Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity

  • Received: 01 April 2015 Revised: 01 October 2015
  • Primary: 35L65; Secondary: 65M12, 90B20.

  • We consider an extension of the traffic flow model proposed by Lighthill, Whitham and Richards, in which the mean velocity depends on a weighted mean of the downstream traffic density. We prove well-posedness and a regularity result for entropy weak solutions of the corresponding Cauchy problem, and use a finite volume central scheme to compute approximate solutions. We perform numerical tests to illustrate the theoretical results and to investigate the limit as the convolution kernel tends to a Dirac delta function.

    Citation: Paola Goatin, Sheila Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity[J]. Networks and Heterogeneous Media, 2016, 11(1): 107-121. doi: 10.3934/nhm.2016.11.107

    Related Papers:

    [1] Abraham Sylla . Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks and Heterogeneous Media, 2021, 16(2): 221-256. doi: 10.3934/nhm.2021005
    [2] Paola Goatin, Chiara Daini, Maria Laura Delle Monache, Antonella Ferrara . Interacting moving bottlenecks in traffic flow. Networks and Heterogeneous Media, 2023, 18(2): 930-945. doi: 10.3934/nhm.2023040
    [3] Jan Friedrich, Oliver Kolb, Simone Göttlich . A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Networks and Heterogeneous Media, 2018, 13(4): 531-547. doi: 10.3934/nhm.2018024
    [4] Christophe Chalons, Paola Goatin, Nicolas Seguin . General constrained conservation laws. Application to pedestrian flow modeling. Networks and Heterogeneous Media, 2013, 8(2): 433-463. doi: 10.3934/nhm.2013.8.433
    [5] Paola Goatin, Sheila Scialanga . Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks and Heterogeneous Media, 2016, 11(1): 107-121. doi: 10.3934/nhm.2016.11.107
    [6] Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada . A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks and Heterogeneous Media, 2021, 16(2): 187-219. doi: 10.3934/nhm.2021004
    [7] Helge Holden, Nils Henrik Risebro . Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow. Networks and Heterogeneous Media, 2018, 13(3): 409-421. doi: 10.3934/nhm.2018018
    [8] Dong Li, Tong Li . Shock formation in a traffic flow model with Arrhenius look-ahead dynamics. Networks and Heterogeneous Media, 2011, 6(4): 681-694. doi: 10.3934/nhm.2011.6.681
    [9] Wen Shen . Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks and Heterogeneous Media, 2019, 14(4): 709-732. doi: 10.3934/nhm.2019028
    [10] Felisia Angela Chiarello, Harold Deivi Contreras, Luis Miguel Villada . Nonlocal reaction traffic flow model with on-off ramps. Networks and Heterogeneous Media, 2022, 17(2): 203-226. doi: 10.3934/nhm.2022003
  • We consider an extension of the traffic flow model proposed by Lighthill, Whitham and Richards, in which the mean velocity depends on a weighted mean of the downstream traffic density. We prove well-posedness and a regularity result for entropy weak solutions of the corresponding Cauchy problem, and use a finite volume central scheme to compute approximate solutions. We perform numerical tests to illustrate the theoretical results and to investigate the limit as the convolution kernel tends to a Dirac delta function.


    [1] A. Aggarwal, R. M. Colombo and P. Goatin, Nonlocal systems of conservation laws in several space dimensions, SIAM Journal on Numerical Analysis, 53 (2015), 963-983. doi: 10.1137/140975255
    [2] D. Amadori and W. Shen, An integro-differential conservation law arising in a model of granular flow, J. Hyperbolic Differ. Equ., 9 (2012), 105-131. doi: 10.1142/S0219891612500038
    [3] P. Amorim, R. Colombo and A. Teixeira, On the numerical integration of scalar nonlocal conservation laws, ESAIM M2AN, 49 (2015), 19-37. doi: 10.1051/m2an/2014023
    [4] F. Betancourt, R. Bürger, K. H. Karlsen and E. M. Tory, On nonlocal conservation laws modelling sedimentation, Nonlinearity, 24 (2011), 855-885. doi: 10.1088/0951-7715/24/3/008
    [5] S. Blandin and P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numerische Mathematik, (2015), 1-25. doi: 10.1007/s00211-015-0717-6
    [6] C. Canudas De Wit, F. Morbidi, L. Leon Ojeda, A. Y. Kibangou, I. Bellicot and P. Bellemain, Grenoble Traffic Lab: An experimental platform for advanced traffic monitoring and forecasting, IEEE Control Systems, 35 (2015), 23-39, URL https://hal.archives-ouvertes.fr/hal-01059126. doi: 10.1109/MCS.2015.2406657
    [7] R. M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic, Mathematical Models and Methods in Applied Sciences, 22 (2012), 1150023, 34pp. doi: 10.1142/S0218202511500230
    [8] R. M. Colombo, M. Herty and M. Mercier, Control of the continuity equation with a non local flow, ESAIM Control Optim. Calc. Var., 17 (2011), 353-379. doi: 10.1051/cocv/2010007
    [9] R. M. Colombo and M. Lécureux-Mercier, Nonlocal crowd dynamics models for several populations, Acta Math. Sci. Ser. B Engl. Ed., 32 (2012), 177-196. doi: 10.1016/S0252-9602(12)60011-3
    [10] G. Crippa and M. Lécureux-Mercier, Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow, Nonlinear Differential Equations and Applications NoDEA, 20 (2013), 523-537. doi: 10.1007/s00030-012-0164-3
    [11] M. Garavello and B. Piccoli, Traffic Flow on Networks, AIMS, 2006.
    [12] P. Goatin and S. Scialanga, The Lighthill-Whitham-Richards Traffic Flow Model with Non-Local Velocity: Analytical Study and Numerical Results, Research Report RR-8685, Inria Sophia Antipolis, 2015, URL https://hal.inria.fr/hal-01118734.
    [13] S. Göttlich, S. Hoher, P. Schindler, V. Schleper and A. Verl, Modeling, simulation and validation of material flow on conveyor belts, Applied Mathematical Modelling, 38 (2014), 3295-3313. doi: 10.1016/j.apm.2013.11.039
    [14] J. C. Herrera and A. M. Bayen, Incorporation of lagrangian measurements in freeway traffic state estimation, Transportation Research Part B: Methodological, 44 (2010), 460-481. doi: 10.1016/j.trb.2009.10.005
    [15] M. Herty and R. Illner, Coupling of non-local driving behaviour with fundamental diagrams, Kinetic and Related Models, 5 (2012), 843-855. doi: 10.3934/krm.2012.5.843
    [16] F. James and N. Vauchelet, Numerical methods for one-dimensional aggregation equations, SIAM Journal on Numerical Analysis, 53 (2015), 895-916. doi: 10.1137/140959997
    [17] S. N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255.
    [18] A. Kurganov and A. Polizzi, Non-oscillatory central schemes for a traffic flow model with Arrehenius look-ahead dynamics, Netw. Heterog. Media, 4 (2009), 431-451. doi: 10.3934/nhm.2009.4.431
    [19] D. Li and T. Li, Shock formation in a traffic flow model with Arrhenius look-ahead dynamics, Networks and Heterogeneous Media, 6 (2011), 681-694. doi: 10.3934/nhm.2011.6.681
    [20] K.-A. Lie and S. Noelle, On the artificial compression method for second-order nonoscillatory central difference schemes for system of conservation laws, SIAM J. Sci. Comput., 24 (2003), 1157-1174. doi: 10.1137/S1064827501392880
    [21] M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089
    [22] H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys., 87 (1990), 408-463. doi: 10.1016/0021-9991(90)90260-8
    [23] P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51. doi: 10.1287/opre.4.1.42
    [24] A. Sopasakis and M. A. Katsoulakis, Stochastic modeling and simulation of traffic flow: Asymmetric single exclusion process with Arrhenius look-ahead dynamics, SIAM J. Appl. Math., 66 (2006), 921-944 (electronic). doi: 10.1137/040617790
    [25] M. Treiber and A. Kesting, Traffic Flow Dynamics, Springer-Verlag, Berlin Heidelberg, 2013. doi: 10.1007/978-3-642-32460-4
  • This article has been cited by:

    1. Felisia Angela Chiarello, Paola Goatin, Luis Miguel Villada, Lagrangian-antidiffusive remap schemes for non-local multi-class traffic flow models, 2020, 39, 2238-3603, 10.1007/s40314-020-1097-9
    2. Alexandre Bayen, Jan Friedrich, Alexander Keimer, Lukas Pflug, Tanya Veeravalli, Modeling Multilane Traffic with Moving Obstacles by Nonlocal Balance Laws, 2022, 21, 1536-0040, 1495, 10.1137/20M1366654
    3. Giuseppe Maria Coclite, Nicola De Nitti, Alexander Keimer, Lukas Pflug, On existence and uniqueness of weak solutions to nonlocal conservation laws with BV kernels, 2022, 73, 0044-2275, 10.1007/s00033-022-01766-0
    4. Peter E. Kloeden, Thomas Lorenz, Nonlocal multi-scale traffic flow models: analysis beyond vector spaces, 2016, 6, 1664-3607, 453, 10.1007/s13373-016-0090-5
    5. Cristiana De Filippis, Paola Goatin, The initial–boundary value problem for general non-local scalar conservation laws in one space dimension, 2017, 161, 0362546X, 131, 10.1016/j.na.2017.05.017
    6. Jan Friedrich, Simone Göttlich, Maximilian Osztfalk, Network models for nonlocal traffic flow, 2022, 56, 2822-7840, 213, 10.1051/m2an/2022002
    7. Christophe Chalons, Paola Goatin, Luis M. Villada, High-Order Numerical Schemes for One-Dimensional Nonlocal Conservation Laws, 2018, 40, 1064-8275, A288, 10.1137/16M110825X
    8. Iasson Karafyllis, Dionysios Theodosis, Markos Papageorgiou, Stability analysis of nonlinear inviscid microscopic and macroscopic traffic flow models of bidirectional cruise-controlled vehicles, 2022, 39, 0265-0754, 609, 10.1093/imamci/dnac003
    9. Alexander Keimer, Lukas Pflug, Michele Spinola, Nonlocal Scalar Conservation Laws on Bounded Domains and Applications in Traffic Flow, 2018, 50, 0036-1410, 6271, 10.1137/18M119817X
    10. Axel Klar, Sudarshan Tiwari, A Multiscale Particle Method for Mean Field Equations: The General Case, 2019, 17, 1540-3459, 233, 10.1137/17M112957X
    11. Iasson Karafyllis, Dionysios Theodosis, Markos Papageorgiou, Analysis and control of a non-local PDE traffic flow model, 2022, 95, 0020-7179, 660, 10.1080/00207179.2020.1808902
    12. Gianluca Crippa, Elio Marconi, Laura V. Spinolo, Maria Colombo, Local limit of nonlocal traffic models: Convergence results and total variation blow-up, 2021, 38, 0294-1449, 1653, 10.1016/j.anihpc.2020.12.002
    13. Alexander Keimer, Lukas Pflug, On approximation of local conservation laws by nonlocal conservation laws, 2019, 475, 0022247X, 1927, 10.1016/j.jmaa.2019.03.063
    14. Iasson Karafyllis, Dionysios Theodosis, Markos Papageorgiou, 2022, Stability Analysis of Nonlinear Inviscid Traffic Flow Models of Bidirectional Cruise Controlled Vehicles, 978-1-6654-5196-3, 1042, 10.23919/ACC53348.2022.9867663
    15. Jan Friedrich, Oliver Kolb, Maximum Principle Satisfying CWENO Schemes for Nonlocal Conservation Laws, 2019, 41, 1064-8275, A973, 10.1137/18M1175586
    16. Boris Andreianov, Abraham Sylla, 2020, Chapter 21, 978-3-030-43650-6, 243, 10.1007/978-3-030-43651-3_21
    17. Alexander Keimer, Lukas Pflug, 2023, 15708659, 10.1016/bs.hna.2022.11.001
    18. Ioana Ciotir, Rim Fayad, Nicolas Forcadel, Antoine Tonnoir, A non-local macroscopic model for traffic flow, 2021, 55, 0764-583X, 689, 10.1051/m2an/2021006
    19. Amaury Hayat, Global exponential stability and Input-to-State Stability of semilinear hyperbolic systems for the L2 norm, 2021, 148, 01676911, 104848, 10.1016/j.sysconle.2020.104848
    20. Alexander Keimer, Manish Singh, Tanya Veeravalli, Existence and uniqueness results for a class of nonlocal conservation laws by means of a Lax–Hopf-type solution formula, 2020, 17, 0219-8916, 677, 10.1142/S0219891620500204
    21. Alexander Keimer, Lukas Pflug, Nonlocal conservation laws with time delay, 2019, 26, 1021-9722, 10.1007/s00030-019-0597-z
    22. Qiang Du, Zhan Huang, Philippe G. LeFloch, Nonlocal Conservation Laws. A New Class of Monotonicity-Preserving Models, 2017, 55, 0036-1429, 2465, 10.1137/16M1105372
    23. Giuseppe Maria Coclite, Nicola De Nitti, Alexander Keimer, Lukas Pflug, Singular limits with vanishing viscosity for nonlocal conservation laws, 2021, 211, 0362546X, 112370, 10.1016/j.na.2021.112370
    24. Felisia Angela Chiarello, Paola Goatin, Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel, 2018, 52, 0764-583X, 163, 10.1051/m2an/2017066
    25. Kuang Huang, Qiang Du, Stability of a Nonlocal Traffic Flow Model for Connected Vehicles, 2022, 82, 0036-1399, 221, 10.1137/20M1355732
    26. Giuseppe Maria Coclite, Lorenzo di Ruvo, On the initial-boundary value problem for a non-local elliptic-hyperbolic system related to the short pulse equation, 2022, 3, 2662-2963, 10.1007/s42985-022-00208-w
    27. SIMONE CACACE, FABIO CAMILLI, RAUL DE MAIO, ANDREA TOSIN, A measure theoretic approach to traffic flow optimisation on networks, 2019, 30, 0956-7925, 1187, 10.1017/S0956792518000621
    28. Raimund Bürger, Harold Deivi Contreras, Luis Miguel Villada, A Hilliges-Weidlich-type scheme for a one-dimensional scalar conservation law with nonlocal flux, 2023, 18, 1556-1801, 664, 10.3934/nhm.2023029
    29. Felisia Angela Chiarello, 2021, Chapter 5, 978-3-030-66559-3, 79, 10.1007/978-3-030-66560-9_5
    30. Iasson Karafyllis, Dionysis Theodosis, Markos Papageorgiou, 2020, Using Nudging for the Control of a Non-Local PDE Traffic Flow Model, 978-1-7281-4149-7, 1, 10.1109/ITSC45102.2020.9294264
    31. Felisia Angela Chiarello, Harold Deivi Contreras, Luis Miguel Villada, Nonlocal reaction traffic flow model with on-off ramps, 2022, 17, 1556-1801, 203, 10.3934/nhm.2022003
    32. Maria Colombo, Gianluca Crippa, Marie Graff, Laura V. Spinolo, On the role of numerical viscosity in the study of the local limit of nonlocal conservation laws, 2021, 55, 0764-583X, 2705, 10.1051/m2an/2021073
    33. Rinaldo M. Colombo, Elena Rossi, Nonlocal Conservation Laws in Bounded Domains, 2018, 50, 0036-1410, 4041, 10.1137/18M1171783
    34. Fabio Camilli, Raul De Maio, Andrea Tosin, Measure-valued solutions to nonlocal transport equations on networks, 2018, 264, 00220396, 7213, 10.1016/j.jde.2018.02.015
    35. Veerappa Gowda G. D., Sudarshan Kumar Kenettinkara, Nikhil Manoj, Convergence of a second-order scheme for non-local conservation laws, 2023, 57, 2822-7840, 3439, 10.1051/m2an/2023080
    36. Alexander Keimer, Lukas Pflug, Discontinuous nonlocal conservation laws and related discontinuous ODEs – Existence, Uniqueness, Stability and Regularity, 2023, 361, 1778-3569, 1723, 10.5802/crmath.490
    37. Saeed Mohammadian, Zuduo Zheng, Md. Mazharul Haque, Ashish Bhaskar, Continuum modeling of freeway traffic flows: State-of-the-art, challenges and future directions in the era of connected and automated vehicles, 2023, 3, 27724247, 100107, 10.1016/j.commtr.2023.100107
    38. Felisia Angela Chiarello, Paola Goatin, 2023, Chapter 3, 978-3-031-29874-5, 49, 10.1007/978-3-031-29875-2_3
    39. Jan Friedrich, Simone Göttlich, Michael Herty, Lyapunov Stabilization for Nonlocal Traffic Flow Models, 2023, 61, 0363-0129, 2849, 10.1137/22M152181X
    40. S. Belkadi, M. Atounti, Central finite volume schemes for non-local traffic flow models with Arrhenius-type look-ahead rules, 2023, 10, 23129794, 1100, 10.23939/mmc2023.04.1100
    41. G. M. Coclite, K. H. Karlsen, N. H. Risebro, A nonlocal Lagrangian traffic flow model and the zero-filter limit, 2024, 75, 0044-2275, 10.1007/s00033-023-02153-z
    42. Said Belkadi, Mohamed Atounti, A class of central unstaggered schemes for nonlocal conservation laws: Applications to traffic flow models, 2024, 42, 2175-1188, 1, 10.5269/bspm.63895
    43. Yi Hu, Yongki Lee, Shijun Zheng, 2024, Chapter 13, 978-3-031-69709-8, 301, 10.1007/978-3-031-69710-4_13
    44. Jan Friedrich, Sanjibanee Sudha, Samala Rathan, Numerical schemes for a class of nonlocal conservation laws: a general approach, 2023, 18, 1556-1801, 1335, 10.3934/nhm.2023058
    45. Mihály Kovács, Mihály A. Vághy, Nonlinear semigroups for nonlocal conservation laws, 2023, 4, 2662-2963, 10.1007/s42985-023-00249-9
    46. Pushkin Kachroo, Shaurya Agarwal, Animesh Biswas, Archie J. Huang, Nonlocal Calculus-Based Macroscopic Traffic Model: Development, Analysis, and Validation, 2023, 4, 2687-7813, 900, 10.1109/OJITS.2023.3335303
    47. Alexander Keimer, Lukas Pflug, On the singular limit problem for a discontinuous nonlocal conservation law, 2023, 237, 0362546X, 113381, 10.1016/j.na.2023.113381
    48. Kuang Huang, Qiang Du, Asymptotic Compatibility of a Class of Numerical Schemes for a Nonlocal Traffic Flow Model, 2024, 62, 0036-1429, 1119, 10.1137/23M154488X
    49. Jan Friedrich, Simone Göttlich, Alexander Keimer, Lukas Pflug, Conservation Laws with Nonlocal Velocity: The Singular Limit Problem, 2024, 84, 0036-1399, 497, 10.1137/22M1530471
    50. Giuseppe Maria Coclite, Nicola De Nitti, Alexander Keimer, Lukas Pflug, Enrique Zuazua, Long-time convergence of a nonlocal Burgers’ equation towards the local N-wave, 2023, 36, 0951-7715, 5998, 10.1088/1361-6544/acf01d
    51. E. Abreu, J. C. Valencia-Guevara, M. Huacasi-Machaca, J. Pérez, A numerical scheme for doubly nonlocal conservation laws, 2024, 61, 0008-0624, 10.1007/s10092-024-00624-x
    52. Archie J. Huang, Animesh Biswas, Shaurya Agarwal, Incorporating Nonlocal Traffic Flow Model in Physics-Informed Neural Networks, 2024, 25, 1524-9050, 16249, 10.1109/TITS.2024.3429029
    53. Giuseppe Maria Coclite, Maria Colombo, Gianluca Crippa, Nicola De Nitti, Alexander Keimer, Elio Marconi, Lukas Pflug, Laura V. Spinolo, Oleinik-type estimates for nonlocal conservation laws and applications to the nonlocal-to-local limit, 2024, 21, 0219-8916, 681, 10.1142/S021989162440006X
    54. Alexander Keimer, Lukas Pflug, On the singular limit problem for nonlocal conservation laws: A general approximation result for kernels with fixed support, 2025, 547, 0022247X, 129307, 10.1016/j.jmaa.2025.129307
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5240) PDF downloads(160) Cited by(54)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog