Citation: Don A. Jones, Hal L. Smith, Horst R. Thieme. Spread of viral infection of immobilized bacteria[J]. Networks and Heterogeneous Media, 2013, 8(1): 327-342. doi: 10.3934/nhm.2013.8.327
[1] | Don A. Jones, Hal L. Smith, Horst R. Thieme . Spread of viral infection of immobilized bacteria. Networks and Heterogeneous Media, 2013, 8(1): 327-342. doi: 10.3934/nhm.2013.8.327 |
[2] | Xiaoqian Gong, Benedetto Piccoli . A measure model for the spread of viral infections with mutations. Networks and Heterogeneous Media, 2022, 17(3): 427-442. doi: 10.3934/nhm.2022015 |
[3] | Richard Carney, Monique Chyba, Taylor Klotz . Using hybrid automata to model mitigation of global disease spread via travel restriction. Networks and Heterogeneous Media, 2024, 19(1): 324-354. doi: 10.3934/nhm.2024015 |
[4] | U. Dobramysl, C. Sieben, D. Holcman . Mean time to infection by small diffusing droplets containing SARS-CoV-2 during close social contacts. Networks and Heterogeneous Media, 2024, 19(1): 384-404. doi: 10.3934/nhm.2024017 |
[5] | Gary Bunting, Yihong Du, Krzysztof Krakowski . Spreading speed revisited: Analysis of a free boundary model. Networks and Heterogeneous Media, 2012, 7(4): 583-603. doi: 10.3934/nhm.2012.7.583 |
[6] | Meng Zhao, Jiancheng Liu, Yindi Zhang . Influence of environmental pollution and bacterial hyper-infectivity on dynamics of a waterborne pathogen model with free boundaries. Networks and Heterogeneous Media, 2024, 19(3): 940-969. doi: 10.3934/nhm.2024042 |
[7] | Nicola Bellomo, Raluca Eftimie, Guido Forni . What is the in-host dynamics of the SARS-CoV-2 virus? A challenge within a multiscale vision of living systems. Networks and Heterogeneous Media, 2024, 19(2): 655-681. doi: 10.3934/nhm.2024029 |
[8] | Henri Berestycki, Guillemette Chapuisat . Traveling fronts guided by the environment for reaction-diffusion equations. Networks and Heterogeneous Media, 2013, 8(1): 79-114. doi: 10.3934/nhm.2013.8.79 |
[9] | François Hamel, James Nolen, Jean-Michel Roquejoffre, Lenya Ryzhik . A short proof of the logarithmic Bramson correction in Fisher-KPP equations. Networks and Heterogeneous Media, 2013, 8(1): 275-289. doi: 10.3934/nhm.2013.8.275 |
[10] | Prateek Kunwar, Oleksandr Markovichenko, Monique Chyba, Yuriy Mileyko, Alice Koniges, Thomas Lee . A study of computational and conceptual complexities of compartment and agent based models. Networks and Heterogeneous Media, 2022, 17(3): 359-384. doi: 10.3934/nhm.2022011 |
[1] |
E. Beretta and Y. Kuang, Modeling and analysis of a marine bacteriophage infection with latency, Nonlinear Analysis RWA, 2 (2001), 35-74. doi: 10.1016/S0362-546X(99)00285-0
![]() |
[2] |
C. Beaumont, J.-B. Burie, A. Ducrot and P. Zongo, Propogation of Salmonella within an industrial hens house, SIAM J. Appl. Math., 72 (2012), 1113-1148. doi: 10.1137/110822967
![]() |
[3] |
A. Campbell, Conditions for existence of bacteriophages, Evolution, 15 (1961), 153-165. doi: 10.2307/2406076
![]() |
[4] |
P. DeLeenheer and H. L. Smith, Virus dynamics: A global analysis, SIAM J. Appl. Math., 63 (2003), 1313-1327. doi: 10.1137/S0036139902406905
![]() |
[5] | O. Diekmann, Limiting behaviour in an epidemic model, Nonlinear Analysis, TMA, 1 (1977), 459-470. |
[6] |
O. Diekmann and H. G. Kaper, On the bounded solutions of a nonlinear convolution equation, Nonlinear Analysis, TMA, 2 (1978), 721-737. doi: 10.1016/0362-546X(78)90015-9
![]() |
[7] |
E. Ellis and M. Delbrück, The growth of bacteriophage, J. of Physiology, 22 (1939), 365-384. doi: 10.1085/jgp.22.3.365
![]() |
[8] |
J. Fort and V. Mendez, Time-delayed spread of viruses in growing plaques, Physical Review Letters, 89 (2002), 178101. doi: 10.1103/PhysRevLett.89.178101
![]() |
[9] |
D. A. Jones, G. Röst, H. L. Smith and H. R.Thieme, On spread of phage infection of bacteria in a petri dish, SIAM J. Appl. Math., 72 (2012), 670-688. doi: 10.1137/110848360
![]() |
[10] |
A. L. Koch, The growth of viral plaques during enlargement phase, J. Theor. Biol., 6 (1964), 413-431. doi: 10.1016/0022-5193(64)90056-6
![]() |
[11] |
Y. Lee and J. Yin, Imaging the propagation of viruses, Communication to the Editor, Biotechnology and Bioengineering, 52 (1996), 438-442. doi: 10.1002/(SICI)1097-0290(19961105)52:3<438::AID-BIT11>3.0.CO;2-F
![]() |
[12] |
B. Levin, F. Stewart and L. Chao, Resource-limited growth, competition, and predation: A model, and experimental studies with bacteria and bacteriophage, Amer. Naturalist, 111 (1977), 3-24. doi: 10.1086/283134
![]() |
[13] |
M. A. Lewis, B. Li and H. F. Weinberger, Spreading speed and linear determinacy for two-species competition models, J. Math. Biol., 45 (2002), 219-233. doi: 10.1007/s002850200144
![]() |
[14] | M. A. Nowak and R. M. May, "Virus Dynamics," Oxford University Press, New York, 2000. |
[15] |
V. Ortega-Cejas, J. Fort, V. Mendez and D. Campos, Approximate solution to the speed of spreading viruses, Physical Review E, 69 (2004), 031909. doi: 10.1103/PhysRevE.69.031909
![]() |
[16] |
A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41 (1999), 3-44. doi: 10.1137/S0036144598335107
![]() |
[17] |
H. L. Smith and H. R. Thieme, Persistence of bacteria and phages in a chemostat, J. Math. Biol., 64 (2012), 951-979. doi: 10.1007/s00285-011-0434-4
![]() |
[18] |
H. R. Thieme, A model for the spatial spread of an epidemic, J. Math. Biol., 4 (1977), 337-351. doi: 10.1007/BF00275082
![]() |
[19] |
H. R. Thieme, Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations, J. Reine Angew. Math., 306 (1979), 94-121. doi: 10.1515/crll.1979.306.94
![]() |
[20] |
H. R. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread, J. Math. Biol., 8 (1979), 173-187. doi: 10.1007/BF00279720
![]() |
[21] | H. R. Thieme, "Mathematics in Population Biology," Princeton University Press, Princeton, 2003. |
[22] |
H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, JDE, 195 (2003), 430-470. doi: 10.1016/S0022-0396(03)00175-X
![]() |
[23] |
H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperation models, J. Math. Biol., 45 (2002), 183-218. doi: 10.1007/s002850200145
![]() |
[24] |
J. Yin and J. S. McCaskill, Replication of viruses in a growing plaque: A reaction-diffusion model, Biophysics J., 61 (1992), 1540-1549. doi: 10.1016/S0006-3495(92)81958-6
![]() |
[25] | J. Yin and L. You, Amplification and spread of viruses in a growing plaque, J. Theor. Biol., 200 (1999), 365-373. |
1. | Khalaf M. Alanazi, Zdzislaw Jackiewicz, Horst R. Thieme, Numerical simulations of spread of rabies in a spatially distributed fox population, 2019, 159, 03784754, 161, 10.1016/j.matcom.2018.11.010 | |
2. | Guillaume Cantin, Cristiana J. Silva, Arnaud Banos, Mathematical analysis of a hybrid model: Impacts of individual behaviors on the spreading of an epidemic, 2022, 17, 1556-1801, 333, 10.3934/nhm.2022010 | |
3. | Lin Zhao, Zhi-Cheng Wang, Shigui Ruan, Traveling wave solutions in a two-group epidemic model with latent period, 2017, 30, 0951-7715, 1287, 10.1088/1361-6544/aa59ae | |
4. | Don A. Jones, Hal L. Smith, Horst R. Thieme, Spread of phage infection of bacteria in a petri dish, 2015, 21, 1531-3492, 471, 10.3934/dcdsb.2016.21.471 | |
5. | Zhenkun Wang, Hao Wang, Nontrivial Traveling Waves of Phage-Bacteria Models in Different Media Types, 2024, 84, 0036-1399, 556, 10.1137/22M1505086 |