(3, 3) = 5, $ $ \mu(1, 2) = \mu(2, 1) = 2, \ \ \mu(2, 3) = \mu(3, 2) = 4, \ \ \mu(1, 3) = \mu(3, 1) = 3. $ One can easily verify that the conditions $ (\mu E_1), (\mu E_2), (\mu E_3) $ and $ (\mu E_5) $ hold. In order to show that $ (S, \varsigma_{\mu}, \times, \alpha, \mu) $ is $ \mu $-extended fuzzy $ b $-metric space, it only remains to prove that $ (\mu E_4) $ is satisfied for all $ m, n, p\in S. $ For for all $ \ell, \jmath > 0 $, it is clear that

    $ ςμ(1,2,α(1,2)+μ(1,2)ȷ)=1+4+2ȷ2+4+2ȷ2+ȷ+2+ȷ9+3ȷ+3+ȷ=ςμ(1,3,)ςμ(3,2,ȷ),
    $
    $ ςμ(1,3,α(1,3)+μ(1,3)ȷ)=1+5+3ȷ3+5+3ȷ2+ȷ+2+ȷ6+ȷ+2+ȷ=ςμ(1,2,)ςμ(2,3,ȷ),
    $

    and

    $ ςμ(2,3,α(2,3)+μ(2,3)ȷ)=2+6+4ȷ3+6+4ȷ1+ȷ++ȷ6+2ȷ+3+ȷ=ςμ(2,1,)ςμ(1,3,ȷ).
    $

    Hence $ \varsigma_{\mu} $ is $ \mu $-extended fuzzy $ b $-metric.

    Example 2.2. Let $ S = \{1, 2, 3\} $ and $ \alpha, \mu: S\times S \to [1, \infty) $ be two functions defined by $ \alpha(m, n) = max\{m, n\} $ and $ \mu(m, n) = min\{m, n\} $. If $ \varsigma_{\mu}: S\times S \times [0, \infty)\to [0, 1] $ is a fuzzy set defined by

    $ ςμ(m,n,)={1,  m=n,0,  =0,2,  ,0<<2,max{m,n}+1,  2<<3,max{m,n},  3<,1+1,  S,
    $

    where continuous t-norm $ * $ is defined to be the minimum, that is $ t_1* t_2 = min (t_1, t_2). $ Obviously conditions $ (\mu E_1), (\mu E_2), (\mu E_3) $ and $ (\mu E_5) $ trivially hold. For $ p, q, r\in S $ notice the following:

    Case 1: When $ 0 < \ell+\frac{\jmath}{2} < 1. $ Then

    $ ςμ(1,2,α(1,2)+μ(1,2)ȷ)=+ȷ2min{2,ȷ2}=ςμ(1,3,)ςμ(3,2,ȷ).
    $

    Case 2: When $ 1 < 2\ell+\jmath < \frac{3}{2}. $ Then

    $ ςμ(1,2,α(1,2)+μ(1,2)ȷ)=22+ȷ+1min{2,ȷ2}=ςμ(1,3,)ςμ(3,2,ȷ).
    $

    Case 3: When $ 2\ell+\jmath > 3 $ such that $ \ell = 0 $ and $ \jmath > 3. $ Then

    $ ςμ(1,2,α(1,2)+μ(1,2)ȷ)=2ȷ>0=min{0,3ȷ}=ςμ(1,3,)ςμ(3,2,ȷ).
    $

    Case 4: When $ 2\ell+\jmath > 3 $ such that $ \ell > 3 $ and $ \jmath = 0. $ Then

    $ ςμ(1,2,α(1,2)+μ(1,2)ȷ)=1>0=min{3,0}=ςμ(1,3,)ςμ(3,2,ȷ).
    $

    Similarly it can be easily verified that condition $ (\mu E_4) $ is satisfied for all the remaining cases. Hence $ (S, \varsigma_{\mu}, *, \alpha, \mu) $ is $ \mu $-extended fuzzy $ b $-metric space.

    Before establishing an analog of Banach contraction principle in setting of $ \mu $-extended fuzzy $ b $-metric space, we present the following concepts in the setting of $ \mu $-extended fuzzy $ b $-metric space.

    Definition 2.2. Let $ (S, \varsigma_{\mu}, *, \alpha, \mu) $ be a $ \mu $-extended fuzzy $ b $-metric space and $ \{a_n\} $ be a sequence in $ S $.

    $ \\(1) $ $ \{a_n\} $ is a $ G $-convergent sequence if there exists $ a_0\in S $ such that

    $ \lim\limits_{n\to \infty}\varsigma_{\mu}(a_n,a_0,\ell) = 1, \ \forall \ell \gt 0. $

    $ (2) $ $ \{a_n\} $ in $ X $ is called $ G $-Cauchy if

    $ \underset{n\to\infty}{\lim}\varsigma_{\mu}(a_n,a_{n+p},\ell) = 1,\; for\; each \;p\in \mathbb{N} \; and \; \ell \gt 0. $

    $ (3) $ $ S $ is $ G $-complete, if every Cauchy sequence in $ S $ converges.

    Next, we prove Banach fixed point Theorem in $ \mu $-extended fuzzy $ b $-metric space.

    Theorem 2.1. Let $ (S, \varsigma_{\mu}, *, \alpha, \mu) $ be a $ G $-complete $ \mu $-extended fuzzy $ b $-metric space with mappings $ \alpha, \mu: S\times S \to [1, \infty) $ such that

    $ limtςμ(u,v,t)=1, u,vSandt>0.
    $
    (2.1)

    Let $ f:S\to S $ be a mapping satisfying that there exists $ k\in (0, 1) $ such that

    $ ςμ(fu,fv,kt)ςμ(u,v,t), u,vSandt>0.
    $
    (2.2)

    If for any $ b_0\in S $ and $ n, p\in N, $

    $ max\{\sup\limits_{p\geq1}\lim\limits_{i\to\infty}\alpha(b_i,b_{i+p}), \sup\limits_{p\geq1}\lim\limits_{i\to\infty}\mu(b_i,b_{i+p})\} \lt \frac{1}{k}, $

    where $ b_n = f^nb_o $, then $ f $ has a unique fixed point.

    Proof. Without loss of generality, assume that $ b_{n+1}\neq b_n \, \ \forall n\geq 0 $. From $ (2.2) $, it follows that, for any $ n, q\in N $,

    $ ςμ(bn,bn+1,kt)=ςμ(fbn1,fbn,kt)ςμ(bn1,bn,t)ςμ(bn2,bn1,tk)ςμ(bn3,bn2,tk2)ςμ(b0,b1,tkn1).
    $

    That is

    $ ςμ(bn,bn+1,kt)ςμ(b0,b1,tkn1).
    $
    (2.3)

    For any $ p\in N $, applying $ (\mu E_4) $ yields that

    $ ςμ(bn,bn+p,t)=ςμ(bn,bn+p,ptp)=ςμ(bn,bn+p,tp+pttp)ςμ(bn,bn+1,tpα(bn,bn+p))ςμ(bn+1,bn+p,pttpμ(bn,bn+p))ςμ(bn,bn+1,tpα(bn,bn+p))ςμ(bn+1,bn+2,tpμ(bn,bn+p)α(bn+1,bn+p))ςμ(bn+2,bn+p,pt2tpμ(bn,bn+p)μ(bn+1,bn+p)).
    $

    From $ (2.3) $ and $ (\mu E_4) $, it follows that

    $ ςμ(bn,bn+p,t)ςμ(b0,b1,tpα(bn,bn+p)kn)ςμ(b0,b1,tpμ(bn,bn+p)α(bn+1,bn+p)kn+1)ςμ(b0,b1,tpμ(bn,bn+p)μ(bn+1,bn+p)α(bn+2,bn+p)kn+2)ςμ(b0,b1,tpμ(bn,bn+p)μ(bn+1,bn+p)μ(bn+(p3),bn+p)α(bn+(p2),bn+p)kn+(p1)).
    $

    Noting that for $ k\in (0, 1) $, $ \alpha(b_n, b_{n+p})k < 1 $ and $ \mu(b_n, b_{n+p})k < 1 $ hold for all $ n, p\in N $ and letting $ n\rightarrow\infty $, applying Eq 3, it follows that

    $ \lim\limits_{n\to \infty}\varsigma_{\mu}(b_n,b_{n+p},t) = 1*1*\cdots *1 = 1, $

    that is $ \{b_n\} $ is Cauchy sequence. Due to the completeness of $ (S, \varsigma_{\mu}, *, \alpha, \mu) $ there exists some $ b\in S $ such that $ b_n\to b\;{\rm{ as }}\; n\to \infty $. We claim that $ b $ is unique fixed point of $ f $. Applying Eq $ (1.1) $ and condition $ (\mu E_4) $, we have

    $ ςμ(fb,b,t)ςμ(fb,bn+1,t2α(fb,b))ςμ(bn+1,b,t2μ(fb,b))ςμ(b,bn,t2α(fb,b)k)ςμ(bn+1,b,t2μ(fb,b)).
    $

    Thus $ \varsigma_{\mu}(fb, b, t) = 1 $ and hence $ b $ is a fixed point of $ f $. To show the uniqueness, let $ c $ be another fixed point of $ f $. Applying inequality $ (2.3) $ yields that

    $ ςμ(b,c,t)=ςμ(fb,fc,t)ςμ(b,c,tk)=ςμ(fb,fc,tk)ςμ(b,c,tk2)ςμ(b,c,tkn),
    $

    which implies that $ \varsigma_{\mu}(b, c, t)\to 1, $ as $ n\to \infty, $ and hence $ b = c $.

    Remark 2.2. If $ \alpha(u, v) = \mu(u, v) $ for all $ u, v\in S $, then Theorem 2.1 reduces to Theorem 1.1.

    The following example illustrates Theorem 2.1.

    Example 2.3. Let $ S = [0, 1] $ and $ \varsigma_{\mu}(u, v, t) = e^{\frac{-|u-v|}{t}}, \ \ \forall u, v\in S $. It can be easily verified that $ (S, \varsigma_{\mu}, *, \alpha, \mu) $ is a $ G $-complete $ \mu $-extended fuzzy $ b $-metric space with mappings $ \alpha, \mu: S\times S \to [1, \infty) $ defined by $ \alpha(u, v) = 1+uv\text{ and } \mu(u, v) = 1+u+v $, respectively and continuous $ t $-norm $ * $ as usual product.

    Let $ f:S\to S $ be such that $ f(x, y) = 1-\frac{1}{3}x. $ For all $ t > 0 $ we have

    $ ςμ(fu,fv,12t)=e23|uv|t>e|uv|t=ςμ(u,v,t).
    $

    That is all the conditions of Theorem 2.1 are satisfied. Therefore, $ f $ has unique fixed point $ \frac{3}{4}\in [0, 1] = S $.

    We introduce the concept of $ \mu $-extended fuzzy $ b $-metric space and established fixed point result which generalizes Banach contraction principle to this newly introduced space. The concept we presented may lead to further investigation and applications. As the class of of $ \mu $-extended fuzzy $ b $-metric spaces is wider than those of the fuzzy $ b $-metric spaces and extended fuzzy b-metric spaces, therefore results established in this framework will generalize many results in the existing literature.

    The authors are grateful to the editorial board and anonymous reviewers for their comments and remarks which helped to improve this manuscript.

    The third author would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017- 01-17.

    The authors declare that they have no competing interest.

    [1] Problem solving in social interactions on the Internet: Rumor as social cognition. Social Psychology Quarterly (2004) 67: 33-49.
    [2] G. Chen, H. Shen, T. Ye, G. Chen and N. Kerr, A kinetic model for the spread of rumor in emergencies, Discrete Dynamics in Nature and Society, 2013 (2013), Art. ID 605854, 8 pp.
    [3] D. J. Daley and D. G. Kendall, Epidemics and rumours, Nature, 204 (1964), 1118. doi: 10.1038/2041118a0
    [4] Stochastic rumours. IMA Journal of Applied Mathematics (1965) 1: 42-55.
    [5] N. Fountoulakis, K. Panagiotou and T. Sauerwald, Ultra-fast rumor spreading in social networks, Proceedings of the Twenty-Third Annual ACM-SIAM symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, 2012, 1642–1660. doi: 10.1137/1.9781611973099.130
    [6] The effect of the forget-remember mechanism on spreading. European Physical Journal B (2008) 62: 247-255.
    [7] Stochastic epidemics and rumours on finite random networks. Physica A (2010) 389: 561-576.
    [8] Who hears what from whom and with what effect:A study of rumor. Personality and Social Psychology Bulletin (1980) 6: 473-478.
    [9] Dynamical behavior of a rumor transmission model with Holling-type Ⅱ functional response in emergency event. Physica A (2016) 450: 228-240.
    [10] Analysis of commercial rumors from the perspective of marketing managers: Rumor prevalence, effects, and control tactics. Journal of Marketing Communications (2010) 16: 239-253.
    [11] D. Maki and M. Thomson, Mathematical Models and Applications, Prentice-Hall, Englewood Cliffs, 1973.
    [12] M. McDonald, O. Suleman, S. Williams, S. Howison and N. F. Johnson, Impact of unexpected events, shocking news, and rumors on foreign exchange market dynamics, Physical Review E, 77 (2008), 046110. doi: 10.1103/PhysRevE.77.046110
    [13] Y. Moreno, M. Nekovee and A. Pacheco, Dynamics of rumor spreading in complex networks, Physical Review E, 69 (2004), 066130. doi: 10.1103/PhysRevE.69.066130
    [14] M. Nagao, K. Suto and A. Ohuchi, A media information analysis for implementing effective countermeasure against harmful rumor, Journal of Physics, Conference Series, 221 (2010), 012004. doi: 10.1088/1742-6596/221/1/012004
    [15] Theory of rumour spreading in complex social networks. Physica A (2007) 374: 457-470.
    [16] Belief in rumor and likelihood of rumor transmission. Language & Communication (1986) 6: 189-194.
    [17] The proportion of population never hearing a rumour. Journal of Applied Probability (1985) 22: 443-446.
    [18] Lies, damn lies, and rumors: An analysis of collective efficacy, rumors, and fear in the wake of Katrina. Sociological Spectrum (2007) 27: 679-703.
    [19] Rumor Spreading Model with Trust Mechanism in Complex Social Networks. Communications in Theoretical Physics (2013) 59: 510-516.
    [20] 2SI2R rumor spreading model in homogeneous networks. Physica A (2014) 413: 153-161.
    [21] Collective dynamics of small-world networks. Nature (1998) 393: 440-442.
    [22] SICR rumor spreading model in complex networks: Counterattack and self-resistance. Physica A (2014) 405: 159-170.
    [23] D. H. Zanette, Critical behavior of propagation on small-world networks, Physical Review E, 64 (2001), 050901. doi: 10.1103/PhysRevE.64.050901
    [24] D. H. Zanette, Dynamics of rumor propagation on small-world networks, Physical Review E, 65 (2002), 041908. doi: 10.1103/PhysRevE.65.041908
    [25] SIR rumor spreading model in the new media age. Physica A (2013) 392: 995-1003.
    [26] SIHR rumor spreading model in social networks. Physica A (2012) 391: 2444-2453.
    [27] Rumor spreading model with consideration of forgetting mechanism: A case of online blogging LiveJournal. Physica A (2011) 390: 2619-2625.
    [28] A rumor spreading model with variable forgetting rate. Physica A (2013) 392: 6146-6154.
    [29] Complex dynamic behavior of a rumor propagation model with spatial-temporal diffusion terms. Information Sciences (2016) 349/350: 119-136.
  • This article has been cited by:

    1. Muhammad Sarwar, Kamal Shah, Bahaaeldin Abdalla, Thabet Abdeljawad, Some generalized fixed point results of Banach and $ \acute{C} $iri$ \acute{C} $ type in extended fuzzy $ b $-metric spaces with applications, 2022, 7, 2473-6988, 14029, 10.3934/math.2022774
    2. Badshah-E. Rome, Muhammad Sarwar, Fahd Jarad, Muhammad Gulzar, n -Tupled Common Fixed Point Result in Fuzzy b -Metric Spaces, 2022, 2022, 2314-8888, 1, 10.1155/2022/4097444
    3. Siniša N. Ješić, Nataša A. Ćirović, Rale M. Nikolić, Branislav M. Ranƌelović, A fixed point theorem in strictly convex $ b $-fuzzy metric spaces, 2023, 8, 2473-6988, 20989, 10.3934/math.20231068
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8640) PDF downloads(701) Cited by(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog