1.
|
Felisia Angela Chiarello, Paola Goatin, Luis Miguel Villada,
Lagrangian-antidiffusive remap schemes for non-local multi-class traffic flow models,
2020,
39,
2238-3603,
10.1007/s40314-020-1097-9
|
|
2.
|
Alexandre Bayen, Jan Friedrich, Alexander Keimer, Lukas Pflug, Tanya Veeravalli,
Modeling Multilane Traffic with Moving Obstacles by Nonlocal Balance Laws,
2022,
21,
1536-0040,
1495,
10.1137/20M1366654
|
|
3.
|
Giuseppe Maria Coclite, Nicola De Nitti, Alexander Keimer, Lukas Pflug,
On existence and uniqueness of weak solutions to nonlocal conservation laws with BV kernels,
2022,
73,
0044-2275,
10.1007/s00033-022-01766-0
|
|
4.
|
Peter E. Kloeden, Thomas Lorenz,
Nonlocal multi-scale traffic flow models: analysis beyond vector spaces,
2016,
6,
1664-3607,
453,
10.1007/s13373-016-0090-5
|
|
5.
|
Cristiana De Filippis, Paola Goatin,
The initial–boundary value problem for general non-local scalar conservation laws in one space dimension,
2017,
161,
0362546X,
131,
10.1016/j.na.2017.05.017
|
|
6.
|
Jan Friedrich, Simone Göttlich, Maximilian Osztfalk,
Network models for nonlocal traffic flow,
2022,
56,
2822-7840,
213,
10.1051/m2an/2022002
|
|
7.
|
Christophe Chalons, Paola Goatin, Luis M. Villada,
High-Order Numerical Schemes for One-Dimensional Nonlocal Conservation Laws,
2018,
40,
1064-8275,
A288,
10.1137/16M110825X
|
|
8.
|
Iasson Karafyllis, Dionysios Theodosis, Markos Papageorgiou,
Stability analysis of nonlinear inviscid microscopic and macroscopic traffic flow models of bidirectional cruise-controlled vehicles,
2022,
39,
0265-0754,
609,
10.1093/imamci/dnac003
|
|
9.
|
Alexander Keimer, Lukas Pflug, Michele Spinola,
Nonlocal Scalar Conservation Laws on Bounded Domains and Applications in Traffic Flow,
2018,
50,
0036-1410,
6271,
10.1137/18M119817X
|
|
10.
|
Axel Klar, Sudarshan Tiwari,
A Multiscale Particle Method for Mean Field Equations: The General Case,
2019,
17,
1540-3459,
233,
10.1137/17M112957X
|
|
11.
|
Iasson Karafyllis, Dionysios Theodosis, Markos Papageorgiou,
Analysis and control of a non-local PDE traffic flow model,
2022,
95,
0020-7179,
660,
10.1080/00207179.2020.1808902
|
|
12.
|
Gianluca Crippa, Elio Marconi, Laura V. Spinolo, Maria Colombo,
Local limit of nonlocal traffic models: Convergence results and total variation blow-up,
2021,
38,
0294-1449,
1653,
10.1016/j.anihpc.2020.12.002
|
|
13.
|
Alexander Keimer, Lukas Pflug,
On approximation of local conservation laws by nonlocal conservation laws,
2019,
475,
0022247X,
1927,
10.1016/j.jmaa.2019.03.063
|
|
14.
|
Iasson Karafyllis, Dionysios Theodosis, Markos Papageorgiou,
2022,
Stability Analysis of Nonlinear Inviscid Traffic Flow Models of Bidirectional Cruise Controlled Vehicles,
978-1-6654-5196-3,
1042,
10.23919/ACC53348.2022.9867663
|
|
15.
|
Jan Friedrich, Oliver Kolb,
Maximum Principle Satisfying CWENO Schemes for Nonlocal Conservation Laws,
2019,
41,
1064-8275,
A973,
10.1137/18M1175586
|
|
16.
|
Boris Andreianov, Abraham Sylla,
2020,
Chapter 21,
978-3-030-43650-6,
243,
10.1007/978-3-030-43651-3_21
|
|
17.
|
Alexander Keimer, Lukas Pflug,
2023,
15708659,
10.1016/bs.hna.2022.11.001
|
|
18.
|
Ioana Ciotir, Rim Fayad, Nicolas Forcadel, Antoine Tonnoir,
A non-local macroscopic model for traffic flow,
2021,
55,
0764-583X,
689,
10.1051/m2an/2021006
|
|
19.
|
Amaury Hayat,
Global exponential stability and Input-to-State Stability of semilinear hyperbolic systems for the L2 norm,
2021,
148,
01676911,
104848,
10.1016/j.sysconle.2020.104848
|
|
20.
|
Alexander Keimer, Manish Singh, Tanya Veeravalli,
Existence and uniqueness results for a class of nonlocal conservation laws by means of a Lax–Hopf-type solution formula,
2020,
17,
0219-8916,
677,
10.1142/S0219891620500204
|
|
21.
|
Alexander Keimer, Lukas Pflug,
Nonlocal conservation laws with time delay,
2019,
26,
1021-9722,
10.1007/s00030-019-0597-z
|
|
22.
|
Qiang Du, Zhan Huang, Philippe G. LeFloch,
Nonlocal Conservation Laws. A New Class of Monotonicity-Preserving Models,
2017,
55,
0036-1429,
2465,
10.1137/16M1105372
|
|
23.
|
Giuseppe Maria Coclite, Nicola De Nitti, Alexander Keimer, Lukas Pflug,
Singular limits with vanishing viscosity for nonlocal conservation laws,
2021,
211,
0362546X,
112370,
10.1016/j.na.2021.112370
|
|
24.
|
Felisia Angela Chiarello, Paola Goatin,
Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel,
2018,
52,
0764-583X,
163,
10.1051/m2an/2017066
|
|
25.
|
Kuang Huang, Qiang Du,
Stability of a Nonlocal Traffic Flow Model for Connected Vehicles,
2022,
82,
0036-1399,
221,
10.1137/20M1355732
|
|
26.
|
Giuseppe Maria Coclite, Lorenzo di Ruvo,
On the initial-boundary value problem for a non-local elliptic-hyperbolic system related to the short pulse equation,
2022,
3,
2662-2963,
10.1007/s42985-022-00208-w
|
|
27.
|
SIMONE CACACE, FABIO CAMILLI, RAUL DE MAIO, ANDREA TOSIN,
A measure theoretic approach to traffic flow optimisation on networks,
2019,
30,
0956-7925,
1187,
10.1017/S0956792518000621
|
|
28.
|
Raimund Bürger, Harold Deivi Contreras, Luis Miguel Villada,
A Hilliges-Weidlich-type scheme for a one-dimensional scalar conservation law with nonlocal flux,
2023,
18,
1556-1801,
664,
10.3934/nhm.2023029
|
|
29.
|
Felisia Angela Chiarello,
2021,
Chapter 5,
978-3-030-66559-3,
79,
10.1007/978-3-030-66560-9_5
|
|
30.
|
Iasson Karafyllis, Dionysis Theodosis, Markos Papageorgiou,
2020,
Using Nudging for the Control of a Non-Local PDE Traffic Flow Model,
978-1-7281-4149-7,
1,
10.1109/ITSC45102.2020.9294264
|
|
31.
|
Felisia Angela Chiarello, Harold Deivi Contreras, Luis Miguel Villada,
Nonlocal reaction traffic flow model with on-off ramps,
2022,
17,
1556-1801,
203,
10.3934/nhm.2022003
|
|
32.
|
Maria Colombo, Gianluca Crippa, Marie Graff, Laura V. Spinolo,
On the role of numerical viscosity in the study of the local limit of nonlocal conservation laws,
2021,
55,
0764-583X,
2705,
10.1051/m2an/2021073
|
|
33.
|
Rinaldo M. Colombo, Elena Rossi,
Nonlocal Conservation Laws in Bounded Domains,
2018,
50,
0036-1410,
4041,
10.1137/18M1171783
|
|
34.
|
Fabio Camilli, Raul De Maio, Andrea Tosin,
Measure-valued solutions to nonlocal transport equations on networks,
2018,
264,
00220396,
7213,
10.1016/j.jde.2018.02.015
|
|
35.
|
Veerappa Gowda G. D., Sudarshan Kumar Kenettinkara, Nikhil Manoj,
Convergence of a second-order scheme for non-local conservation laws,
2023,
57,
2822-7840,
3439,
10.1051/m2an/2023080
|
|
36.
|
Alexander Keimer, Lukas Pflug,
Discontinuous nonlocal conservation laws and related discontinuous ODEs – Existence, Uniqueness, Stability and Regularity,
2023,
361,
1778-3569,
1723,
10.5802/crmath.490
|
|
37.
|
Saeed Mohammadian, Zuduo Zheng, Md. Mazharul Haque, Ashish Bhaskar,
Continuum modeling of freeway traffic flows: State-of-the-art, challenges and future directions in the era of connected and automated vehicles,
2023,
3,
27724247,
100107,
10.1016/j.commtr.2023.100107
|
|
38.
|
Felisia Angela Chiarello, Paola Goatin,
2023,
Chapter 3,
978-3-031-29874-5,
49,
10.1007/978-3-031-29875-2_3
|
|
39.
|
Jan Friedrich, Simone Göttlich, Michael Herty,
Lyapunov Stabilization for Nonlocal Traffic Flow Models,
2023,
61,
0363-0129,
2849,
10.1137/22M152181X
|
|
40.
|
S. Belkadi, M. Atounti,
Central finite volume schemes for non-local traffic flow models with Arrhenius-type look-ahead rules,
2023,
10,
23129794,
1100,
10.23939/mmc2023.04.1100
|
|
41.
|
G. M. Coclite, K. H. Karlsen, N. H. Risebro,
A nonlocal Lagrangian traffic flow model and the zero-filter limit,
2024,
75,
0044-2275,
10.1007/s00033-023-02153-z
|
|
42.
|
Said Belkadi, Mohamed Atounti,
A class of central unstaggered schemes for nonlocal conservation laws: Applications to traffic flow models,
2024,
42,
2175-1188,
1,
10.5269/bspm.63895
|
|
43.
|
Yi Hu, Yongki Lee, Shijun Zheng,
2024,
Chapter 13,
978-3-031-69709-8,
301,
10.1007/978-3-031-69710-4_13
|
|
44.
|
Jan Friedrich, Sanjibanee Sudha, Samala Rathan,
Numerical schemes for a class of nonlocal conservation laws: a general approach,
2023,
18,
1556-1801,
1335,
10.3934/nhm.2023058
|
|
45.
|
Mihály Kovács, Mihály A. Vághy,
Nonlinear semigroups for nonlocal conservation laws,
2023,
4,
2662-2963,
10.1007/s42985-023-00249-9
|
|
46.
|
Pushkin Kachroo, Shaurya Agarwal, Animesh Biswas, Archie J. Huang,
Nonlocal Calculus-Based Macroscopic Traffic Model: Development, Analysis, and Validation,
2023,
4,
2687-7813,
900,
10.1109/OJITS.2023.3335303
|
|
47.
|
Alexander Keimer, Lukas Pflug,
On the singular limit problem for a discontinuous nonlocal conservation law,
2023,
237,
0362546X,
113381,
10.1016/j.na.2023.113381
|
|
48.
|
Kuang Huang, Qiang Du,
Asymptotic Compatibility of a Class of Numerical Schemes for a Nonlocal Traffic Flow Model,
2024,
62,
0036-1429,
1119,
10.1137/23M154488X
|
|
49.
|
Jan Friedrich, Simone Göttlich, Alexander Keimer, Lukas Pflug,
Conservation Laws with Nonlocal Velocity: The Singular Limit Problem,
2024,
84,
0036-1399,
497,
10.1137/22M1530471
|
|
50.
|
Giuseppe Maria Coclite, Nicola De Nitti, Alexander Keimer, Lukas Pflug, Enrique Zuazua,
Long-time convergence of a nonlocal Burgers’ equation towards the local N-wave,
2023,
36,
0951-7715,
5998,
10.1088/1361-6544/acf01d
|
|
51.
|
E. Abreu, J. C. Valencia-Guevara, M. Huacasi-Machaca, J. Pérez,
A numerical scheme for doubly nonlocal conservation laws,
2024,
61,
0008-0624,
10.1007/s10092-024-00624-x
|
|
52.
|
Archie J. Huang, Animesh Biswas, Shaurya Agarwal,
Incorporating Nonlocal Traffic Flow Model in Physics-Informed Neural Networks,
2024,
25,
1524-9050,
16249,
10.1109/TITS.2024.3429029
|
|
53.
|
Giuseppe Maria Coclite, Maria Colombo, Gianluca Crippa, Nicola De Nitti, Alexander Keimer, Elio Marconi, Lukas Pflug, Laura V. Spinolo,
Oleinik-type estimates for nonlocal conservation laws and applications to the nonlocal-to-local limit,
2024,
21,
0219-8916,
681,
10.1142/S021989162440006X
|
|
54.
|
Alexander Keimer, Lukas Pflug,
On the singular limit problem for nonlocal conservation laws: A general approximation result for kernels with fixed support,
2025,
547,
0022247X,
129307,
10.1016/j.jmaa.2025.129307
|
|