Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity

  • Received: 01 April 2015 Revised: 01 October 2015
  • Primary: 35L65; Secondary: 65M12, 90B20.

  • We consider an extension of the traffic flow model proposed by Lighthill, Whitham and Richards, in which the mean velocity depends on a weighted mean of the downstream traffic density. We prove well-posedness and a regularity result for entropy weak solutions of the corresponding Cauchy problem, and use a finite volume central scheme to compute approximate solutions. We perform numerical tests to illustrate the theoretical results and to investigate the limit as the convolution kernel tends to a Dirac delta function.

    Citation: Paola Goatin, Sheila Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity[J]. Networks and Heterogeneous Media, 2016, 11(1): 107-121. doi: 10.3934/nhm.2016.11.107

    Related Papers:

  • We consider an extension of the traffic flow model proposed by Lighthill, Whitham and Richards, in which the mean velocity depends on a weighted mean of the downstream traffic density. We prove well-posedness and a regularity result for entropy weak solutions of the corresponding Cauchy problem, and use a finite volume central scheme to compute approximate solutions. We perform numerical tests to illustrate the theoretical results and to investigate the limit as the convolution kernel tends to a Dirac delta function.


    加载中
    [1] A. Aggarwal, R. M. Colombo and P. Goatin, Nonlocal systems of conservation laws in several space dimensions, SIAM Journal on Numerical Analysis, 53 (2015), 963-983. doi: 10.1137/140975255
    [2] D. Amadori and W. Shen, An integro-differential conservation law arising in a model of granular flow, J. Hyperbolic Differ. Equ., 9 (2012), 105-131. doi: 10.1142/S0219891612500038
    [3] P. Amorim, R. Colombo and A. Teixeira, On the numerical integration of scalar nonlocal conservation laws, ESAIM M2AN, 49 (2015), 19-37. doi: 10.1051/m2an/2014023
    [4] F. Betancourt, R. Bürger, K. H. Karlsen and E. M. Tory, On nonlocal conservation laws modelling sedimentation, Nonlinearity, 24 (2011), 855-885. doi: 10.1088/0951-7715/24/3/008
    [5] S. Blandin and P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numerische Mathematik, (2015), 1-25. doi: 10.1007/s00211-015-0717-6
    [6] C. Canudas De Wit, F. Morbidi, L. Leon Ojeda, A. Y. Kibangou, I. Bellicot and P. Bellemain, Grenoble Traffic Lab: An experimental platform for advanced traffic monitoring and forecasting, IEEE Control Systems, 35 (2015), 23-39, URL https://hal.archives-ouvertes.fr/hal-01059126. doi: 10.1109/MCS.2015.2406657
    [7] R. M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic, Mathematical Models and Methods in Applied Sciences, 22 (2012), 1150023, 34pp. doi: 10.1142/S0218202511500230
    [8] R. M. Colombo, M. Herty and M. Mercier, Control of the continuity equation with a non local flow, ESAIM Control Optim. Calc. Var., 17 (2011), 353-379. doi: 10.1051/cocv/2010007
    [9] R. M. Colombo and M. Lécureux-Mercier, Nonlocal crowd dynamics models for several populations, Acta Math. Sci. Ser. B Engl. Ed., 32 (2012), 177-196. doi: 10.1016/S0252-9602(12)60011-3
    [10] G. Crippa and M. Lécureux-Mercier, Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow, Nonlinear Differential Equations and Applications NoDEA, 20 (2013), 523-537. doi: 10.1007/s00030-012-0164-3
    [11] M. Garavello and B. Piccoli, Traffic Flow on Networks, AIMS, 2006.
    [12] P. Goatin and S. Scialanga, The Lighthill-Whitham-Richards Traffic Flow Model with Non-Local Velocity: Analytical Study and Numerical Results, Research Report RR-8685, Inria Sophia Antipolis, 2015, URL https://hal.inria.fr/hal-01118734.
    [13] S. Göttlich, S. Hoher, P. Schindler, V. Schleper and A. Verl, Modeling, simulation and validation of material flow on conveyor belts, Applied Mathematical Modelling, 38 (2014), 3295-3313. doi: 10.1016/j.apm.2013.11.039
    [14] J. C. Herrera and A. M. Bayen, Incorporation of lagrangian measurements in freeway traffic state estimation, Transportation Research Part B: Methodological, 44 (2010), 460-481. doi: 10.1016/j.trb.2009.10.005
    [15] M. Herty and R. Illner, Coupling of non-local driving behaviour with fundamental diagrams, Kinetic and Related Models, 5 (2012), 843-855. doi: 10.3934/krm.2012.5.843
    [16] F. James and N. Vauchelet, Numerical methods for one-dimensional aggregation equations, SIAM Journal on Numerical Analysis, 53 (2015), 895-916. doi: 10.1137/140959997
    [17] S. N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255.
    [18] A. Kurganov and A. Polizzi, Non-oscillatory central schemes for a traffic flow model with Arrehenius look-ahead dynamics, Netw. Heterog. Media, 4 (2009), 431-451. doi: 10.3934/nhm.2009.4.431
    [19] D. Li and T. Li, Shock formation in a traffic flow model with Arrhenius look-ahead dynamics, Networks and Heterogeneous Media, 6 (2011), 681-694. doi: 10.3934/nhm.2011.6.681
    [20] K.-A. Lie and S. Noelle, On the artificial compression method for second-order nonoscillatory central difference schemes for system of conservation laws, SIAM J. Sci. Comput., 24 (2003), 1157-1174. doi: 10.1137/S1064827501392880
    [21] M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089
    [22] H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys., 87 (1990), 408-463. doi: 10.1016/0021-9991(90)90260-8
    [23] P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51. doi: 10.1287/opre.4.1.42
    [24] A. Sopasakis and M. A. Katsoulakis, Stochastic modeling and simulation of traffic flow: Asymmetric single exclusion process with Arrhenius look-ahead dynamics, SIAM J. Appl. Math., 66 (2006), 921-944 (electronic). doi: 10.1137/040617790
    [25] M. Treiber and A. Kesting, Traffic Flow Dynamics, Springer-Verlag, Berlin Heidelberg, 2013. doi: 10.1007/978-3-642-32460-4
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5170) PDF downloads(160) Cited by(54)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog