Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads

  • Received: 01 September 2018 Revised: 01 March 2019
  • Primary: 65M20, 35L02, 35L65; Secondary: 34B99, 35Q99

  • We consider two scalar conservation laws with non-local flux functions, describing traffic flow on roads with rough conditions. In the first model, the velocity of the car depends on an averaged downstream density, while in the second model one considers an averaged downstream velocity. The road condition is piecewise constant with a jump at $ x = 0 $. We study stationary traveling wave profiles cross $ x = 0 $, for all possible cases. We show that, depending on the case, there could exit infinitely many profiles, a unique profile, or no profiles at all. Furthermore, some of the profiles are time asymptotic solutions for the Cauchy problem of the conservation laws under mild assumption on the initial data, while other profiles are unstable.

    Citation: Wen Shen. Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads[J]. Networks and Heterogeneous Media, 2019, 14(4): 709-732. doi: 10.3934/nhm.2019028

    Related Papers:

    [1] Wenya Shi, Xinpeng Yan, Zhan Huan . Faster free pseudoinverse greedy block Kaczmarz method for image recovery. Electronic Research Archive, 2024, 32(6): 3973-3988. doi: 10.3934/era.2024178
    [2] Ranran Li, Hao Liu . On global randomized block Kaczmarz method for image reconstruction. Electronic Research Archive, 2022, 30(4): 1442-1453. doi: 10.3934/era.2022075
    [3] Yimou Liao, Tianxiu Lu, Feng Yin . A two-step randomized Gauss-Seidel method for solving large-scale linear least squares problems. Electronic Research Archive, 2022, 30(2): 755-779. doi: 10.3934/era.2022040
    [4] Yun Ni, Jinqing Zhan, Min Liu . Topological design of continuum structures with global stress constraints considering self-weight loads. Electronic Research Archive, 2023, 31(8): 4708-4728. doi: 10.3934/era.2023241
    [5] Jun Guo, Yanchao Shi, Weihua Luo, Yanzhao Cheng, Shengye Wang . Exponential projective synchronization analysis for quaternion-valued memristor-based neural networks with time delays. Electronic Research Archive, 2023, 31(9): 5609-5631. doi: 10.3934/era.2023285
    [6] Yanlong Zhang, Rui Zhang, Li Wang . Oblique impact dynamic analysis of wedge friction damper with Dankowicz dynamic friction. Electronic Research Archive, 2024, 32(2): 962-978. doi: 10.3934/era.2024047
    [7] Dongmei Yu, Yifei Yuan, Yiming Zhang . A preconditioned new modulus-based matrix splitting method for solving linear complementarity problem of $ H_+ $-matrices. Electronic Research Archive, 2023, 31(1): 123-146. doi: 10.3934/era.2023007
    [8] Haoqing Wang, Wen Yi, Yannick Liu . Optimal assignment of infrastructure construction workers. Electronic Research Archive, 2022, 30(11): 4178-4190. doi: 10.3934/era.2022211
    [9] Yu Wang . Bi-shifting semantic auto-encoder for zero-shot learning. Electronic Research Archive, 2022, 30(1): 140-167. doi: 10.3934/era.2022008
    [10] Yaguo Guo, Shilin Yang . Projective class rings of the category of Yetter-Drinfeld modules over the $ 2 $-rank Taft algebra. Electronic Research Archive, 2023, 31(8): 5006-5024. doi: 10.3934/era.2023256
  • We consider two scalar conservation laws with non-local flux functions, describing traffic flow on roads with rough conditions. In the first model, the velocity of the car depends on an averaged downstream density, while in the second model one considers an averaged downstream velocity. The road condition is piecewise constant with a jump at $ x = 0 $. We study stationary traveling wave profiles cross $ x = 0 $, for all possible cases. We show that, depending on the case, there could exit infinitely many profiles, a unique profile, or no profiles at all. Furthermore, some of the profiles are time asymptotic solutions for the Cauchy problem of the conservation laws under mild assumption on the initial data, while other profiles are unstable.



    Fractional differential equations (FDEs) appeared as an excellent mathematical tool for, modeling of many physical phenomena appearing in various branches of science and engineering, such as viscoelasticity, statistical mechanics, dynamics of particles, etc. Fractional calculus is a recently developing work in mathematics which studies derivatives and integrals of functions of fractional order [26].

    The most used fractional derivatives are the Riemann-Liouville (RL) and Caputo derivatives. These derivatives contain a non-singular derivatives but still conserves the most important peculiarity of the fractional operators [1,2,10,11,23,24]. Atangana and Baleanu described a derivative with a generalized Mittag-leffler (ML) function. This derivative is often called the Atangana-Baleanu (AB) fractional derivative. The AB-derivative in the senses of Riemman-Liouville and Caputo are denoted by ABR-derivative and ABC-derivative, respectively.

    The AB fractional derivative is a nonlocal fractional derivative with nonsingular kernel which is connected with various applications [3,5,6,8,9,13,14,15,16]. Using the advantage of the non-singular ML kernal present in the AB fractional derivatives, operators, many authors from various branches of applied mathematics have developed and studied mathematical models involving AB fractional derivatives [18,22,29,30,31,32,35,36,37].

    Mohamed et al. [25] considered a system of multi-derivatives for Caputo FDEs with an initial value problem, examined the existence and uniqueness results and obtained numerical results. Sutar et al. [32,33] considered multi-derivative FDEs involving the ABR derivative and examined existence, uniqueness and dependence results. Kucche et al. [12,19,20,21,34] enlarged the work of multi-derivative fractional differential equations involving the Caputo fractional derivative and studied the existence, uniqueness and continuous dependence of the solution.

    Inspired by the preceding work, we perceive the multi-derivative nonlinear neutral fractional integro-differential equation with AB fractional derivative of the Riemann-Liouville sense of the problem:

    $ dVdȷ+0Dδȷ[V(ȷ)x(ȷ,y(ȷ))]=φ(ȷ,V(ȷ),ȷ0K(ȷ,θ,V(θ))dθ,T0χ(ȷ,θ,V(θ))dθ),ȷI
    $
    (1.1)
    $ \mathcal{V}\left(0\right) = \mathcal{V}_{0} \in \mathscr{R}, $ (1.2)

    where $ ^{\star}_{0} D^{\delta}_{\jmath} $ denotes the ABR fractional derivative of order $ \delta\in(0, 1) $, and $ \varphi \in \mathscr{C}(\mathscr{I} \times \mathscr{R} \times \mathscr{R} \times \mathscr{R}, \mathscr{R}) $ is a non-linear function. Let $ \mathcal{P}_{1}\mathcal{V}(\jmath) = \int^{\jmath}_{0}\mathcal{K}(\jmath, \theta, \mathcal{V}(\theta))d\theta $ and $ \mathcal{P}_{2}\mathcal{V}(\jmath) = \int^{T}_{0}\chi(\jmath, \theta, \mathcal{V}(\theta))d\theta $. Now, (1.1) becomes,

    $ dVdȷ+0Dδȷ[V(ȷ)x(ȷ,y(ȷ))]=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)),ȷI,
    $
    (1.3)
    $ V(0)=V0R.
    $
    (1.4)

    In this work, we derive a few supplemental results using the characteristics of the fractional integral operator $ \varepsilon^{\alpha}_{\delta, \eta, \mathcal{V}; c+} $. The existence results are obtained by Krasnoselskii's fixed point theorem and the uniqueness and data dependence results are obtained by the Gronwall-Bellman inequality.

    Definition 2.1. [14] The Sobolev space $ H^{\mathfrak{q}}(X) $ is defined as $ H^{\mathfrak{q}}\left(X\right) = \left\{\varphi\in L^{2}\left(X\right):D^{\beta}\varphi\in L^{2}(X), \forall \left|\beta\right|\leq \mathfrak{q}\right\}. $ Let $ \mathfrak{q}\in[1, \infty) $ and $ X $ be open, $ X\subset\mathbb{R} $.

    Definition 2.2. [11,17] The generalized ML function $ E^{\alpha}_{\delta, \beta}\left(u\right) $ for complex $ \delta, \beta, \alpha $ with Re$ (\delta) > 0 $ is defined by

    $ Eαδ,β(u)=t=0(α)tα(δt+β)utt!,
    $

    and the Pochhammer symbol is $ (\alpha)_{t} $, where $ (\alpha)_{0} = 1, (\alpha)_{t} = \alpha(\alpha+1)...(\alpha+t-1), $ $ t = 1, 2...., $ and $ E^{1}_{\delta, \beta}\left(u\right) = E_{\delta, \beta}\left(u\right), E^{1}_{\delta, 1}\left(u\right) = E_{\delta}\left(u\right). $

    Definition 2.3. [4] The ABR fractional derivative of $ \mathcal{V} $ of order $ \delta $ is

    $ 0Dδȷ[V(ȷ)x(ȷ,y(ȷ))]=B(δ)1δddȷȷ0Eδ[δ1δ(ȷθ)δ]V(θ)dθ,
    $

    where $ \mathcal{V} \in H^{1}(0, 1) $, $ \delta \in(0, 1) $, $ B(\delta) > 0 $. Here, $ E_{\delta} $ is a one parameter ML function, which shows $ B(0) = B(1) = 1 $.

    Definition 2.4. [4] The ABC fractional derivative of $ \mathcal{V} $ of order $ \delta $ is

    $ 0Dδȷ[V(ȷ)x(ȷ,y(ȷ))]=B(δ)1δȷ0Eδ[δ1δ(ȷθ)δ]V(θ)dθ,
    $

    where $ \mathcal{V} \in H^{1}(0, 1) $, $ \delta \in(0, 1) $, and $ B(\delta) > 0 $. Here, $ E_{\delta} $ is a one parameter ML function, which shows $ B(0) = B(1) = 1 $.

    Lemma 2.5. [4] If $ L\left\{g(\jmath); b\right\} = \bar{G}(b) $, then $ L\left\{^{\star}_{0}D^{\delta}_{\jmath}g(\jmath); b\right\} = \frac{B(\delta)}{1-\delta}\frac{b^{\delta}\bar{G}(b)}{b^{\delta}+\frac{\delta}{1-\delta}}. $

    Lemma 2.6. [26] $ L\left[\jmath^{m\delta+\beta-1}E^{(m)}_{\delta, \beta}\left(\pm a\jmath^{\delta}\right); b\right] = \frac{m!b^{\delta-\beta}}{\left(b^{\delta}\pm a\right)^{m+1}}, E^{m}(\jmath) = \frac{d^{m}}{d\jmath^{m}}E(\jmath). $

    Definition 2.7. [17,27] The operator $ \varepsilon^{\alpha}_{\delta, \eta, \mathcal{V}; c+} $ on class $ L(m, n) $ is

    $ (εαδ,η,V;c+)[V(ȷ)x(ȷ,y(ȷ))]=t0(ȷθ)α1Eαδ,η[V(ȷθ)δ]Θ(θ)dθ,ȷ[c,d],
    $

    where $ \delta, \eta, \mathcal{V}, \alpha\in \mathbb{C}\left(Re(\delta), Re(\eta) > 0\right) $, and $ n > m $.

    Lemma 2.8. [17,27] The operator $ \varepsilon^{\alpha}_{\delta, \eta, \mathcal{V}; c+} $ is bounded on $ C[m, n] $, such that $ \left\|\left(\varepsilon^{\alpha}_{\delta, \eta, \mathcal{V}; c+}\right)[\mathcal{V}(\jmath)-x(\jmath, y(\jmath))]\right\| \leq \mathcal{P} \left\|\Theta\right\|, $ where

    $ P=(nm)Re(η)t=0|(α)t||α(δt+η)|[Re(δ)t+Re(η)]|V(nm)Re(δ)|tt!.
    $

    Here, $ \delta, \eta, \mathcal{V}, \alpha\in \mathbb{C}\left(Re(\delta), Re(\eta) > 0\right) $, and $ n > m $.

    Lemma 2.9. [17,27] The operator $ \varepsilon^{\alpha}_{\delta, \eta, \mathcal{V}; c+} $ is invertible in the space $\textrm{L}(m, n) $ and $ \varphi \in \textrm{L}(m, n) $ its left inversion is given by

    $ ([εαδ,η,V;c+]1)[V(ȷ)x(ȷ,y(ȷ))]=(Dη+ςc+εαδ,η,V;c+)[V(ȷ)x(ȷ,y(ȷ))],ȷ(m,n],
    $

    where $ \delta, \eta, \mathcal{V}, \alpha\in \mathbb{C}\left(Re(\delta), Re(\eta) > 0\right) $, and $ n > m $.

    Lemma 2.10. [17,27] Let $ \delta, \eta, \mathcal{V}, \alpha\in \mathbb{C}\left(Re(\delta), Re(\eta) > 0\right), n > m $ and suppose that the integral equation is

    $ ȷ0(ȷθ)α1Eαδ,η[V(ȷθ)δ]Θ(θ)dθ=φ(ȷ),ȷ(m,n],
    $

    is solvable in the space $ \textrm{L}(m, n) $.Then, its unique solution $ \Theta(\jmath) $ is given by

    $ Θ(ȷ)=(Dη+ςc+εαδ,η,V;c+)[V(ȷ)x(ȷ,y(ȷ))],ȷ(m,n].
    $

    Lemma 2.11. [7] (Krasnoselskii's fixed point theorem) Let $ A $ be a Banach space and $ X $ be bounded, closed, convex subset of $ A $. Let $ \mathscr{F}_{1}, \mathscr{F}_{2} $ be maps of S into $ A $ such that $ \mathscr{F}_{1}\mathcal{V}+\mathscr{F}_{2}\varphi \in X $ $ \forall $ $ \mathcal{V}, \varphi \in U $. The equation $ \mathscr{F}_{1}\mathcal{V}+\mathscr{F}_{2}\mathcal{V} = \mathcal{V} $ has a solution on S, and $ \mathscr{F}_{1} $, $ \mathscr{F}_{2} $ is a contraction and completely continuous.

    Lemma 2.12. [28] (Gronwall-Bellman inequality) Let $ \mathcal{V} $ and $ \varphi $ be continuous and non-negative functions defined on $ \mathscr{I} $. Let $ \mathcal{V}(\jmath)\leq \mathcal{A}+\int^{\jmath}_{a}\varphi(\theta)\mathcal{V}(\theta)d\theta, \jmath \in \mathscr{I} $; here, $ \mathcal{A} $ is a non-negative constant.

    $ V(ȷ)Aexp(ȷaφ(θ)dθ),ȷI.
    $

    In this part, we need some fixed-point-techniques-based hypotheses for the results:

    $ ({\rm{H1}}) $ Let $ \mathcal{V} \in C\left[0, T\right] $, function $ \varphi \in \left(C[0, T]\times \mathscr{R} \times \mathscr{R} \times \mathscr{R}, \mathscr{R} \right) $ is a continuous function, and there exist $ +^{ve} $ constants $ \zeta _{1}, \zeta_{2} $ and $ \zeta $. $ \left\|\varphi(\jmath, \mathcal{V}_{1}, \mathcal{V}_{2}, \mathcal{V}_{3})-\varphi(\jmath, \varphi_{1}, \varphi_{2}, \varphi_{3})\right\|\leq \zeta_{1}\left(\left\|\mathcal{V}_{1}-\varphi_{1}\right\|+\left\|\mathcal{V}_{2}-\varphi_{2}\right\|+\left\|\mathcal{V}_{3}-\varphi_{3}\right\|\right) $ for all $ \mathcal{V}_{1}, \mathcal{V}_{2}, \mathcal{V}_{3}, \varphi_{1}, \varphi_{2}, \varphi_{3} $ in $ Y $, $ \zeta _{2} = max_{\mathcal{V} \in \mathscr{R}}\left\|f(\jmath, 0, 0, 0)\right\| $, and $ \zeta = max\left\{ \zeta _{1}, \zeta _{2}\right\} $.

    $ ({\rm{H2}}) $ $ \mathcal{P}_{1} $ is a continuous function, and there exist $ +^{ve} $ constants $ \mathscr{C}_{1}, \mathscr{C}_{2} $ and $ \mathscr{C} $. $ \left\|\mathcal{P}_{1}(\jmath, \theta, \mathcal{V}_{1})-\mathcal{P}_{1}(\jmath, \theta, \varphi_{1})\right\| \leq \mathscr{C}_{1} \left(\left\|\mathcal{V}_{1}-\varphi_{1}\right\|\right) \forall \, \mathcal{V}_{1}, \varphi_{1} $ in $ Y $, $ \mathscr{C}_{2} = max_{(\jmath, \theta) \in D}\left\|\mathcal{P}_{1}(\jmath, \theta, 0)\right\| $, and $ \mathscr{C} = max\left\{ \mathscr{C} _{1}, \mathscr{C} _{2} \right\} $.

    $ ({\rm{H3}}) $ $ \mathcal{P}_{2} $ is a continuous function and there are $ +^{ve} $ constants $ \mathcal{D}_{1}, \mathcal{D}_{2} $ and $ \mathcal{D} $. $ \left\|\mathcal{P}_{2}(\jmath, \theta, \mathcal{V}_{1})-\mathcal{P}_{2}(\jmath, \theta, \varphi_{1})\right\| \leq \mathcal{D}_{1} \left(\left\|\mathcal{V}_{1}-\varphi_{1}\right\|\right) $ for all $ \mathcal{V}_{1}, \varphi_{1} $ in $ Y $, $ \mathcal{D}_{2} = max_{(\jmath, \theta) \in D}\left\|\mathcal{P}_{2}(\jmath, \theta, 0)\right\| $ and $ \mathcal{D} = max\left\{ \mathcal{D} _{1}, \mathcal{D} _{2} \right\} $.

    $ ({\rm{H4}}) $ Let $ x \in c[0, I] $, function $ u \in (c[0, I] \times \mathscr{R}, \mathscr{R}) $ is a continuous function, and there is a $ +^{ve} $ constant $ k > 0 $, such that $ \left\|u(\jmath, x)-u(\jmath, y)\right\|\leq k \left\| x-y \right\| $. Let $ Y = C[\mathscr{R}, X] $ be the set of continuous functions on $ \mathscr{R} $ with values in the Banach space $ X $.

    Lemma 2.13. If $ {\bf{(H_2)}} $ and $ {\bf{(H_3)}} $ are satisfied the following estimates, $ \left\|\mathcal{P}_{1}\mathcal{V}(\jmath)\right\|\leq \jmath(\mathscr{C}_{1}\left\|\mathcal{V}\right\|+\mathscr{C} _{2}), \left\|\mathcal{P}_{1}\mathcal{V}(\jmath)-\mathcal{P}_{1}\varphi(\jmath)\right\|\leq \mathscr{C}\jmath\left\|\mathcal{V}-\varphi\right\| $, and $ \left\|\mathcal{P}_{2}\mathcal{V}(\jmath)\right\|\leq \jmath(\mathcal{D}_{1}\left\|\mathcal{V}\right\|+\mathcal{D} _{2}), \left\|\mathcal{P}_{2}\mathcal{V}(\jmath)-\mathcal{P}_{2}\varphi(\jmath)\right\|\leq \mathcal{D}\jmath\left\|\mathcal{V}-\varphi\right\| $.

    Theorem 3.1. The function $ \varphi \in \mathscr{C}\left(\mathscr{I} \times \mathscr{R} \times \mathscr{R} \times \mathscr{R}, \mathscr{R}\right) $ and $ \mathcal{V}\in\mathscr{C}(\mathscr{I}) $ is a solution for the problem of Eqs (1.3) and (1.4), iff $ \mathcal{V} $ is a solution of the fractional equation

    $ V(ȷ)=V0B(δ)1δȷ0Eδ[δ1δ(ȷθ)δ][V(ȷ)x(ȷ,y(ȷ))]dθ+ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ,ȷI.
    $
    (3.1)

    Proof. (1) By using Definition 2.3 and Eq (1.3), we get

    $ ddȷ(V(ȷ)+B(δ)1δȷ0Eδ[δ1δ(ȷθ)δ][V(ȷ)x(ȷ,y(ȷ))]dθ)=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)).
    $

    Integrating both sides of the above equation with limits $ 0 $ to $ \jmath $, we get

    $ V(ȷ)+B(δ)1δȷ0Eδ[δ1δ(ȷθ)δ][V(ȷ)x(ȷ,y(ȷ))]dθV(0)=ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ,ȷI.
    $

    Conversely, with differentiation on both sides of Eq (3.1) with respect to $ \jmath $, we get

    $ dVdȷ+B(δ)1δddȷȷ0Eδ[δ1δ(ȷθ)δ][V(ȷ)x(ȷ,y(ȷ))]dθ=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)),ȷI.
    $

    Using Definition 2.3, we get Eq (1.3) and substitute $ \jmath = 0 $ in Eq (3.1), we get Eq (1.4).

    Proof. (2) In Equation (1.3), taking the Laplace Transform on both sides, we get

    $ L[V(ȷ);b]+L[0Dδȷ;b][V(ȷ)x(ȷ,y(ȷ))]=L[φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ));b].
    $

    Now, using the Laplace Transform formula for the AB fractional derivative of the RL sense, as given in Lemma 2.5, we get

    $ bˉX(b)[V(ȷ)x(ȷ,y(ȷ))]V(0)+B(δ)1δbδˉX(b)bδ+δ1δ=ˉG(b),
    $

    $ \bar{X}(b) = \left[\mathcal{V}(\jmath); b\right] $ and $ \bar{G}(b) = L\left[\varphi\left(\jmath, \mathcal{V}\left(\jmath\right), P_{1}\mathcal{V}(\jmath), P_{2}\mathcal{V}(\jmath)\right); b\right]. $ Using Eq (1.4), we get

    $ ˉX(b)=V01bB(δ)1δbδ1ˉX(b)bδ+δ1δ[V(ȷ)x(ȷ,y(ȷ))]+1bˉG(b).
    $
    (3.2)

    In Eq (3.2) applying the inverse Laplace Transform on both sides using Lemma 2.6 and the convolution theorem, we get

    $ L1[ˉX(b);ȷ]=V0L1[1b;ȷ]B(δ)1δ(L1[bδ1bδ+δ1δ][V(ȷ)x(ȷ,y(ȷ))]L1[ˉX(b);ȷ])+L1[ˉG(b);ȷ]L1[1b;ȷ]=V0B(δ)1δ(Eδ[δ1δȷδ][V(ȷ)x(ȷ,y(ȷ))])+φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ))=V0B(δ)1δȷ0Eδ[δ1δ(ȷθ)δ][V(ȷ)x(ȷ,y(ȷ))]dθ+ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ.V(ȷ)=V0B(δ)1δȷ0Eδ[δ1δ(ȷθ)δ][V(ȷ)x(ȷ,y(ȷ))]dθ+ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ.
    $
    (3.3)

    Theorem 3.2. Let $ \delta\in(0, 1) $. Define the operator $ \mathscr{F} $ on $ \mathscr{C}(\mathscr{I}) $:

    $ (FV)(ȷ)=V0B(δ)1δ(ε1δ,1,δ1δ;0+)[V(ȷ)x(ȷ,y(ȷ))],VC(I).
    $
    (3.4)

    $(A)$ $ \mathscr{F} $ is a bounded linear operator on $ \mathscr{C}(\mathscr{I}) $.

    $(B)$ $ \mathscr{F} $ satisfying the hypotheses.

    $(C)$ $ \mathscr{F}(X) $ is equicontinuous, and $ X $ is a bounded subset of $ \mathscr{C}(\mathscr{I}) $.

    $(D)$ $ \mathscr{F} $ is invertible, function $ \varphi\in \mathscr{C}(\mathscr{I}) $, and the operator equation $ \mathscr{F}\mathcal{V} = \varphi $ has a unique solution in $ \mathscr{C}(\mathscr{I}) $.

    Proof. (A) From Definition 2.7 and Lemma 2.8, the fractional integral operator $ \varepsilon^{1}_{\delta, 1, \frac{-\delta}{1-\delta}; 0^{+}} $ is a bounded linear operator on $ \mathscr{C}(\mathscr{I}) $, such that

    $ ε1δ,1,δ1δ;0+[V(ȷ)x(ȷ,y(ȷ))]PV,ȷI,where
    $
    $ P=Tn=0(1)nα(δn+1)(δn+1)|δ1δTδ|nn!=Tn=0(δ1δ)nTδnα(δn+2)=TEδ,2(δ1δTδ),
    $

    and we have

    $ FV=|B(δ)1δ|ε1δ,1,δ1δ;0+[V(ȷ)x(ȷ,y(ȷ))]PB(δ)1δV,VC(I).
    $
    (3.5)

    Thus, $ \mathscr{F}\mathcal{V} = \varphi $ is a bounded linear operator on $ \mathscr{C}(\mathscr{I} $).

    (B) We consider $ \mathcal{V}, \varphi\in \mathscr{C}(\mathscr{I}) $. By using linear operator $ \mathscr{F} $ and bounded operator $ \varepsilon^{1}_{\delta, 1, \frac{-\delta}{1-\delta}; 0^{+}} $, for any $ \jmath \in \mathscr{I} $,

    $ |(FV)(ȷ)(Fφ)(ȷ)|=|F(Vφ)[V(ȷ)x(ȷ,y(ȷ))]|B(δ)1δ(ε1δ,1,δ1δ;0+Vφ)[V(ȷ)x(ȷ,y(ȷ))]PB(δ)1δVφ.
    $

    Where, $ P = TE_{\delta, 2}\left(\frac{\delta}{1-\delta}T^{\delta}\right) $, then the operator $ \mathscr{F} $ is satisfied the hypotheses with constant $ P\frac{B(\delta)}{1-\delta} $.

    (C) Let $ U = \left\{\mathcal{V}\in \mathscr{C}(\mathscr{I}) : \left\|\mathcal{V}\right\|\leq R\right\} $ be a bounded and closed subset of $ \mathscr{C}(\mathscr{I}) $, $ \mathcal{V}\in U $, and $ \jmath_{1}, \jmath_{2}\in \mathscr{I} $ with $ \jmath_{1}\leq \jmath_{2} $.

    $ |(FV)(ȷ1)(FV)(ȷ2)|=|B(δ)1δ(ε1δ,1,δ1δ;0+)[V(ȷ1)u(l1,x(l))]B(δ)1δ(ε1δ,1,δ1δ;0+)[V(ȷ2)u(l2,x(l))]|B(δ)1δ|ȷ10{Eδ[δ1δ(ȷ1θ)δ]Eδ[δ1δ(ȷ2θ)δ]}[V(ȷ)x(ȷ,y(ȷ))]dθ|+B(δ)1δ|ȷ2ȷ1Eδ[δ1δ(ȷ2θ)δ][V(ȷ)x(ȷ,y(ȷ))]dθ|B(δ)1δn=0|(δ1δ)n|1α(nδ+1)ȷ10|(ȷ1θ)nδ(ȷ2θ)nδ||[V(ȷ)x(ȷ,y(ȷ))]|dθ+B(δ)1δn=0|(δ1δ)n|1α(nδ+1)ȷ2ȷ1|(ȷ2θ)nδ||[V(ȷ)x(ȷ,y(ȷ))]|dθLB(δ)1δn=0(δ1δ)n1α(nδ+1)ȷ10(ȷ2θ)nδ(ȷ1θ)nδdθ+LB(δ)1δn=0(δ1δ)n1α(nδ+1)ȷ2ȷ1(ȷ2θ)nδdθRB(δ)1δn=0(δ1δ)n1α(nδ+1){(ȷ2ȷ1)nδ+1+ȷnδ+12ȷnδ+11+(ȷ2ȷ1)nδ+1}RB(δ)1δn=0(δ1δ)n1α(nδ+2){ȷnδ+12ȷnδ+11}|(FV)(ȷ1)(FV)(ȷ2)|RB(δ)1δn=0(δ1δ)n1α(nδ+2){ȷnδ+12ȷnδ+11}.
    $
    (3.6)

    Hence, if $ \left|\jmath_{1}-\jmath_{2}\right|\rightarrow 0 $ then $ \left|(\mathscr{F}\mathcal{V})(\jmath_{1})-(\mathscr{F}\mathcal{V})(\jmath_{2})\right|\rightarrow 0. $

    $ \therefore $ $ (\mathscr{F}\mathcal{V}) $ is equicontinuous on $ \mathscr{I}. $

    (D) By Lemmas 2.9 and 2.10, $ \varphi\in \mathscr{C}(\mathscr{I}) $, and we get

    $ (ε1δ,1,δ1δ;0+)1[V(ȷ)x(ȷ,y(ȷ))]=(D1+β0+ε1δ,β,δ1δ;0+)[V(ȷ)x(ȷ,y(ȷ))],ȷ(m,n).
    $
    (3.7)

    By Eqs (3.4) and (3.5), we have

    $ (F1)[V(ȷ)x(ȷ,y(ȷ))]=(B(δ)1δε1δ,1,δ1δ;0+)1[V(ȷ)x(ȷ,y(ȷ))]=1δB(δ)(D1+β0+ε1δ,β,δ1δ;0+)[V(ȷ)x(ȷ,y(ȷ))],ȷ(m,n),
    $

    where $ \beta \in \mathbb{C} $ with $ Re(\beta) > 0 $. This shows $ \mathscr{F} $ is invertible on $ \mathscr{C}(\mathscr{I}) $ and

    $ (FV)[V(ȷ)x(ȷ,y(ȷ))]=[V(ȷ)x(ȷ,y(ȷ))],ȷI,
    $

    has the unique solution,

    $ V(ȷ)=(F1[V(ȷ)x(ȷ,y(ȷ))])=1δB(δ)(D1+β0+ε1δ,β,δ1δ;0+)[V(ȷ)x(ȷ)),y(ȷ))],ȷ(m,n).
    $
    (3.8)

    Theorem 4.1. Let $ \varphi \in \mathscr{C}\left(\mathscr{I}\times \mathscr{R} \times \mathscr{R} \times \mathscr{R}, \mathscr{R} \right) $. Then, the ABR derivative $ ^{\star}_{0}D^{\delta}_{\jmath}[\mathcal{V}(\jmath)-x(\jmath, y(\jmath))] = \varphi\left(\jmath, \mathcal{V}\left(\jmath\right), \mathcal{P}_{1}\mathcal{V}(\jmath), \mathcal{P}_{2}\mathcal{V}(\jmath)\right), \jmath \in \mathscr{I} $, is solvable in $ \mathscr{C}(\mathscr{I} $), and the solution in $ \mathscr{C}(\mathscr{I}) $ is

    $ V(ȷ)=1δB(δ)(D1+β0+ε1δ,β,δ1δ;0+)[V(ȷ)x(ȷ,y(ȷ))],ȷI,
    $
    (4.1)

    where $ \beta\in \mathbb{C}, Re(\beta) > 0 $, and $ \hat{\varphi}(\jmath) = \int^{\jmath}_{0}\varphi\left(\theta, \mathcal{V}\left(\theta\right), \mathcal{P}_{1}\mathcal{V}(\theta), \mathcal{P}_{2}\mathcal{V}(\theta)\right)d\theta, \jmath \in \mathscr{I} $.

    Proof. The corresponding fractional equation of the ABR derivative

    $ 0Dδȷ[V(ȷ)x(ȷ,y(ȷ))]=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)),ȷI,
    $

    is given by

    $ B(δ)1δȷ0Eδ[δ1δ(ȷθ)δ][V(ȷ)x(ȷ,y(ȷ))]dθ=ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ,ȷI.
    $

    Using operator $ \mathscr{F} $ of Eq (3.4), we get

    $ (FV)(s)=ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ=ˆφ(ȷ),ȷI.
    $
    (4.2)

    Equations (3.7) and (4.2) are solvable, and we get

    $ V(ȷ)=1δB(δ)(D1+β0+ε1δ,β,δ1δ;0+)[V(ȷ)x(ȷ,y(ȷ))],ȷI;βC,Re(β)>0.
    $
    (4.3)

    Theorem 4.2. Let $ \varphi \in \mathscr{C}\left(\mathscr{I}\times {R \times R \times R}, \mathscr{R}\right) $ satisfy $ {\bf{(H_1)}} $–$ {\bf{(H_3)}} $ with $ L = \sup_{\jmath\in \mathscr{I}}\omega(\jmath), $ where $ \omega(\jmath) = \zeta(1+\mathscr{C}\jmath+\mathcal{D}T) $, if $ L = \min\left\{1, \frac{1}{2T}\right\} $. Then problem of (1.3) and (1.4) has a solution in $ \mathscr{C}(\mathscr{I}) $ provided

    $ 2B(δ)TEδ,2(δ1δ)Tδ1δ1.
    $
    (4.4)

    Proof. Define

    $ R=V0+NφT1LTB(δ)TEδ,2(δ1δ)Tδ1δ,
    $

    where $ N_{\varphi} = \sup_{\jmath\in \mathscr{I}}\left\|\varphi(\jmath, 0, 0, 0)\right\|. $ Let $ U = \left\{\mathcal{V}\in \mathscr{C}(\mathscr{I}):\left\|\mathcal{V}\right\|\leq R\right\} $. Consider $ \mathscr{F}_{1}:X\rightarrow A $ and $ \mathscr{F}_{2}:X\rightarrow A $ given as

    $ (F1V)(ȷ)=V0+ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ,ȷI,(F2V)(ȷ)=(F)[V(ȷ)x(ȷ,y(ȷ))],ȷI.
    $

    Let $ \mathcal{V} = \mathscr{F}_{1}\mathcal{V}+\mathscr{F}_{2}\mathcal{V}, \mathcal{V}\in \mathscr{C}(\mathscr{I}) $ is the fractional Eq (3.1) to the problems (1.3) and (1.4).

    Hence, the operators $ \mathscr{F}_{1} $ and $ \mathscr{F}_{2} $ satisfy the Krasnoselskii's fixed point theorem.

    Step (ⅰ) $ \mathscr{F}_{1} $ is a contraction.

    By $ {\bf{(H_1)}} $–$ {\bf{(H_3)}} $ on $ \varphi $, $ \forall $ $ \mathcal{V}, \varphi\in \mathscr{C}(\mathscr{I}) $ and $ \jmath\in \mathscr{I} $,

    $ |F1V(ȷ)F2φ(ȷ)|ω(ȷ)|V(ȷ)φ(ȷ)|RVφ.
    $
    (4.5)

    This gives, $ \left\|\mathscr{F}_{1}\mathcal{V}-\mathscr{F}_{2}\varphi\right\|\leq RT\left\|\mathcal{V}-\varphi\right\|, \mathcal{V}, \varphi\in \mathscr{C}(\mathscr{I}). $

    Step (ⅱ) $ \mathscr{F}_{2} $ is completely continuous. By using Theorem 3.3 and Ascoli-Arzela theorem, $ \mathscr{F}_{2} = -\mathscr{F} $ is completely continuous.

    Step (ⅲ) $ \mathscr{F}_{1}\mathcal{V}+\mathscr{F}_{2}\varphi\in U $, for any $ \mathcal{V}, \varphi\in U $, using Theorem 3.3, we obtain

    $ (F1V+F2φ)(ȷ)(F1V)(ȷ)+(F2φ)(ȷ)V0+ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ+ε1δ,1,δ1δ;0+φV0+ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ+B(δ)1δTEδ,2(δ1δTδ)φV0+ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))φ(θ,0,0,0)dθ+ȷ0φ(θ,0,0,0)dθ+B(δ)1δTEδ,2(δ1δTδ)LV0+ȷ0ζ(V+CȷV+DTV)dθ+Nφȷ0dθ+B(δ)1δTEδ,2(δ1δTδ)LV0+ζ(1+Cȷ+DT)ȷ0Vdθ+Nφȷ0dθ+B(δ)1δTEδ,2(δ1δTδ)LV0+ω(ȷ)Rȷ0dθ+Nφȷ0dθ+B(δ)1δTEδ,2(δ1δTδ)LV0+LRT+NφT+B(δ)1δTEδ,2(δ1δTδ)L.
    $
    (4.6)

    By definition of $ R $, we get

    $ V0+NφT=L(1RT+B(δ)TEδ,2(δ1δTδ)1δ).
    $
    (4.7)

    Using the Eq (4.5) in (4.7), we get condition of Eq (4.4).

    $ (F1V+F2φ)(ȷ)L(2B(δ)TEδ,2(δ1δ)Tδ1δ),ȷI.
    $
    (4.8)

    $ \therefore\; \left\|(\mathscr{F}_{1}\mathcal{V}+\mathscr{F}_{2}\varphi)(\jmath)\right\|\leq L, \jmath\in \mathscr{I}. $ This gives, $ \mathscr{F}_{1}\mathcal{V}+\mathscr{F}_{2}\varphi\in U $, $ \forall\; \mathcal{V}, \varphi\in X. $

    From Steps (ⅰ)–(ⅲ), all the conditions of Lemma 2.11 follow.

    Theorem 4.3. By Theorem 4.2, the Eqs (1.3) and (1.4) have a unique solution in $ \mathscr{C}(\mathscr{I}). $

    Proof. (1) The problems (1.3) and (1.4) have an operator equation form as:

    $ (ε1δ,1,δ1δ;0+)[V(ȷ)x(ȷ,y(ȷ))]=ˆφ(ȷ),ȷI,
    $
    (4.9)

    where,

    $ ˆφ(ȷ)=1δB(δ)(V0V(ȷ)+ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ),ȷI.
    $

    By Theorem 4.2, Eq (4.7) is solvable in $ \mathscr{C}(\mathscr{I}) $, by Lemma 2.10 we get a unique solution of Eqs (1.3) and (1.4),

    $ V(ȷ)=(D1+β0+ε1δ,β,δ1δ;0+)[V(ȷ)x(ȷ,y(ȷ))],VC(I).
    $

    Proof. (2) Let $ \mathcal{V}, \varphi $ be solutions of Eqs (1.3) and (1.4). By fractional integral operators and $ {\bf{(H_1)}} $–$ {\bf{(H_3)}}, $ we find, for any $ \jmath\in \mathscr{I} $,

    $ |V(ȷ)φ(ȷ)||B(δ)1δ(ε1δ,1,δ1δ;0+(Vφ))[V(ȷ)x(ȷ,y(ȷ))]|+ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))φ(θ,φ(θ),P1φ(θ),P2φ(θ))|dθ|B(δ)1δȷ0Eδ[δ1δ(ȷθ)δ](V(θ)φ(θ))dθ|+ȷ0ζ(|V(θ)φ(θ)|+C|V(θ)φ(θ)|+D|V(θ)φ(θ)|)dθB(δ)1δȷ0Eδ(|δ1δTδ|)|V(θ)φ(θ)|dθ+ȷ0ζ(1+C+D)|V(θ)φ(θ)|dθB(δ)1δȷ0Eδ(δ1δTδ)|V(θ)φ(θ)|dθ+ȷ0[V(ȷ)x(ȷ,y(ȷ))]|V(θ)φ(θ)|dθȷ0[B(δ)1δEδ(δ1δTδ)+[V(ȷ)x(ȷ,y(ȷ))]]|V(θ)φ(θ)|dθ|V(ȷ)φ(ȷ)|ȷ0[B(δ)1δEδ(δ1δTδ)+[V(ȷ)x(ȷ,y(ȷ))]]|V(θ)φ(θ)|dθ.
    $
    (4.10)

    Theorem 5.1. By Theorem 4.2, if $ \mathcal{V}(\jmath) $ is a solution of Eqs (1.3) and (1.4), then

    $ |V(ȷ)|{|V0|+NφT}exp(ȷ0[B(δ)1δEδ(δ1δTδ)+[V(ȷ)x(ȷ,y(ȷ))]]dθ),ȷI,
    $
    (5.1)

    where, $ N_{\varphi} = \sup_{\jmath\in \mathscr{I}}\left|\varphi(\jmath, 0, 0, 0)\right|. $

    Proof. If $ \mathcal{V}(\jmath) $ is a solution of Eqs (1.3) and (1.4), for all $ \jmath\in \mathscr{I}, $

    $|V(ȷ)||V0|B(δ)1δȷ0Eδ(|δ1δ(ȷθ)δ|)|V(θ)|dθ+ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))|dθ
    $
    $ |V0|B(δ)1δȷ0Eδ(δ1δ(ȷθ)δ)|V(θ)|dθ+ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))φ(θ,0,0,0)|dθ+ȷ0|φ(θ,0,0,0)|dθ|V0|B(δ)1δȷ0Eδ(δ1δTδ)|V(θ)|dθ+ȷ0ζ(|V(θ)|+C|V(θ)|+D|V(θ)|)dθ+Nφȷ|V0|B(δ)1δȷ0Eδ(δ1δTδ)|V(θ)|dθ+ȷ0ζ(1+C+D)|V(ȷ)|dθ+NφT|V0|B(δ)1δȷ0Eδ(δ1δTδ)|V(θ)|dθ+ȷ0[V(ȷ)x(ȷ,y(ȷ))]|V(θ)|dθ+NφT{|V0|+NφT}+ȷ0[B(δ)1δEδ(δ1δTδ)+[V(ȷ)x(ȷ,y(ȷ))]]|V(θ)|dθ.
    $

    By Lemma 2.12, we get

    $ |V(ȷ)|{|V0|+NφT}exp(ȷ0[B(δ)1δEδ(δ1δTδ)+[V(ȷ)x(ȷ,y(ȷ))]]dθ),ȷI.
    $
    (5.2)

    We discuss data dependence results for the problem

    $ dφdȷ+0Dδȷ[V(ȷ)x(ȷ,y(ȷ))]=˜φ(ȷ,φ(ȷ),P1φ(ȷ),P2φ(ȷ)),ȷI,
    $
    (6.1)
    $ φ(0)=φ0R.
    $
    (6.2)

    Theorem 6.1. Equation (4.2) holds, and $ \xi_{k} > 0, $ where $ k = 1, 2 $ are real numbers such that,

    $ |V0φ0|ξ1,|φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ))˜φ(ȷ,φ(ȷ),P1φ(ȷ),P2φ(ȷ))|ξ2,ȷI.
    $
    (6.3)

    $ \varphi(\jmath) $ is a solution of ABR fractional derivative Eqs (6.1) and (6.2), and $ \mathcal{V}(\jmath) $ is a solution of Eqs (1.3) and (1.4).

    Proof. Let $ \mathcal{V}, \varphi $ are the solution of Eqs (1.3) and (1.4), (6.1) and (6.2) respectively. We find for any

    $ |V(ȷ)φ(ȷ)||V0φ0|+B(δ)1δȷ0Eδ(|δ1δ(ȷθ)δ|)|V(θ)φ(θ)|dθ+ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))˜φ(s,φ(θ),P1φ(θ),P2φ(θ))|dθ|V0φ0|+B(δ)1δȷ0Eδ(|δ1δ(ȷθ)δ|)|V(θ)φ(s)|dθ+ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))φ(θ,φ(θ),P1φ(θ),P2φ(θ))|dθ+ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))˜φ(θ,φ(θ),P1φ(θ),P2φ(θ))|dθξ1+B(δ)1δȷ0Eδ(δ1δTδ)|V(θ)φ(θ)|dθ+ȷ0ζ(|V(θ)φ(θ)|+C|V(θ)φ(θ)|+D|V(θ)φ(θ)|)dθ+ξ2ȷ0dθξ1+B(δ)1δȷ0Eδ(δ1δTδ)|V(θ)φ(θ)|dθ+ȷ0ζ(1+C+D)|V(θ)φ(θ)|dθ+ξ2ȷξ1+B(δ)1δȷ0Eδ(δ1δTδ)|V(θ)φ(θ)|dθ+ȷ0[V(ȷ)x(ȷ,y(ȷ))]|V(θ)φ(θ)|dθ+ξ2T|V(ȷ)φ(ȷ)|ξ1+ξ2T+ȷ0[B(δ)1δEδ(δ1δTδ)+[V(ȷ)x(ȷ,y(ȷ))]]|V(ȷ)φ(θ)|dθ.
    $

    By Lemma 2.12, we get

    $ |V(ȷ)φ(ȷ)|(ξ1+ξ2T)exp(ȷ0[B(δ)1δEδ(δ1δTδ)+[V(ȷ)x(ȷ,y(ȷ))]]dθ),ȷI.
    $
    (6.4)

    Let any $ \lambda, \lambda_{0}\in \mathscr{R} $ and

    $ dVdȷ+0Dδȷ[V(ȷ)x(ȷ,y(ȷ))]=Θ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ),λ),ȷI,
    $
    (7.1)
    $ V(0)=V0R.
    $
    (7.2)
    $ dVdȷ+0Dδȷ[V(ȷ)x(ȷ,y(ȷ)]=Θ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ),λ0),ȷI,
    $
    (7.3)
    $ V(0)=V0R.
    $
    (7.4)

    Theorem 7.1. Let the function $ \Theta $ satisfy Theorem 4.2. Suppose there exists $ \omega, u \in \mathscr{C}(\mathscr{I}, \mathscr{R}^{+}) $ such that,

    $ |Θ(ȷ,V,P1V,P2V,λ)Θ(ȷ,φ,P1φ,P2φ,λ)|ω(ȷ)|Vφ|,|Θ(ȷ,V,P1V,P2V,λ)Θ(ȷ,V,P1V,P2V,λ0)|u(ȷ)|λλ0|.
    $

    If $ \mathcal{V}_{1}, \mathcal{V}_{2} $ are the solutions of Eqs (7.1) and (7.3), then

    $ |V1(ȷ)V2(ȷ)|PT|λλ0|exp(ȷ0[B(δ)1δEδ(δ1δTδ)+[V(ȷ)x(ȷ,y(ȷ))]]dθ),ȷI,
    $
    (7.5)

    where $ \mathcal{P} = \sup_{\jmath \in \mathscr{I}}u(\jmath). $

    Proof. Let, for any $ \jmath\in \mathscr{I} $,

    $ |V1(ȷ)V2(ȷ)|B(δ)1δ|ȷ0Eδ[δ1δ(ȷθ)δ](V2(θ)V1(θ)dθ)|+ȷ0|Θ(θ,V1(θ),P1V1(θ),P2V1(θ),λ)Θ(θ,V2(θ),P1V2(θ),P2V2(θ),λ0)|dθB(δ)1δȷ0Eδ(|δ1δ(ȷθ)δ|)|V1(θ)V2(θ)|dθ+ȷ0|Θ(θ,V1(θ),P1V1(θ),P2V1(θ),λ)Θ(θ,V2(θ),P1V2(θ),P2V2(θ),λ)|dθ+ȷ0|Θ(θ,V2(θ),P1V2(θ),P2V2(θ),λ)Θ(θ,V2(θ),P1V2(θ),P2V2(θ),λ0)|dθB(δ)1δȷ0Eδ(δ1δ(ȷθ)δ)|V1(θ)V2(θ)|dθ+ȷ0ζ(|V1(θ)V2(θ)|+C|V1(θ)V2(θ)|+D|V1(θ)V2(θ)|)dθ+ȷ0u(θ)|λλ0|dθB(δ)1δȷ0Eδ(δ1δTδ)|V1(θ)V2(θ)|dθ+ȷ0ζ(1+C+D)|V1(θ)V2(θ)|dθ+Pȷ|λλ0|B(δ)1δȷ0Eδ(δ1δTδ)|V1(θ)V2(θ)|dθ+ȷ0[V(ȷ)x(ȷ,y(ȷ))]|V1(θ)V2(θ)|dθ+PT|λλ0|ȷ0[B(δ)1δEδ(δ1δTδ)+[V(ȷ)x(ȷ,y(ȷ))]]|V1(θ)V2(θ)|dθ+PT|λλ0|.
    $

    By Lemma 2.12,

    $ |V1(ȷ)V2(ȷ)|PT|λλ0|exp(ȷ0[B(δ)1δEδ(δ1δTδ)+[V(ȷ)x(ȷ,y(ȷ))]]dθ),ȷI.
    $
    (7.6)

    Consider a nonlinear ABR fractional derivative with neutral integro-differential equations of the form:

    $ dVdȷ+0D12ȷ[V(ȷ)x(ȷ,y(ȷ))]=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)),ȷI=[0,2],
    $
    (8.1)
    $ V(0)=1R.
    $
    (8.2)

    $ \varphi:(\mathscr{I}\times \mathscr{R}\times \mathscr{R}\times \mathscr{R})\rightarrow \mathscr{R} $ is a continuous nonlinear function such that,

    $ φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ))=|V(ȷ)|+13+M(ȷ)+N(ȷ),ȷI,
    $

    and

    $ M(ȷ)=B(12){ȷE12,2(ȷ12)+E12(ȷ12)ȷ1},N(ȷ)=B(12){E12,2(ȷ12)+ȷE12(ȷ12)1}.
    $

    We observe that for all $ \mathcal{V}, \varphi\in \mathscr{R} $ and $ \jmath\in \mathscr{I}, $

    $ |φ(ȷ,V,P1V,P2V)φ(ȷ,φ,P1φ,P2φ)|=|(|V(ȷ)|+13+M(ȷ)+N(ȷ))(|φ(ȷ)|+13+M(ȷ)+N(ȷ))|13|Vφ|.
    $
    (8.3)

    The function $ \varphi $ satisfies $ (H_{1}) $–$ (H_{4}) $ with constant $ \frac{1}{3} $. From Theorem 4.2, we have $ \delta = \frac{1}{2} $ and T = 2 which is substitute in Eq (4.2), and we get

    $ B(12)<18E12,2(212).
    $
    (8.4)

    If the function $ B(\delta) $ satisfies Eq (8.4), then Eqs (8.1) and (8.2) have a unique solution.

    $ V(ȷ)=ȷ3+1,ȷ[0,2].
    $
    (8.5)

    In this research article, we explored multi-derivative nonlinear neutral fractional integro-differential equations involving the ABR fractional derivative. The elementary results of the existence, uniqueness and dependence solution on various data are based on the Prabhakar fractional integral operator $ \varepsilon^{\alpha}_{\delta, \eta, \mathcal{V}; c+} $ involving a generalized ML function. The existence results are obtained by Krasnoselskii's fixed point theorem, and the uniqueness and data dependence results are obtained by the Gronwall-Bellman inequality with continuous functions.

    The research on Existence and data dependence results for neutral fractional order integro-differential equations by Khon Kaen University has received funding support from the National Science, Research and Innovation Fund.

    The authors declare no conflict of interest.



    [1] Nonlocal systems of conservation laws in several space dimensions. SIAM J. Numer. Anal. (2015) 53: 963-983.
    [2] On the global well-posedness of BV weak solutions to the Kuramoto-Sakaguchi equation. J. Differential Equations (2017) 262: 978-1022.
    [3] Front tracking approximations for slow erosion. Dicrete Contin. Dyn. Syst. (2012) 32: 1481-1502.
    [4] On the numerical integration of scalar nonlocal conservation laws. ESAIM Math. Model. Numer. Anal. (2015) 49: 19-37.
    [5] On nonlocal conservation laws modelling sedimentation. Nonlinearity (2011) 27: 855-885.
    [6] Well-posedness of a conservation law with non-local flux arising in traffic flow modeling. Numer. Math. (2016) 132: 217-241.
    [7] Solutions for a nonlocal conservation law with fading memory. Proc. Amer. Math. Soc. (2007) 135: 3905-3915.
    [8]

    J. Chien and W. Shen, Traveling Waves for nonlocal particle models of traffic flow on rough roads, Discrete Contin. Dyn. Syst., 39 (2019), 4001—4040, arXiv: 1902.08537.

    [9]

    M. Colombo, G. Crippa and L. V. Spinolo, On the singular local limit for conservation laws with nonlocal fluxes, Arch. Ration. Mech. Anal., 233 (2019), 1131–1167, arXiv: 1710.04547.

    [10]

    M. Colombo, G. Crippa and L. V. Spinolo, Blow-up of the total variation in the local limit of a nonlocal traffic model, Preprint, arXiv: 1808.03529.

    [11] Nonlocal crowd dynamics models for several populations. Acta Math. Sci. (2012) 32: 177-196.
    [12] Existence and stability of solutions of a delay-differential system. Arch. Rational Mech. Anal. (1962) 10: 401-426.
    [13]

    R. D. Driver, Ordinary and Delay Differential Equations, Applied Mathematical Sciences, Vol. 20. Springer-Verlag, New York-Heidelberg, 1977.

    [14] A new approach for a nonlocal, nonlinear conservation law. SIAM J. Appl. Math. (2012) 72: 464-487.
    [15]

    J. Friedrich, O. Kolb and S. Göttlich, A Godunov type scheme for a class of LWR traffic flow models with non-local flux, Netw. Heterog. Media, 13 (2018), 531–547, arXiv: 1802.07484.

    [16] Existence and stability of traveling waves for an integro-differential equation for slow erosion. J. Differential Equations (2014) 256: 253-282.
    [17] On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads. Proc. Roy. Soc. London. Ser. A (1955) 229: 317-345.
    [18]

    J. Ridder and W. Shen, Traveling waves for nonlocal models of traffic flow, Discrete Contin. Dyn. Syst., 39 (2019), 4001–4040, arXiv: 1808.03734.

    [19] Traveling wave profiles for a follow-the-leader model for traffic flow with rough road condition. Netw. Heterog. Media (2018) 13: 449-478.
    [20] Traveling waves for a microscopic model of traffic flow. Discrete Contin. Dyn. Syst. (2018) 38: 2571-2589.
    [21] Erosion profile by a global model for granular flow. Arch. Rational Mech. Anal. (2012) 204: 837-879.
    [22] On a nonlocal dispersive equation modeling particle suspensions. Q. Appl. Math. (1999) 57: 573-600.
  • This article has been cited by:

    1. Andreas Frommer, Daniel B. Szyld, On the convergence of randomized and greedy relaxation schemes for solving nonsingular linear systems of equations, 2023, 92, 1017-1398, 639, 10.1007/s11075-022-01431-7
    2. Yansheng Su, Deren Han, Yun Zeng, Jiaxin Xie, On greedy multi-step inertial randomized Kaczmarz method for solving linear systems, 2024, 61, 0008-0624, 10.1007/s10092-024-00621-0
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2555) PDF downloads(265) Cited by(11)

Figures and Tables

Figures(25)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog