Boundary value problem for a phase transition model

  • Received: 01 April 2015 Revised: 01 September 2015
  • Primary: 35L65; Secondary: 90B20.

  • We consider the boundary value problem for the phase transition (PT) model, introduced in [4] and in [7]. By using the wave-front tracking technique, we prove existence of solutions when the initial and boundary conditions have finite total variation.

    Citation: Mauro Garavello. Boundary value problem for a phase transition model[J]. Networks and Heterogeneous Media, 2016, 11(1): 89-105. doi: 10.3934/nhm.2016.11.89

    Related Papers:

  • We consider the boundary value problem for the phase transition (PT) model, introduced in [4] and in [7]. By using the wave-front tracking technique, we prove existence of solutions when the initial and boundary conditions have finite total variation.


    加载中
    [1] D. Amadori, Initial-boundary value problems for nonlinear systems of conservation laws, NoDEA Nonlinear Differential Equations Appl., 4 (1997), 1-42. doi: 10.1007/PL00001406
    [2] D. Amadori and R. M. Colombo, Continuous dependence for $2\times 2$ conservation laws with boundary, J. Differential Equations, 138 (1997), 229-266. doi: 10.1006/jdeq.1997.3274
    [3] A. Aw and M. Rascle, Resurrection of "second order'' models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938 (electronic). doi: 10.1137/S0036139997332099
    [4] S. Blandin, D. Work, P. Goatin, B. Piccoli and A. Bayen, A general phase transition model for vehicular traffic, SIAM J. Appl. Math., 71 (2011), 107-127. doi: 10.1137/090754467
    [5] A. Bressan, Hyperbolic Systems of Conservation Laws, volume 20 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2000. The one-dimensional Cauchy problem.
    [6] R. M. Colombo, Hyperbolic phase transitions in traffic flow, SIAM J. Appl. Math., 63 (2002), 708-721 (electronic). doi: 10.1137/S0036139901393184
    [7] R. M. Colombo, F. Marcellini and M. Rascle, A 2-phase traffic model based on a speed bound, SIAM J. Appl. Math., 70 (2010), 2652-2666. doi: 10.1137/090752468
    [8] C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, second edition, 2005. doi: 10.1007/3-540-29089-3
    [9] F. Dubois and P. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws, J. Differential Equations, 71 (1988), 93-122. doi: 10.1016/0022-0396(88)90040-X
    [10] M. Garavello and B. Piccoli, Coupling of Lighthill-Whitham-Richards and phase transition models, J. Hyperbolic Differ. Equ., 10 (2013), 577-636. doi: 10.1142/S0219891613500215
    [11] H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, volume 152 of Applied Mathematical Sciences, Springer-Verlag, New York, 2002. doi: 10.1007/978-3-642-56139-9
    [12] M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089
    [13] P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51. doi: 10.1287/opre.4.1.42
    [14] H. M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B, 36 (2002), 275-290. doi: 10.1016/S0191-2615(00)00050-3
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3863) PDF downloads(139) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog