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Abstract. We consider the boundary value problem for the phase transition
(PT) model, introduced in [4] and in [7]. By using the wave-front tracking tech-

nique, we prove existence of solutions when the initial and boundary conditions

have finite total variation.

1. Introduction. The paper deals with the initial-boundary value problem for
the phase transition model (PT for short), introduced in [4] and in [7] for modeling
car traffic in an unidirectional road. Traffic models based on differential equations
can be divided mainly in two classes: microscopic and macroscopic. The PT model
belongs to the class of macroscopic traffic models, and it is composed by a system of
two differential equations, which impose the conservation of the number of vehicles
and of a momentum.

The fluid dynamic and macroscopic approach for car traffic was, in turn, initiated
by the seminal work of Lighthill-Whitham and Richards [12, 13], known as the LWR
model. It consists in a differential equation stating the conservation of the number
of vehicles. It well describes the evolution of free traffic, but it is not accurate for
congested traffic. Hence second order models, i.e. system with two equations, were
introduced in the literature. Among these we mention the model proposed by Aw
and Rascle in [3] and independently by Zhang in [14]. In 2002, Colombo proposed
a second order model with phase transitions [6], in order to describe the different
behaviors of traffic in free and congested regimes. In free flow the model is a classical
LWR model, whereas in the congested flow it is a system of two equations: the first
one is the conservation of the number of vehicles, while the second one describes
the evolution of a linearized momentum. The system considered in this paper is a
modification of the Colombo phase-transition model.

Here we consider the following initial-boundary value problem for the PT model

∂tρ+ ∂x(ρV ) = 0, if (ρ, q) ∈ Ωf ,{
∂tρ+ ∂x(ρv(ρ, q)) = 0,
∂tq + ∂x(qv(ρ, q)) = 0.

if (ρ, q) ∈ Ωc,

(ρ, q) (t, a) = (ρa(t), qa(t))
(ρ, q) (t, b) = (ρb(t), qb(t))
(ρ, q) (0, x) = (ρ0(x), q0(x)) ,

if x ∈ (a, b), t > 0
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where (ρ0, q0) : (a, b)→ Ωf ∪ Ωc is the initial datum, (ρa, qa) : (0,+∞)→ Ωf ∪ Ωc
and (ρb, qb) : (0,+∞) → Ωf ∪ Ωc are the boundary data and Ωf , Ωc denote re-
spectively the free and congested phase (see Section 2 for a rigorous definition).
We prove existence of solutions by means of the wave-front tracking technique,
provided the initial and boundary conditions are BV functions. The wave-front
tracking technique consists in constructing a piecewise constant approximate solu-
tion and in proving that every limit point is indeed a solution of the problem. The
key estimate to obtain compactness for the sequence of approximated solutions is a
uniform bound of a functional measuring the strength of waves. Moreover bounds
on the number of waves and interactions for wave-front tracking approximate so-
lutions are given. We remark that imposing boundary conditions for systems of
balance laws is a quite delicate issue, especially for characteristic boundary condi-
tions; see [1, 2, 9] and the references therein. In particular, the PT system with
boundary is characteristic, since phase-transition waves can travel with zero speed.

The paper is organized as follows. In Section 2 the phase transition model is
presented, and, in Section 3, a theorem about the existence of solutions for the
Cauchy problems with boundary data is stated and proved.

2. Description of the phase transition model. We describe the phase transi-
tion model, introduced in [4], with the Newell-Daganzo velocity function. The PT
model describes the evolution of traffic trough the macroscopic variables ρ and q,
representing respectively the density and the linearized momentum; see also [6]. In
this model, it is assumed that cars behave differently, depending on the fact that
the traffic is low or heavy. Therefore there are two phases: the free phase, denoted
by Ωf , and the congested one, denoted by Ωc. These two phases are described by
the sets 

Ωf =
{

(ρ, q) ∈ [0, R]× [0,+∞[: q = R(ρ−σ)
σ(R−ρ) , 0 ≤ ρ ≤ σ+

}
Ωc =

{
(ρ, q) ∈ [0, R]× [0,+∞[: v(ρ, q) ≤ V, q

−

R ≤
q
ρ ≤

q+

R

} (1)

where V > 0 is the velocity in the free phase, R > 0 is the maximal density,
−1 < q− < 0 < q+ < 1, R

5 < σ < R and v : Ωf ∪ Ωc → [0,+∞[, defined by{
v(ρ, q) = V, if (ρ, q) ∈ Ωf ,

v(ρ, q) = veq(ρ)(1 + q) = V σ
R−σ

(
R
ρ − 1

)
(1 + q) , if (ρ, q) ∈ Ωc,

(2)

is the velocity; see Figure 1. The PT model assumes that the velocity of cars in
the free phase Ωf is constantly equal to V , while in the congested phase Ωc is
a perturbation of the equilibrium velocity veq(ρ). The equilibrium velocity veq(ρ)
represents the desired speed of cars when the density is ρ. Moreover, the constant σ
is called critical density and corresponds to the density for which the flux is maximal
in scalar models. The constants q− and q+ are respectively the minimum and the
maximum value of the momentum. When q = 0, the velocity of cars v coincides
with the equilibrium velocity. Finally, the constants σ− > 0 and σ+ > 0 are defined
respectively by the ρ-component of the solutions in Ωc to the systems v(ρ, q) = V,

q
ρ = q−

R ,
and

 v(ρ, q) = V,

q
ρ = q+

R .
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Figure 1. The fundamental diagram for the phase transition
model in (ρ, q) and (ρ, ρv) coordinates. The free phase Ωf is the
one-dimensional region in blue. The congested phase Ωc is the
two-dimensional region in red. Note that Ωf ∩ Ωc 6= ∅.

The solution of each system exists and is unique. The first system describes the

point (ρ, q) ∈ Ωc such that v(ρ, q) = V , i.e. (ρ, q) belongs also to Ωf , and q
ρ = q−

R ,

i.e. (ρ, q) belongs to the lower side of Ωc; see Figure 1. The second system, instead,
describes the point (ρ, q) ∈ Ωc such that v(ρ, q) = V , i.e. (ρ, q) belongs also to Ωf ,

and q
ρ = q+

R , i.e. (ρ, q) belongs to the upper side of Ωc; see Figure 1.

The model in the free phase Ωf reads

∂tρ+ ∂x(ρV ) = ∂tρ+ V ∂x(ρ) = 0, (3)

while in the congested phase Ωc reads{
∂tρ+ ∂x(ρv(ρ, q)) = 0,
∂tq + ∂x(qv(ρ, q)) = 0.

(4)

The eigenvalues for (4) are

λ1(ρ, q) = (1 + 2q)veq(ρ) + ρ(1 + q)(veq)′(ρ), λ2(ρ, q) = (1 + q)veq(ρ), (5)

while the respectively eigenvectors are

r1 =

(
ρ
q

)
, r2 =

(
veq(ρ)

−(1 + q)(veq)′(ρ)

)
. (6)

Moreover the first characteristic speed is genuinely nonlinear if q 6= 0 and it is
linearly degenerate if q = 0. Instead the second characteristic speed is linearly de-
generate. A deeper analysis of (4) is contained in [4]. We denote with L1(ρ; ρ0, q0)
and L2(ρ; ρ0, q0) respectively the Lax curves of the first and second family for sys-
tem (4); see Figure 2. We recall that (ρ, L1(ρ; ρ0, q0)) are lines in the (ρ, q) plane
passing through the origin and (ρ, L2(ρ; ρ0, q0)) are lines in the (ρ, ρv) plane passing
through the origin. Let us introduce the functions

ψ1 : Ωc → Ωc, ψ−2 : Ωc → Ωc, ψ+
2 : Ωc → Ωc, (7)

such that, for every (ρ0, q0) ∈ Ωc, ψ1(ρ0, q0), ψ−2 (ρ0, q0) and ψ+
2 (ρ0, q0) are defined

respectively by the solutions in Ωc to the systems{ q
ρ = q0

ρ0
,

v(ρ, q) = V,

{
q
ρ = q−

R ,

v(ρ, q) = v(ρ0, q0),

{
q
ρ = q+

R ,

v(ρ, q) = v(ρ0, q0).
(8)
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Remark 1. As in the case of the definitions of σ− and σ+, each system in (8)
admits a unique solution, due to the fact that the Lax curve of the first and second
families are transverse.

The first system in (8) selects the point (ρ̂, q̂) ∈ Ωc on the Lax curve of the first
family through (ρ0, q0) such that v(ρ̂, q̂) = V , i.e. (ρ̂, q̂) belongs also to the free
phase Ωf ; see Figure 2.

Similarly the second and third system in (8) select, the point (ρ̂, q̂) ∈ Ωc on the
Lax curve of the second family through (ρ0, q0), i.e. v(ρ̂, q̂) = v (ρ0, q0), such that
it belongs respectively on the lower and upper side of Ωc; see Figure 2.

The following lemma implies that waves of the first family have negative speed,
while waves of second family have positive speed.

Lemma 2.1. The first eigenvalue λ1 is strictly negative in Ωc. The second eigen-
value λ2 is positive in Ωc.

For a proof, see [10, Lemma 3.6]. The next proposition states that the Lax curves
are Lipschitz continuous.

Proposition 1. Since −1 < q− < 0 < q+ < 1, the Lax curves of the first family
in the (ρ, ρv) plane, parametrized by ρ, are uniformly bi-Lipschitz in Ωc. For every
0 < v̄ < V , the Lax curves of the second family in the (ρ, ρv) plane, parametrized
by ρ, are uniformly bi-Lipschitz in the set {(ρ, q) ∈ Ωc : v(ρ, q) ≥ v̄}.

For a proof, see [10, Proposition 3.7]. For the PT model, there is a third kind of
waves, namely phase-transition waves. They are waves connecting a state

(
ρl, ql

)
∈

Ωf \Ωc (on the left) with a state (ρr, qr) ∈ Ωc (on the right). More precisely, if one
considers the following Riemann problem on the whole line R

∂tρ+ ∂x(ρV ) = 0, if (ρ, q) ∈ Ωf ,{
∂tρ+ ∂x(ρv(ρ, q)) = 0,
∂tq + ∂x(qv(ρ, q)) = 0.

if (ρ, q) ∈ Ωc,

(ρ, q) (0, x) =

{ (
ρl, ql

)
if x < 0,

(ρr, qr) if x > 0,

if x ∈ R, t > 0 (9)

with
(
ρl, ql

)
∈ Ωf \ Ωc and (ρr, qr) ∈ Ωc \ Ωf , then its solution is given by the

following phase-transition wave

(ρ, q) (t, x) =


(
ρl, ql

)
if x < λ1t, t > 0

(ρm, qm) if λ1t < x < λ2t, t > 0

(ρr, qr) if x > λ2t, t > 0,

(10)

where (ρm, qm) ∈ Ωc is the unique solution to{
q
ρ = q−

R

v (ρ, q) = v (ρr, qr)

i.e. (ρm, qm) is the point belonging to the lower part of the congested phase Ωc and
to the Lax curve of second family through (ρr, qr), and

λ1 =
ρmv (ρm, qm)− ρlv

(
ρl, ql

)
ρm − ρl

λ2 = v (ρr, qr) .

Note that λ1 is given by the Rankine-Hugoniot condition; for complete details see [4].
Introduce the following definition.
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Figure 2. Shape of Lax curves in (ρ, q) and (ρ, ρv(ρ, q)) planes.

Definition 2.2. Let I be a real interval. We say that a function (ρ, q) : I → Ωf∪Ωc
satisfies the assumption (H-1) in I if there exists 0 < v̄ < V such that, for a.e.
x ∈ I, v((ρ, q)(x)) ≥ v̄.

Remark 2. Note that, since 0 < v̄ < V , a point (ρ̂, q̂) satisfying v(ρ̂, q̂) ≥ v̄ either
belongs to the free phase Ωf or belongs to a subset of the congested phase Ωc.
Indeed if (ρ̂, q̂) ∈ Ωf , then v(ρ̂, q̂) = V and so v(ρ̂, q̂) ≥ v̄. Instead if (ρ̂, q̂) ∈ Ωc,
then (ρ̂, q̂) is at the left of the Lax curve of the second family v(ρ, q) = v̄.

Remark 3. For every v̄ > 0, the set

{(ρ, q) ∈ Ωf ∪ Ωc : v(ρ, q) ≥ v̄}
in invariant for the solution to the Riemann problem. Moreover, assumption (H-1)
of Definition 2.2 guarantees that the total variation of a solution can be controlled
by the total variation of the Riemann invariants of the solution itself.

We introduce also a distance in the set Ωf ∪Ωc in the following way. First define
the function ω : Ωf ∪ Ωc → R

ω(ρ, q) =

{
q
ρ if q

ρ ≥
q−

R ,

V ρ− σ−V + q−

R otherwise.
(11)

Secondly, given two states
(
ρl, ql

)
, (ρr, qr) in the set Ωf ∪ Ωc:

1. if
(
ρl, ql

)
∈ Ωf and (ρr, qr) ∈ Ωf , then

d
((
ρl, ql

)
, (ρr, qr)

)
=
∣∣ω (ρl, ql)− ω (ρr, qr)

∣∣ ; (12)

2. if
(
ρl, ql

)
∈ Ωc and (ρr, qr) ∈ Ωc, then, denoting by (ρm, qm) ∈ Ωc the point

satisfying qm = L1

(
ρm; ρl, ql

)
and qr = L2 (ρr; ρm, qm),

d
((
ρl, ql

)
, (ρr, qr)

)
=
∣∣v (ρl, ql)− v (ρm, qm)

∣∣+ |ω (ρm, qm)− ω (ρr, qr)| ; (13)

3. in the remaining case, i.e.
(
ρl, ql

)
∈ Ωf \ Ωc, (ρr, qr) ∈ Ωc \ Ωf or viceversa,

we put

d
((
ρl, ql

)
, (ρr, qr)

)
= d

((
ρl, ql

)
,

(
σ−,

q−σ−
R

))
+ d

((
σ−,

q−σ−
R

)
, (ρr, qr)

)
. (14)



94 MAURO GARAVELLO

Remark 4. Note that equations (12) and (13) can be both rewritten as

d
((
ρl, ql

)
, (ρr, qr)

)
=
∣∣v (ρl, ql)− v (ρr, qr)

∣∣+
∣∣ω (ρl, ql)− ω (ρr, qr)

∣∣ , (15)

since in case 1. v
(
ρl, ql

)
= v (ρr, qr), and in case 2. ω

(
ρl, ql

)
= ω (ρm, qm) and

v (ρm, qm) = v (ρr, qr).

Remark 5. The function ω, defined in (11), is indeed a continuous function. It

is clear that q
ρ and V ρ − σ−V + q−

R are both continuous functions. There exists

exactly one point (ρ, q) ∈ Ωf ∩ Ωc satisfying q
ρ = q−

R . This point is
(
σ−,

q−σ−
R

)
.

We have: (
q

ρ

)
|
(
σ−,

q−σ−
R

) =
q−

R
=

(
V ρ− σ−V +

q−

R

)
|
(
σ−,

q−σ−
R

) .
This proves that ω is continuous.

Lemma 2.3. The function d : (Ωf ∪ Ωc)× (Ωf ∪ Ωc)→ R+, defined in (12), (13)
and (14), is a metric on Ωf ∪ Ωc.

Proof. First we prove that d
((
ρl, ql

)
, (ρr, qr)

)
= 0 if and only if

(
ρl, ql

)
= (ρr, qr).

It is clear that if
(
ρl, ql

)
= (ρr, qr), then d

((
ρl, ql

)
, (ρr, qr)

)
= 0. Assume therefore

that
(
ρl, ql

)
6= (ρr, qr). We have different possibilities.

1.
(
ρl, ql

)
∈ Ωf and (ρr, qr) ∈ Ωf . We have that the function ω restricted to the

set Ωf can be viewed as a strictly increasing function of the variable ρ. Since(
ρl, ql

)
6= (ρr, qr), we may suppose, without loss of generalities, that ρl < ρr

and so

d
((
ρl, ql

)
, (ρr, qr)

)
=
∣∣ω (ρl, ql)− ω (ρr, qr)

∣∣ = ω (ρr, qr)− ω
(
ρl, ql

)
> 0.

2.
(
ρl, ql

)
∈ Ωc and (ρr, qr) ∈ Ωc. Call (ρm, qm) ∈ Ωc the point defined in the

point 2. of the construction of the function d. Since
(
ρl, ql

)
6= (ρr, qr), either(

ρl, ql
)
6= (ρm, qm) and so

d
((
ρl, ql

)
, (ρr, qr)

)
>
∣∣v (ρl, ql)− v (ρm, qm)

∣∣ > 0

or (ρr, qr) 6= (ρm, qm) and so

d
((
ρl, ql

)
, (ρr, qr)

)
>
∣∣ω (ρl, ql)− ω (ρm, qm)

∣∣ > 0.

3.
(
ρl, ql

)
∈ Ωf and (ρr, qr) ∈ Ωc. Since

(
ρl, ql

)
6= (ρr, qr), we have

(
ρl, ql

)
6=(

σ−,
q−σ−
R

)
or (ρr, qr) 6=

(
σ−,

q−σ−
R

)
. Therefore we conclude that

d
((
ρl, ql

)
, (ρr, qr)

)
= d

((
ρl, ql

)
,

(
σ−,

q−σ−
R

))
+ d

((
σ−,

q−σ−
R

)
, (ρr, qr)

)
> 0.

4.
(
ρl, ql

)
∈ Ωc and (ρr, qr) ∈ Ωf . This case is completely analogous to the

previous one.

We prove now that d is symmetric. Fix two states
(
ρl, ql

)
and (ρr, qr) in Ωf ∪Ωc.

If both states belong to Ωf , then the conclusion easily follows by (12).
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If both states belong to Ωc, then define the states (ρm, qm) ∈ Ωc and (ρs, qs) ∈ Ωc
by

qm = L1

(
ρm; ρl, ql

)
qr = L2 (ρr; ρm, qm)

qs = L1 (ρs; ρr, qr) ql = L2

(
ρl; ρs, qs

)
.

One can easily deduce that

ω
(
ρl, ql

)
= ω (ρm, qm) ω (ρr, qr) = ω (ρs, qs)

v (ρr, qr) = v (ρm, qm) v
(
ρl, ql

)
= v (ρs, qs)

and so

d
((
ρl, ql

)
, (ρr, qr)

)
=
∣∣v (ρl, ql)− v (ρm, qm)

∣∣+ |ω (ρm, qm)− ω (ρr, qr)|

= |v (ρs, qs)− v (ρr, qr)|+
∣∣ω (ρl, ql)− ω (ρs, qs)

∣∣
= d

(
(ρr, qr) ,

(
ρl, ql

))
.

In the remaining case, the conclusion easily follows from the fact that the point(
σ−,

q−σ−
R

)
belongs to both Ωf and Ωc.

We prove now that the triangular inequality holds for d. Fix three states (ρ1, q1),
(ρ2, q2), and (ρ3, q3) in Ωf ∪ Ωc. If they both belong either to Ωf or to Ωc, then,
by equation (15), the triangular inequality easily follows. The triangular inequality
for the general case follows from the previous case.

3. The initial-boundary value problem. Fix a, b ∈ R with a < b. Consider the
following initial boundary value problem

∂tρ+ ∂x(ρV ) = 0, if (ρ, q) ∈ Ωf ,{
∂tρ+ ∂x(ρv(ρ, q)) = 0,
∂tq + ∂x(qv(ρ, q)) = 0.

if (ρ, q) ∈ Ωc,

(ρ, q) (t, a) = (ρa(t), qa(t))
(ρ, q) (t, b) = (ρb(t), qb(t))
(ρ, q) (0, x) = (ρ0(x), q0(x)) ,

if x ∈ (a, b), t > 0 (16)

where (ρ0, q0) : (a, b) → Ωf ∪ Ωc, (ρa, qa) : (0,+∞) → Ωf ∪ Ωc and (ρb, qb) :
(0,+∞)→ Ωf ∪ Ωc. First introduce the definition of solution to (16).

Definition 3.1. The function

(ρ̂, q̂) ∈ C([0,+∞[;L1((a, b); Ωf ∪ Ωc))

is a solution to (16) if

1. the function (ρ̂, q̂) is a weak solution to
∂tρ+ ∂x(ρvf (ρ, q)) = 0, if (ρ, q) ∈ Ωf ,{
∂tρ+ ∂x(ρv(ρ, q)) = 0,
∂tq + ∂x(qv(ρ, q)) = 0.

if (ρ, q) ∈ Ωc,

for (t, x) ∈ (0,+∞)× (a, b);
2. for a.e. t > 0, the function x 7→ (ρ̂(t, x), q̂(t, x)) has a version with bounded

total variation;
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3. for a.e. t > 0, the Riemann problem

∂tρ+ ∂x(ρvf (ρ, q)) = 0, if (ρ, q) ∈ Ωf ,{
∂tρ+ ∂x(ρv(ρ, q)) = 0,
∂tq + ∂x(qv(ρ, q)) = 0.

if (ρ, q) ∈ Ωc,
τ > 0, x ∈ R

(ρ, q) (0, x) =

{
(ρa, qa) (t) if x < a
(ρ̂, q̂) (t, a+) if x > a

admits a self similar solution (ρ̃, q̃) such that, for a.e. τ > 0,

(ρ̃, q̃) (τ, a+) = (ρ̂, q̂) (t, a+).

4. for a.e. t > 0, the Riemann problem

∂tρ+ ∂x(ρvf (ρ, q)) = 0, if (ρ, q) ∈ Ωf ,{
∂tρ+ ∂x(ρv(ρ, q)) = 0,
∂tq + ∂x(qv(ρ, q)) = 0.

if (ρ, q) ∈ Ωc,
τ > 0, x ∈ R

(ρ, q) (0, x) =

{
(ρ̂, q̂) (t, b−) if x < b
(ρb, qb) (t) if x > b

admits a self similar solution (ρ̃, q̃) such that, for a.e. τ > 0,

(ρ̃, q̃) (τ, b−) = (ρ̂, q̂) (t, b−).

5. for a.e. x ∈ (a, b), (ρ̂(0, x), q̂(0, x)) = (ρ0(x), q0(x)).

Remark 6. As usual in conservation laws, boundary conditions are a delicate issue.
In this paper the boundaries are characteristic, since there are phase-transition
waves with zero speed. Conditions 3 and 4 of Definition 3.1 are exactly the same
as the boundary condition in the characteristic case in [1].

We state the main result of the paper whose proof is contained in the next
subsections.

Theorem 3.2. Fix the initial condition (ρ0, q0) ∈ BV ((a, b); Ωf ∪ Ωc), and the
boundary data (ρa, qa), (ρb, qb) ∈

(
BV ∩ L1

)
((0,+∞); Ωf ∪ Ωc). Assume that both

the initial condition (ρ0, q0) and the boundary data (ρa, qa) and (ρb, qb) satisfy the
assumption (H-1), in the sense of Definition 2.2. Then there exists (ρ̂, q̂), a solution
to (16) in the sense of Definition 3.1.

3.0.1. Wave-front tracking technique. We construct piecewise constant approxima-
tions via the wave-front tracking technique; see [5, 8, 11] for the general theory.

Definition 3.3. Given ε > 0, we say that the map ūε = (ρ̄ε, q̄ε) is an ε-approximate
wave-front tracking solution to (16) if there exist ūa,ε = (ρ̄a,ε, q̄a,ε) and ūb,ε =
(ρ̄b,ε, q̄b,ε) such that the following conditions hold.

1. ūε ∈ C((0,+∞);L1((a, b); Ωf ∪ Ωc)) and ūa,ε, ūb,ε ∈ L1 ((0,+∞); Ωf ∪ Ωc).
2. (ρ̄ε, q̄ε) is piecewise constant, with discontinuities occurring along finitely

many straight lines in (0,+∞) × (a, b). Moreover the jumps can be of the
first family, of the second family, or phase-transition waves. They are indexed
by J (t) = 1 (t) ∪ 2 (t) ∪ PT (t).

3. ūa,ε and ūb,ε are piecewise constant with a finite number of discontinuities.
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4. It holds that

‖(ρ̄ε(0, ·), q̄ε(0, ·))− (ρ0(·), q0(·))‖L1(a,b) < ε

‖(ρ̄a,ε, q̄a,ε)− (ρa, qa)‖L1(0,+∞) < ε

‖(ρ̄b,ε, q̄b,ε)− (ρb, qb)‖L1(0,+∞) < ε

Tot.Var. (ρ̄ε(0, ·), q̄ε(0, ·)) ≤ Tot.Var. (ρ0(·), q0(·))

Tot.Var. (ρ̄a,ε, q̄a,ε) ≤ Tot.Var. (ρa, qa)

Tot.Var. (ρ̄b,ε, q̄b,ε) ≤ Tot.Var. (ρb, qb) .

5. It holds that, for a.e. t > 0, the Riemann problem with initial condition{
(ρa,ε, qa,ε) (t) if x < a
(ρ̄ε, q̄ε) (t, a+) if x > a

is solved with waves with non positive speed.
6. It holds that, for a.e. t > 0, the Riemann problem with initial condition{

(ρ̄ε, q̄ε) (t, b−) if x < b
(ρb,ε, qb,ε) (t) if x > b

is solved with waves with non negative speed.

Consider three sequences (ρ0,ν , q0,ν), (ρa,ν , qa,ν), and (ρb,ν , qb,ν) of piecewise con-
stant functions with a finite number of discontinuities such that

1. (ρ0,ν , q0,ν) : (a, b)→ Ωf ∪Ωc and (ρa,ν , qa,ν), (ρb,ν , qb,ν) : (0,+∞)→ Ωf ∪Ωc;
2. the following limits hold

lim
ν→+∞

(ρ0,ν , q0,ν) = (ρ0, q0) in L1((a, b); Ωf ∪ Ωc)

lim
ν→+∞

(ρa,ν , qa,ν) = (ρa, qa) in L1((0,+∞); Ωf ∪ Ωc)

lim
ν→+∞

(ρb,ν , qb,ν) = (ρb, qb) in L1((0,+∞); Ωf ∪ Ωc);

3. the following inequalities hold

Tot.Var.(ρ0,ν , q0,ν) ≤ Tot.Var.(ρ0, q0)

Tot.Var.(ρa,ν , qa,ν) ≤ Tot.Var.(ρa, qa)

Tot.Var.(ρb,ν , qb,ν) ≤ Tot.Var.(ρb, qb).

For every ν ∈ N \ {0}, we apply the following procedure. At time t = 0, we solve
the boundary Riemann problems at x = a and x = b and all Riemann problems for
x ∈ (a, b). We approximate every rarefaction wave with a rarefaction fan, formed
by rarefaction shocks of strength less than 1

ν traveling with the Rankine-Hugoniot
speed. At every discontinuity time for (ρa,ν , qa,ν) or for (ρb,ν , qb,ν), we solve the
corresponding Riemann problem at x = a or x = b. At every interaction between
two waves, we solve the corresponding Riemann problem. Finally, when a wave
interacts with the boundary x = a or x = b, we solve the corresponding boundary
Riemann problem.

Remark 7. As usual, by slightly modifying the speed of waves or the position of
the discontinuities for the boundary values, we may assume that, at every positive
time t, at most one of the following possibilities happens:

1. two waves interact together at a point x ∈ (a, b);
2. a wave interacts with the boundary x = a or with the boundary x = b;
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3. t is a point of discontinuity either for (ρa,ν , qa,ν) or for (ρb,ν , qb,ν).

Remark 8. For interactions at a point x ∈ (a, b), we split rarefaction waves into
rarefaction fans just at time t = 0. At the boundary x = a or x = b, instead, we
allow the formation of rarefaction fans at every positive time, but only for changes
of the boundary data.

Remark 9. By assumption, the initial condition and the boundary data satisfy
hypothesis (H-1). Therefore there exists v̄ > 0 such that the velocity v of every
states in Ωc, generated by the previous construction, is greater than or equal to v̄.

Given an ε-approximate wave-front tracking solution ūε = (ρ̄ε, q̄ε) with boundary
data ūa,ε = (ρ̄a,ε, q̄a,ε) and ūb,ε = (ρ̄b,ε, q̄b,ε), define, for a.e. t > 0, the following
functionals (a detailed explanation is contained in Remark 10)

W1(t) =
∑

x∈1r(t)

d ((ρ̄ε(t, x+), q̄ε(t, x+)) , (ρ̄ε(t, x−), q̄ε(t, x−))) (17)

W2(t) =
∑

x∈2r(t)

d ((ρ̄ε(t, x+), q̄ε(t, x+)) , (ρ̄ε(t, x−), q̄ε(t, x−))) (18)

WPT (t) =
∑

x∈PT (t)

d ((ρ̄ε(t, x+), q̄ε(t, x+)) , (ρ̄ε(t, x−), q̄ε(t, x−))) (19)

Wa(t) = d ((ρ̄ε(t, a+), q̄ε(t, a+)) , (ρ̄a,ε(t), q̄a,ε(t))) (20)

Wb(t) = d ((ρ̄ε(t, b−), q̄ε(t, b−)) , (ρ̄b,ε(t), q̄b,ε(t))) (21)

W (t) = W1(t) +W2(t) +WPT (t) +Wa(t) +Wb(t) (22)

Note that the previous functionals may vary only at times at which the boundary
datum changes or at times t̄ when two waves interact or a wave reaches the boundary.

Remark 10. The functional W is composed by 5 terms. The first and second term
measure the strength of waves of first and second family. The third term measures
the phase transition waves. Finally, the last two terms measure the distance of the
boundary term from the trace at the boundary of the approximate solution.

3.0.2. Interaction estimates. We consider here estimates for wave interactions. In
the following, as in [10], we describe wave interactions by the nature of the involved
waves. For example, if a wave of the second family hits a wave of the first family
producing a phase-transition wave, we write 2-1/PT. Here the symbol “/” divides
the waves before and after the interaction.

The functional W does not increment for wave interaction inside the phase tran-
sition system; hence it can only increases for interaction of waves with the interface
x = 0.

Lemma 3.4. Assume that the waves ((ρl, ql), (ρm, qm)) and ((ρm, qm), (ρr, qr)) in-
teract at the point (t̄, x̄) with t̄ > 0 and x̄ ∈ (a, b). Then W (t̄+) ≤W (t̄−).

The proof is completely identical to that of Lemma 4.29 of [10]; hence we omit
it.

Lemma 3.5. Assume that the wave ((ρl, ql), (ρr, qr)) interacts with the boundary
at the point (t̄, a). Then W (t̄+) ≤ W (t̄−). Moreover at time t̄ either no wave or
one wave is generated. In the latter case, the possible interactions are 1/PT (if
(ρr, qr) 6∈ Ωf ) or 1/2 (if (ρr, qr) ∈ Ωf ).
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Proof. First note that ∆Wb(t̄) = 0, since the interaction happens at x = a. More-
over, since the boundary Riemann problem does not generate waves, then the states
(ρ̄a,ε, q̄a,ε)(t) and (ρl, ql) are connected through waves with non positive speed. We
have therefore several possibilities.

1. (ρ̄a,ε, q̄a,ε)(t) = (ρl, ql). Since the wave ((ρl, ql), (ρr, qr)) has negative speed,
then, at time t̄, it is absorbed and no other wave is generated. In the case
((ρl, ql), (ρr, qr)) is a wave of the first family, then ∆W1(t̄) = −∆Wa(t̄) =
−d
(
(ρl, ql), (ρr, qr)

)
, ∆W2(t̄) = ∆WPT (t̄) = 0 and so

∆W (t̄) = 0.

In the case ((ρl, ql), (ρr, qr)) is a phase-transition wave with non positive speed,
then ∆WPT (t̄) = −∆Wa(t̄) = −d

(
(ρl, ql), (ρr, qr)

)
, ∆W1(t̄) = ∆W2(t̄) = 0

and so

∆W (t̄) = 0.

2. The states (ρ̄a,ε, q̄a,ε)(t̄) and (ρl, ql) are connected by a wave of the first family.
In this case both the states (ρ̄a,ε, q̄a,ε)(t̄) and (ρl, ql) belong to Ωc and so the
interacting wave also is of the first family; at time t̄, it is absorbed and no
other wave is generated.

Thus ∆W1(t̄) = −d
(
(ρl, ql), (ρr, qr)

)
, ∆W2(t̄) = ∆WPT (t̄) = 0, ∆Wa(t̄) =

d ((ρ̄a,ε, q̄a,ε)(t̄), (ρ
r, qr))− d

(
(ρl, ql), (ρ̄a,ε, q̄a,ε)(t̄)

)
. Consequently

∆W (t̄) = d ((ρ̄a,ε, q̄a,ε)(t̄), (ρ
r, qr))− d

(
(ρl, ql), (ρ̄a,ε, q̄a,ε)(t̄)

)
− d

(
(ρl, ql), (ρr, qr)

)
≤ 0.

3. The states (ρ̄a,ε, q̄a,ε)(t̄) and (ρl, ql) are connected by a phase-transition wave
with non positive speed.

In the case no wave is produced at time t̄, we have ∆W2(t̄) = ∆WPT (t̄) = 0,
∆W1(t̄) = −d

(
(ρl, ql), (ρr, qr)

)
, and ∆Wa(t̄) = d ((ρ̄a,ε, q̄a,ε)(t̄), (ρ

r, qr)) −
d
(
(ρl, ql), (ρ̄a,ε, q̄a,ε)(t̄)

)
. Consequently

∆W (t̄) = d ((ρ̄a,ε, q̄a,ε)(t̄), (ρ
r, qr))− d

(
(ρl, ql), (ρ̄a,ε, q̄a,ε)(t̄)

)
− d

(
(ρl, ql), (ρr, qr)

)
≤ 0.

In the case a phase transition wave, connecting the states (ρ̄a,ε, q̄a,ε)(t̄) to
(ρr, qr), is produced at time t̄, then (ρr, qr) 6∈ Ωf . Moreover ∆W1(t̄) =
−d
(
(ρl, ql), (ρr, qr)

)
, ∆W2(t̄) = 0, ∆WPT (t̄) = d ((ρ̄a,ε, q̄a,ε)(t̄), (ρ

r, qr)), and

∆Wa(t̄) = −d
(
(ρ̄a,ε, q̄a,ε)(t̄), (ρ

l, ql)
)
. Then

∆W (t̄) = d ((ρ̄a,ε, q̄a,ε)(t̄), (ρ
r, qr))− d

(
(ρl, ql), (ρr, qr)

)
− d

(
(ρ̄a,ε, q̄a,ε)(t̄), (ρ

l, ql)
)
≤ 0.

In the case a wave of the second family, connecting (ρ̄a,ε, q̄a,ε)(t̄) to (ρr, qr),
is produced at time t̄, then (ρr, qr) ∈ Ωf , ∆W1(t̄) = −d

(
(ρl, ql), (ρr, qr)

)
,

∆WPT (t̄) = 0, ∆W2(t̄) = d ((ρ̄a,ε, q̄a,ε)(t̄), (ρ
r, qr)), and ∆Wa(t̄) is equal to

−d
(
(ρ̄a,ε, q̄a,ε)(t̄), (ρ

l, ql)
)
. Since ω(ρl, ql) = ω(ρr, qr) and v((ρ̄a,ε, q̄a,ε)(t)) =

v(ρr, qr), then

∆W (t̄) = d ((ρ̄a,ε, q̄a,ε)(t̄), (ρ
r, qr))− d

(
(ρ̄a,ε, q̄a,ε)(t̄), (ρ

l, ql)
)

− d
(
(ρl, ql), (ρr, qr)

)
≤ 0.
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4. The states (ρ̄a,ε, q̄a,ε)(t̄) and (ρl, ql) are connected by a phase-transition wave
with non positive speed (connecting (ρ̄a,ε, q̄a,ε)(t̄) with the state (ρ̃, q̃)) fol-
lowed by a wave of the first family (connecting (ρ̃, q̃) with the state (ρl, ql)).
The situation here is completely analogous to that of the previous point.

The proof is so finished.

Lemma 3.6. Assume that the wave ((ρl, ql), (ρr, qr)) interacts with the boundary
at the point (t̄, b). Then W (t̄+) ≤ W (t̄−). The possible interactions, producing at
least one wave, are: 2/PT, 2/1, and 2/PT-1.

Proof. First note that ∆Wa(t̄) = 0, since the interaction happens at x = b. More-
over, since the boundary Riemann problem does not generate waves, then the states
(ρr, qr) and (ρ̄b,ε, q̄b,ε)(t) are connected through waves with non negative speed. We
have therefore several possibilities.

1. (ρr, qr) = (ρ̄b,ε, q̄b,ε)(t). Since the wave ((ρl, ql), (ρr, qr)) has positive speed,
then, at time t̄, it is absorbed and no other wave is generated. In the case
((ρl, ql), (ρr, qr)) is a wave of the first family, then ∆W2(t̄) = −∆Wb(t̄) =
−d
(
(ρl, ql), (ρr, qr)

)
, ∆W1(t̄) = ∆WPT (t̄) = 0 and so

∆W (t̄) = 0.

In the case ((ρl, ql), (ρr, qr)) is a phase-transition wave with positive speed,
then ∆WPT (t̄) = −∆Wb(t̄) = −d

(
(ρl, ql), (ρr, qr)

)
, ∆W1(t̄) = ∆W2(t̄) = 0

and so

∆W (t̄) = 0.

2. The states (ρr, qr) and (ρ̄b,ε, q̄b,ε)(t) are connected by a wave of the second
family.

In the case the interacting wave is a wave of the second family, then no
wave is generated at time t̄. Therefore we have ∆W1(t̄) = ∆WPT (t̄) =
0, ∆W2(t̄) = −d

(
(ρl, ql), (ρr, qr)

)
and ∆Wb(t̄) = d

(
(ρl, ql), (ρ̄b,ε, q̄b,ε)(t)

)
−

d ((ρ̄b,ε, q̄b,ε)(t), (ρ
r, qr)); hence

∆W (t̄) ≤ 0.

In the case the interacting wave is a phase-transition wave with positive
speed, then no wave is generated at time t̄ and ∆W1(t̄) = ∆W2(t̄) = 0,
∆WPT (t̄) = −d

(
(ρl, ql), (ρr, qr)

)
and ∆Wb(t̄) = d

(
(ρl, ql), (ρ̄b,ε, q̄b,ε)(t)

)
−

d ((ρ̄b,ε, q̄b,ε)(t), (ρ
r, qr)). Hence

∆W (t̄) ≤ 0.

3. The states (ρr, qr) and (ρ̄b,ε, q̄b,ε)(t) are connected by a phase-transition wave,
possibly followed by a wave of the second family. In this case (ρr, qr) ∈ Ωf
and necessarily also (ρl, ql) ∈ Ωf .

If (ρl, ql) ∈ Ωf ∪ Ωc, then at time t̄ a wave of the first family, connecting
(ρl, ql) to a state (ρm, qm), is generated. The states (ρm, qm) and (ρ̄b,ε, q̄b,ε)(t)
either coincide or belong to the same Lax curve of the second family. In
this case ∆W1(t̄) = d

(
(ρl, ql), (ρm, qm)

)
, ∆W2(t̄) = −d

(
(ρl, ql), (ρr, qr)

)
,

∆WPT (t̄) = 0 and ∆Wb(t̄) = d ((ρm, qm), (ρ̄b,ε, q̄b,ε)(t))−d ((ρr, qr), (ρ̄b,ε, q̄b,ε)
(t)). Hence

∆W (t̄) ≤ 0.
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If (ρl, ql) ∈ Ωf \ Ωc and a phase-transition wave is generated at time t̄,
then ∆W1(t̄) = 0, ∆W2(t̄) = −d

(
(ρl, ql), (ρr, qr)

)
. Moreover ∆WPT (t̄) =

d
(
(ρl, ql), (ρ̄b,ε, q̄b,ε)(t)

)
and ∆Wb(t̄) = −d ((ρr, qr), (ρ̄b,ε, q̄b,ε)(t)). Thus

∆W (t̄) ≤ 0.

If (ρl, ql) ∈ Ωf \Ωc and a phase-transition wave (connecting (ρl, ql) to (ρ̂, q̂)),
followed by a wave of the first family (connecting (ρ̂, q̂) to (ρ̃, q̃)), is generated
at time t̄, then ∆W1(t̄) = d ((ρ̂, q̂), (ρ̃, q̃)), ∆W2(t̄) = −d

(
(ρl, ql), (ρr, qr)

)
.

Moreover ∆WPT (t̄) = d
(
(ρl, ql), (ρ̂, q̂)

)
and ∆Wb(t̄) = d ((ρ̃, q̃), (ρ̄b,ε, q̄b,ε)(t))−

d ((ρr, qr), (ρ̄b,ε, q̄b,ε)(t)). Thus

∆W (t̄) ≤ 0.

If (ρl, ql) ∈ Ωf \ Ωc and no wave is generated at time t̄, then ∆W1(t̄) =
0, ∆W2(t̄) = −d

(
(ρl, ql), (ρr, qr)

)
, ∆WPT (t̄) = 0 and finally ∆Wb(t̄) =

d
(
(ρl, ql), (ρ̄b,ε, q̄b,ε)(t)

)
− d ((ρr, qr), (ρ̄b,ε, q̄b,ε)(t)). Thus

∆W (t̄) ≤ 0.

The proof is finished.

Lemma 3.7. Assume that t̄ is a discontinuity point for the boundary datum at
x = a. Then W (t̄+) ≤W (t̄−) + d ((ρ̄a,ε, q̄a,ε) (t+), (ρ̄a,ε, q̄a,ε) (t−)).

Proof. In general, at time t̄, a wave with positive speed emerges from the boundary
x = a. In all the cases, denoting with (ρ̄, q̄) the trace of the approximate solution
before time t̄ at x = a+, we have

∆W (t̄) = d ((ρ̄a,ε, q̄a,ε) (t+), (ρ̄, q̄))− d ((ρ̄a,ε, q̄a,ε) (t−), (ρ̄, q̄))

≤ d ((ρ̄a,ε, q̄a,ε) (t+), (ρ̄a,ε, q̄a,ε) (t−))

by the triangular inequality. The proof is so concluded.

Lemma 3.8. Assume that t̄ is a discontinuity point for the boundary datum at
x = b. Then W (t̄+) ≤W (t̄−) + d ((ρ̄b,ε, q̄b,ε) (t+), (ρ̄b,ε, q̄b,ε) (t−)).

Proof. In general, at time t̄, a wave with negative speed emerges from the boundary
x = b. In all the cases, denoting with (ρ̄, q̄) the trace of the approximate solution
before time t̄ at x = b−, we have

∆W (t̄) = d ((ρ̄b,ε, q̄b,ε) (t+), (ρ̄, q̄))− d ((ρ̄b,ε, q̄b,ε) (t−), (ρ̄, q̄))

≤ d ((ρ̄b,ε, q̄b,ε) (t+), (ρ̄b,ε, q̄b,ε) (t−))

by the triangular inequality. The proof is so concluded.

Proposition 2. For a.e. t > 0, we have

W (t) ≤M, (23)

where M > 0 is a constant.

Proof. It is a simple consequence of Lemmas 3.4, 3.5, 3.6, 3.7, and 3.8.
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3.0.3. Existence of a wave-front tracking solution. We now want to bound the num-
ber of waves and of interactions.

Definition 3.9. A wave of ūε, generated at time t = 0, is said an original wave.

Definition 3.10. A wave of the second family
(
(ρl, ql), (ρr, qr)

)
is said special if

(ρl, ql) ∈ Ωf \ Ωc and (ρr, qr) ∈ Ωf ∩ Ωc \ {(σ−, σ−q−/R)}.

Definition 3.11. A wave of the second family
(
(ρl, ql), (ρr, qr)

)
is said semi-special

either if

• (ρl, ql) ∈ Ωf \ Ωc and (ρr, qr) = (σ−, σ−q
−/R)

or

• (ρr, qr) ∈ Ωf \ Ωc and (ρl, ql) = (σ−, σ−q
−/R).

Lemma 3.12. Special waves can not emerge by interactions of waves inside the
phase transition system. They can be generated only at time t = 0 or at the boundary
x = a.

For a proof see [10].

Lemma 3.13. A wave of the second family
(
(ρl, ql), (ρr, qr)

)
with (ρl, ql), (ρr, qr) ∈

Ωf \Ωc either is an original wave or can be generated by a variation of the boundary
data at x = a. This holds in particular for semi-special waves.

Proof. Note first that the wave has positive speed; hence can not be generated at
the boundary x = b.

Assume first that it is generated at a point (t̄, x̄) with t̄ > 0 and x̄ ∈ (a, b). In
this case, it should emerge also a wave of the first family or a phase-transition wave
connecting a state (ρ̄, q̄) to (ρl, ql). This is clearly not possible.

Assume now that a wave with negative speed ((ρ̄, q̄), (ρr, qr)) interacts with the
boundary x = a at a time t̄ > 0. Since (ρr, qr) ∈ Ωf this interactive wave is not a
phase-transition wave. The remaining possibility is a wave of the first family, which
is not possible, since (ρr, qr) 6∈ Ωc. This completes the proof.

The following proposition holds.

Proposition 3. For every ν ∈ N \ {0}, the construction in Subsection 3.0.1 can be
done for every positive time, producing a 1

ν -approximate wave-front tracking solution
to (16).

Proof. For ν ∈ N \ {0}, call uν = (ρν , qν) the function built with the procedure of
Subsection 3.0.1. It is sufficient to prove that the number of waves and interactions,
generated by the construction, is finite. Define the functional Nν(t), which counts
the number of discontinuities of (ρν , qν). Nν(t) is locally constant in time and can
vary at interaction times in the following way.

1. If at time t̄ > 0 two waves interact at x̄ ∈ (a, b), then ∆Nν(t̄) ≤ 1. More
precisely, ∆Nν(t̄) = 1 if and only if the interaction is of type 2-1/PT-1-2;
see [10].

2. If at time t̄ > 0 a wave interacts with the boundary at x = a, then ∆Nν(t̄) ≤ 0.
In the case ∆Nν(t̄) = 0 the interaction is either 1/PT or 1/2.

3. If at time t̄ > 0 a wave interacts with the boundary at x = b, then ∆Nν(t̄) ≤ 1.
Indeed in the case ∆Nν(t̄) = 1, the interaction is of type 2/PT-1, while in
the case ∆Nν(t̄) = 0, the interaction is either of type 2/PT or of type 2/1.
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Interaction’s position Interaction’s types

Left boundary 1/PT, 1/2
Right boundary 2/PT, 2/1
Inside the domain 2-1/1-2, 2-PT/PT-1, 2-PT/1-2, PT-1/PT-1,

2-1/PT-1, 2-1/PT-2

Table 1. List of interaction types, which can happen, in principle,
an infinite number of times.

4. If the time t̄ > 0 is a point of discontinuity for the boundary value (ρa,ν , qa,ν),
then ∆Nν(t̄) ≤ 2.

5. If the time t̄ > 0 is a point of discontinuity for the boundary value (ρb,ν , qb,ν),
then ∆Nν(t̄) ≤ 2.

The claims 1., 4., and 5. are immediate. Claim 2. follows directly by Lemma 3.5,
while claim 3. follows directly by Lemma 3.6.

The number of waves can increase in the cases 1., 3., 4., and 5. By construction,
the case 4., and 5. happen at most a finite number of times. In case 1., the only
interaction, which produces an increment of the number of waves, is 2-1/PT-1-2.
In this situation, a special wave interacts with a wave of the first family, producing
three waves; see [10]. The wave of the second family, generated by the interaction
is not special. By Lemma 3.12, the number of special waves is bounded by Nν(0+)
(number of original waves) plus the number of discontinuities of the boundary datum
(ρa,ν , qa,ν).

In case 3., the interaction, producing an increment of the number of waves,
is 2/PT-1. In this case the interacting wave of the second family

((
ρl, ql

)
, (ρr, qr)

)
has the property that both

(
ρl, ql

)
and (ρr, qr) belong to Ωf \Ωc. By Lemma 3.13,

such a wave is either an original wave or a wave produced at the boundary x = a and
so, its number is bounded by Nν(0+) (number of original waves) plus the number
of discontinuities of the boundary datum (ρa,ν , qa,ν).

Hence

Nν(t) ≤ 3Nν(0+) + 4Na,ν + 2Nb,ν

for a.e. t > 0, where Na,ν and Nb,ν are respectively the number of discontinuities
of the boundary data (ρa,ν , qa,ν) and (ρb,ν , qb,ν).

Now we want to prove that the number of interactions is finite.
The previous analysis shows that the interactions, producing an increment of

the number of waves Nν , can happen at most a finite number of times. Therefore
the interactions (inside the domain (a, b)) 1-1/1, 2-PT/PT, PT-1/2, PT-1/PT,
2-1/PT can happen at most a finite number of times, since we have a uniform
bound on the number of waves. So it remains to consider and to bound the number
of interactions of the types included in Table 1. Consider first the interactions of
Table 1 generating a wave of the second family and happening inside the domain
(a, b). In all such interactions, a wave of the second family is present also before
the interaction itself. Moreover this interacting wave of the second family is not a
semi-special wave; see Definition 3.11. Instead the interaction 1/2 at the boundary
x = a produces a semi-special wave. Therefore the interactions 2-1/1-2, 2-PT/1-
2, and 2-1/PT-2 can happen a finite number of times, since the interacting waves
of the second family can be generated either at time 0 or at the boundary x = a
when the boundary datum changes or by an interaction happening at most a finite
number of times. For the same reason (the interacting wave of the second family is
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not semi-special), also the interaction 2-1/PT-1 inside the domain and 2/PT at
the right boundary can happen at most a finite number of times. We can therefore
limit the study to the following interactions:

Interaction’s position Interaction’s types

Left boundary 1/PT, 1/2
Right boundary 2/1
Inside the domain PT-1/PT-1

Let Λ be the set containing the speed of all possible waves in the phase-transition
model and define K = sup {|λ| : λ ∈ Λ}. It is sufficient to prove that the number
of interactions is finite in each time interval [t1, t2] such that t2 − t1 < b−a

2K . Indeed
this choice implies that the boundary at x = a does not influence the boundary at
x = b and viceversa. Under this assumption, the interactions 1/2 at x = a and 2/1
at x = b can happen at most a finite number of times.

Therefore only PT-1/PT-1 (inside (a, b)) and 1/PT (at x = a) can happen an
infinite number of times.

If 1/PT happens a finite number of times, then also PT-1/PT-1 does; see [10,
Proof of Proposition 4.37]. Thus the only possibility for having an infinite number of
interactions is that the wave of the first family produced by PT-1/PT-1 goes back
to the boundary x = a in order to produce 1/PT. If this happens the number of
waves strictly decreases, since the generated phase-transition wave of PT-1/PT-1
is at left of the wave of the first family. Hence the combination of interactions can
not happen an infinite number of times. The proof is so concluded.

3.0.4. Existence of a solution. In this part we conclude the proof of Theorem 3.2.

Proof of Theorem 3.2. Fix an ε-approximate wave-front tracking solution ūε to (16),
in the sense of Definition 3.3. By Proposition 2, we deduce that there exists a con-
stant M > 0, depending on the total variation of the flux of the initial datum, such
that

W1(t) +W2(t) +WPT (t) ≤M, (24)

for a.e. t > 0. Since (H-1) holds, then inequality (24) implies that the functional
Tot.Var. ((ρ̄ε, q̄ε)(t, ·)) is uniformly bounded for a.e. t > 0. Hence, at least by a
subsequence, there is a function (ρ̄, q̄), which is a solution to (16) in the sense of
Definition 3.1. This permits to conclude.
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