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Abstract. A reaction diffusion system with a distributed time delay is pro-

posed for virus spread on bacteria immobilized on an agar-coated plate. A

distributed delay explicitly accounts for a virus latent period of variable dura-
tion. The model allows the number of virus progeny released when an infected

cell lyses to depend on the duration of the latent period. A unique spreading

speed for virus infection is established and traveling wave solutions are shown
to exist.

1. Introduction. Bacteriophages are viruses which parasitize bacteria. They ad-
sorb to a bacterial surface receptor and inject their DNA into the bacterial cell
thereby turning the protein making machinery of the bacterial cell into a virus-
making factory. When virus progeny have been assembled, the bacterial cell wall
lyses and releases the virus progeny. These then diffuse until they reach another
bacterium where the cycle is continued. The latent period is defined as the time
from virus adsorption to the bacteria until the subsequent release of progeny viruses
on bacterial lysis.

A standard experimental protocol for the study of bacteriophages and their bac-
terial hosts is the plaque assay. Liquid agar containing a very small quantity of
virus together with host bacteria is evenly spread on a plate of solid agar. After
some time has passed, a number of “plaques” become visible, each initiated from
a single virus infection of a host cell. The plaque is a clear, disk-shaped, region
of lysed cells surrounded by un-lysed bacteria. It spreads at a well-characterized
speed, typically of the order of less than a millimeter per hour, which, along with
its shape and clarity can serve to identify the virus.

In a recent paper [9], the authors together with G. Röst, developed a mathe-
matical model of the spread of virus infection on their bacterial hosts, creating an
expanding plaque on an agar plate. In addition, we gave the first mathematically
rigorous proof of the spreading of the plaque, identifying an interval of possible
spreading speeds. Traveling wave solutions were also shown to exist for the model.
Our model assumed, following standard practice in the mathematical modeling of
virus and host-cell interaction [3, 1, 12, 17], that the latent period duration is a
fixed constant. We also assumed that the burst size, the number of viral progeny
released at cell lysis, is a fixed constant. Furthermore, we did not include any loss or
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degradation of viruses in our model other than adsorption of viruses to uninfected
cells leading to their infection. Therefore, the spread of virus infection results in
converting a once homogeneous “lawn” of bacteria into a plaque devoid of bacteria
and occupied by a homogeneous density of virus.

Here, we generalize our earlier model by allowing for a variable latent period
distribution and for the burst size to depend on the timing of bacterial lysis. We
counter this added generality by simplifying the viral loss term, replacing a nonlinear
one by a constant loss rate that is assumed to account for loss of virus due to
adsorption to host cells, whether uninfected or infected, and due to the degradation
of free virus. The simplification of the viral loss term, often made in mathematical
models of virus interaction with their target cells [14, 16, 1, 4], results in a significant
improvement in mathematical tractability of the spreading problem. It also changes
the character of the spreading plaque such that virus is plentiful only immediately
behind the moving front and decays away behind the front instead of remaining at
high levels. Thus the interior of a plaque has very low levels of both bacteria and
viruses.

Finally we briefly summarize the literature of this problem. Koch [10] estimated

that the speed of spread is proportional to
√
d/τ , where d is the diffusion con-

stant of a virus particle in agar, and τ is the length of the latent period. Yin and
McCaskill [24] were the first to construct a mathematical model of virus spread, a
reaction diffusion system, and they identified the growing plaque with a traveling
wave solution of their system, although they did not give a proof of its existence.
Yin and You [25] reported numerical simulations supporting the conclusion that
traveling wave solutions exist for the system described in [24]. The model of Yin
and McCaskill assumes that the length of the latent period is exponentially dis-
tributed. In fact, the length of the latent period is remarkably constant for given
environmental conditions [7]. Fort and Méndez [8] account for a time-delay for the
latent period by deriving a “hyperbolic approximation to the full time-delayed evo-
lution equation”, a damped wave equation. Later work by Ortega-Cejas et al. [15]
based on the model proposed in [8] obtains some approximate but explicit formula
for the wave speed. None of the works cited here give a mathematical proof of the
existence of traveling wave solutions of the models considered.

Following the description of our model below, we prove the existence of a uniquely
determined spreading speed c∗ for solutions of our model system on the infinite
spatial domain for the idealized case where the initial bacterial density is spatially
uniform and the initial virus density is non-zero on a non-empty bounded set. Fol-
lowing [9], the key to the results of this paper is that the accumulated virus density

at position x, u(t, x) =
∫ t
0
V (s, x)ds, satisfies a scalar reaction diffusion equation

with distributed time delay. This fact allows us to make use of the theory developed
by Thieme [19, 20] and by Thieme and Zhao [22] on asymptotic speed of spread
for certain integral equations. We show that inf |x|≤ct u(t, x) > u∗ > 0 for large t if
c < c∗ and sup|x|≥ct u(t, x)→ 0 as t→∞ if c > c∗. The speed c∗ is determined by
the usual linearization about the virus-free state. A characteristic equation couples
the speed c and a wave “shape parameter” λ and c∗ corresponds to a double root λ∗

of this equation, which also depends on model parameters. Thus, different from [9],
linear determinacy of the spreading speed (cf. [13, 23] and the references therein)
holds for our system. We show that the spreading speed c∗ is also the minimum
wave speed: Traveling wave solutions of our model system in one-space dimension
exist for any wave speed exceeding c > c∗ and do not exist for c < c∗. The traveling
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wave profile for viruses is pulse-like, virus levels are low well in front of the wave
and well behind the wave. The profile for bacteria connects the virus-free value to
a significantly lower one.

2. The model. Following [24, 25], we assume that host bacteria in agar do not
grow or diffuse. Viruses diffuse and adsorb to host bacteria creating infected cells.
Following many authors [14, 16, 1, 4], we assume a constant virus loss rate α.
Viruses are lost in several ways. They are lost when they adsorb to either susceptible
bacteria, to already infected bacteria, and to bacterial fragments left after cell lysis.
Viruses also naturally degrade over time. We combine all these loss rates into a
single loss rate.

Let virus density be denoted by V , virus-susceptible bacteria density be denoted
by B, and infected bacteria density be denoted by I. Let F(a) be the probability
that an infected bacterium has not yet lysed a time units after infection. There
exists a unique Lebesgue-Stieltjes probability measure ν on the Borel sets of R+

such that F(a)− F(ã) = ν([a, ã]) whenever 0 ≤ a ≤ ã and F is continuous at a and
ã. We note that if F is differentiable, then −F ′(a)da = dν(a). See [17] for further
details.

Let b(a) denote the average number of progeny released when an infected cell
lyses a time units after infection. We assume that b : R+ → R+ is bounded and
continuous. Viruses are assumed to adsorb to bacteria with adsorption constant k,
and d is the effective diffusion constant for phages. Bacteria are immobile in the
agar. The spatial density of infected bacteria is described by

I(t, x) =

∫ ∞
0

i(t, a, x)da

where i(t, a, x) denotes the density of infected bacteria with respect to age and
space.

The model is given by the following system,

Vt =d∆V − αV +

∫ ∞
0

b(a)i(t, a, x)F(a)−1dν(a)

Bt =− kBV, x ∈ D, t > 0.

(1)

The integral represents the rate at which viruses are shed by infected bacteria of all
age-since-infection at position x and at time t.

At t = 0, the initial density of infected bacteria is i(0, a, x) = i0(a, x), where
a ∈ [0,∞) denotes age-of-infection. As infected bacteria are immobile, we have
that

i(t, a, x) =

(
kB(t− a, x)V (t− a, x)F(a), t > a ≥ 0

i0(a− t, x) F(a)
F(a−t) , 0 ≤ t < a

)
. (2)

Indeed, for t > a, the infected bacteria with infection age a are those that have
been infected at time t− a (at rate kB(t− a, x)V (t− a, x)) and have not yet lysed.
For t < a, they are those bacteria that were in the infected stage already at time
0, when they had infection age a − t, and have not yet lysed at time t, with the
conditional probability F(a)/F(a− t).

Inserting (2) into the definition of I(t, x) above, we find that

I(t, x) =

∫ t

0

kB(t− a, x)V (t− a, x)F(a)da+

∫ ∞
t

i0(a− t, x)
F(a)

F(a− t)
da (3)
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D denotes the domain, typically in applications, a disk in the plane R2. However,
we may also consider D as the entire plane or the real line. The Laplacian is
∆V =

∑
i Vxixi . Here, and above, a subscripted variable denotes partial derivative

with respect to that variable.
Inserting (2) into (1), we obtain

Vt = d∆V − αV + J(t, x) + k

∫ t

0

b(a)B(t− a, x)V (t− a, x)dν(a) (4)

where

J(t, x) =

∫ ∞
t

b(a)
i0(a− t, x)

F(a− t)
dν(a). (5)

If there are no infected bacteria at t = 0, i.e., if i0 = 0, then J = 0.
Initial data for V and B at t = 0 must be prescribed:

B(0, x) = B0(x), V (0, x) = V0(x), x ∈ Rn

We will assume that B0 is some positive constant, to model a homogeneous “lawn”
of bacteria; V0 ≥ 0 is expected to have compact (very small) support to model a
drop containing viruses.

It may be useful to introduce the density of lysed bacteria L(t, x). Clearly,

B0(x) = B(t, x) + I(t, x) + L(t, x), t ≥ 0, (6)

since bacteria are immobile and are either susceptible, infected, or lysed.

3. Reduction to a single diffusion equation. We proceed as in [9] to reduce the
system (1) to a single scalar equation. Define the accumulated density of viruses,

u(t, x) =

∫ t

0

V (s, x)ds = (lnB0(x)− lnB(t, x))/k. (7)

The last equality follows from the differential equation for B in (1). Now, solve for
B to get

B(t, x) = B0(x)e−ku(t,x). (8)

In view of (8), e−ku(t,x) can be viewed as the probability of a bacterium located at
position x to be still uninfected at time t.

We substitute the differential equation for B into (4),

Vt = d∆V − αV + J(t, x)−
∫ t

0

b(a)Bt(t− a, x)dν(a)

Integrating from t = 0 to t = t,

V (t, x)− V0(x) = d∆u− αu+

∫ t

0

J(s, x)ds−
∫ t

0

∫ s

0

b(a)Bt(s− a, x)dν(a)ds

Setting V = ut and interchanging order of integration, we find that

ut = d∆u− αu+ V̂0(t, x) +

∫ t

0

b(a)[B0(x)−B(t− a, x)]dν(a)

where

V̂0(t, x) = V0(x) +

∫ t

0

J(s, x)ds

We note that ∫ ∞
0

J(s, x)ds =

∫ ∞
0

b(a)

∫ a

0

i0(r, x)

F(r)
drdν(a). (9)
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In particular, if V0 and i0(r, x) vanish for |x| ≥ η and all r ≥ 0, then so does V̂0
vanish for |x| ≥ η and all t ≥ 0. We assume that V̂ 0(t, x) is bounded.

Finally, making use of (8), we have

ut = d∆u− αu+ V̂0(t, x) + kB0(x)

∫ t

0

b(a)f(u(t− a, x))dν(a) (10)

where

f(u) =
1− e−ku

k
. (11)

Note that f is bounded and f(0) = 0, f ′(0) = 1, and f(u) < u for all u > 0.
Notice that, via (8), all results for u, the cumulative phage density, can be

rephrased in terms of the density of susceptible bacteria.
We assume that B0(x) = B0 is constant and positive on the domain Rn. Since

the phage loss rate α > 0 includes adsorption by susceptible bacteria, α ≥ kB0.
Let Γ(t, x) be the fundamental solution of ∂t − d∆. Then

u(t, x) = u0(t, x) (12)

+

∫ t

0

∫
Rn
e−αsΓ(s, y)

∫ t−s

0

kB0b(a)f(u(t− s− a, x− y))dν(a)dyds

with

u0(t, x) =

∫ t

0

∫
Rn
e−αsΓ(s, y)V̂0(t− s, x− y)dyds. (13)

The boundedness of V̂0 implies that u0 is bounded. Furthermore, if V̂0 is bounded
and vanishes for |x| ≥ η and all t ≥ 0, then an estimate yields that

u0(t, x) ≤ Ce−(
|x|2−2η|x|

4dt ), |x| > 2η. (14)

This implies the overall assumption (21) made in [19]. It also implies that u0 is
admissible in the sense of [22, (2.11)].

Interchanging the order of space and time integration in (12), we may focus on
the two time integrations as follows:∫ t

0

e−αsΓ(s, y)

∫ t−s

0

b(a)f(u(t− s− a, x− y))dν(a)ds

=

∫ t

0

∫ t−a

0

e−αsΓ(s, y)b(a)f(u(t− s− a, x− y))dsdν(a)

=

∫ t

0

∫ t

a

e−α(r−a)Γ(r − a, y)b(a)f(u(t− r, x− y))drdν(a)

=

∫ t

0

Φ(r, y)f(u(t− r, x− y))dr

where

Φ(r, y) =

∫ r

0

e−α(r−a)Γ(r − a, y)b(a)dν(a). (15)

Therefore, (12) may be rewritten as

u(t, x) = u0(t, x) + kB0

∫ t

0

∫
Rn

Φ(r, y)f(u(t− r, x− y))drdy. (16)

Proposition 1. Assume that V̂0 is bounded and continuous. Then (16) has a unique
solution u : [0,∞) × Rn → [0,∞) which is continuous and bounded on [0, r] × Rn
for each r > 0. In fact, u is bounded on [0,∞)× Rn.
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Proof. This follows immediately from Theorem 2.1 in [22] and the boundedness of
f .

The spatial density of infected bacteria may also be rewritten in terms of u(t, x),
starting from (3) as follows:

I(t, x) =

∫ t

0

∂

∂a
B(t− a, x)F(a)da+ Ĵ(t, x)

= F(t)B0 −B(t, x) +

∫ t

0

B(t− a, x)dν(a) + Ĵ(t, x) (17)

= F(t)B0 −B0e
−ku(t,x) +

∫ t

0

B0e
−ku(t−a,x)dν(a) + Ĵ(t, x)

where

Ĵ(t, x) =

∫ ∞
t

i0(a− t, x)
F(a)

F(a− t)
da

Thus, we see from (8) and (17) that B and I are determined by u. We also get
a formula for the lysed cell density from (6):

L(t, x) = B0

∫ t

0

(
1− e−ku(t−a,x)

)
dν(a)− Ĵ(t, x) (18)

Like u(t, x), it must be monotone nondecreasing in t.

4. Spreading speeds. The spreading speed (aka asymptotic speed of spread) for
this equation, c∗, equals the minimum wave speed and is given by

c∗ = inf{c ≥ 0;∃λ > 0 : G(c, λ) < 1} (19)

where G is the transform of kB0Φ:

G(c, λ) = kB0

∫ ∞
0

∫
Rn
e−λ(cs+y1)Φ(s, y)dyds. (20)

See [19] and [22, Sec.2].

We first show that c∗ is proportional to σ =
√
d. Let Φ1 the kernel Φ associated

with d = 1. Since Φ(s, y) = σ−nΦ1(s, y/σ),

G(c, λ) = kB0

∫ ∞
0

∫
Rn
e−λ(cs+σy1)Φ1(s, y)dyds = G1(c/σ, λσ),

where G1 is G associated with d = 1. So

c∗/σ = inf
{
c/σ; c ≥ 0, ∃λ > 0 : G1(c/σ, λσ) < 1

}
= inf

{
r ≥ 0; ∃µ > 0 : G1(r, µ) < 1} =: c1.

Changing the order of integration and [22, Prop.4.2] yield

G1(c, λ) =
kB0Ψ(λc)

λc+ α− λ2
, 0 ≤ λ < λ](c), (21)

where λ](c) is the unique λ > 0 with λc+ α− λ2 = 0 and

Ψ(s) =

∫ ∞
0

e−sτ b(τ)dν(τ). (22)

For all c ≥ 0,

G1(c, 0) =
kB0

α

∫ ∞
0

b(a)dν(a) =: R0. (23)



SPREAD OF VIRAL INFECTION OF IMMOBILIZED BACTERIA 333

R0 will turn out to be a crucial threshold parameter. Notice that c∗ = 0 = c1
if and only if R0 ≤ 1. R0 has the interpretation of a basic phage reproduction
number. Consider one phage that is introduced into a bacteria “lawn” of constant
density B0. Then 1

kB0
is the average time it takes until it is adsorbed while 1/α

is the average time available for adsorption. Recall that, at time 0, kB0 is the per
phage rate of being adsorbed by susceptible bacteria and α is the per phage loss
rate including adsorption, α ≥ kB0. So kB0

α ≤ 1 is the average probability that the

phage manages to infect a bacterium while
∫∞
0
b(a)dν(a) is the average amount of

viruses that are released when the bacterium eventually lyses.
The following alternative formula for c1 is inspired by [2]. The following chain of

equivalences holds for c > 0 provided that c∗ > 0:

c ≤ c1 ⇐⇒ ∀λ > 0 : G1(c, λ) ≥ 1

⇐⇒ ∀λ > 0 : kB0Ψ(λc) ≥ λc+ α− λ2

⇐⇒ ∀s > 0 : kB0Ψ(s) ≥ s+ α− s2

c2

⇐⇒ ∀s > 0 :
1

c2
≥ s+ α− kB0Ψ(s)

s2

So

c1 =
1√
Θ
, Θ = sup

s>0

s+ α− kB0Ψ(s)

s2
. (24)

This equation shows that the spreading speed is an increasing function of kB0 and,
via Ψ, on the virus release rate b. It is a decreasing function of α. If R0 > 1,
by [19] (see also [22, Prop.2.3]), the spreading speed for (16), c∗ =

√
dc1, can be

determined from the unique solution (c1, λ1) of

G1(c, λ) = 1,
d

dλ
G1(c, λ) = 0. (25)

Equivalently, with Ψ in (22),

kB0Ψ(cλ) = λc+ α− λ2

cΨ′(cλ)(λc+ α− λ2) = (c− 2λ)Ψ(cλ).
(26)

The next result follows from Theorem 2.8 in [19] and Theorems 2.1 and 2.2 in
[22]. It says that c∗ is the spreading speed for (16).

Theorem 4.1. Assume that V̂0 is bounded and continuous, vanishes for |x| ≥ η
and all t ≥ 0, and is not identically zero. Let R0 > 1, and c∗ > 0 be the unique
solution of (19).

Then the unique solution of (16) satisfies

lim
t→∞,|x|≥ct

u(t, x) = 0 (27)

for c > c∗.
Further let u∗ be the unique positive solution of u∗ = R0f(u∗). Then, for every

c ∈ (0, c∗),

lim inf
t→∞,|x|≤ct

u(t, x) ≥ u∗ (28)
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Remark 1. We have followed the notation of [22] in (27) and (28). The former
means that for every ε > 0, there exists t > 0 such that |u(s, x)| < ε for s ≥ t, |x| ≥
cs. (28) has the meaning:

lim inf
t→∞,|x|≤ct

u(t, x) = sup
t≥0

inf{u(s, x) : s ≥ t, |x| ≤ cs}.

We now leverage Theorem 4.1 to obtain information about B, I and L. (27),
(28), and (8) give

lim
t→∞,|x|≥ct

B(t, x) = B0, c > c∗,

and
lim sup

t→∞,|x|≤ct
B(t, x) ≤ B0e

−ku∗ , 0 < c < c∗.

Note that the first integral in the expression (3) is dominated by kB0u(t, x) and

Ĵ(t, x) has compact support in x uniformly in t if i0 does, so in this case we have

lim
t→∞,|x|≥ct

I(t, x) = 0, c > c∗.

(27) implies that for c > c∗ we have

lim
t→∞,|x|≥ct

∫ t

0

e−ku(t−a,x)dν(a) =

∫ ∞
0

dν(a) = 1

which implies, via (18) that

lim
t→∞,|x|≥ct

L(t, x) = 0, c > c∗

Also, by (6) and the expression above for B, we have

lim inf
t→∞,|x|≤ct

I(t, x) + L(t, x) ≥ B0(1− e−ku
∗
), 0 < c < c∗.

For completeness, we add that no substantial spread occurs in the subthreshold
case R0 ≤ 1. Then R0f(u) < u for all u > 0 and [19, Thm.2.6] applies.

Theorem 4.2. Assume that V̂0 is bounded and continuous and vanishes for |x| ≥ η
and all t ≥ 0. Let R0 ≤ 1.

Then the unique solution of (16) satisfies

u(t, x)→ 0, |x| → ∞, uniformly in t ≥ 0.

5. Traveling waves. In this section we seek traveling wave solutions of the as-
ymptotic form of (10) in one space dimension. A traveling wave solution is defined

for all t, x ∈ R, with V̂0 ≡ 0 and with homogeneous initial bacterial density B0, sat-
isfying the differential equation for all t ∈ R, and has the form u(t, x) = U(ct+ x)
with U(s)→ 0 as s→ −∞. Equivalently,

U(ct+ x) = kB0

∫ ∞
0

∫
R

Φ(r, y)f(U(c(t− r) + x− y))dydr

Set s = ct+ x to obtain

U(s) = kB0

∫ ∞
0

∫
R

Φ(r, y)f(U(s− cr − y))dydr. (29)

Observe that the translate of a traveling wave solution is also a traveling wave
solution.

We obtain the following results from Theorem 3.1, 3.2, 3.4, and 3.5 in [22] which
are based on results in [5] and [6].



SPREAD OF VIRAL INFECTION OF IMMOBILIZED BACTERIA 335

Theorem 5.1. Let R0 > 1 and c ≥ c∗. Then there exists a solution u(t, x) =
U(ct+ x) of the equation

ut(t, x) = d∂2xu(t, x)− αu(t, x) + kB0

∫ ∞
0

b(a)f(u(t− a, x))dν(a), t, x ∈ R, (30)

with an increasing continuous U : R → R+ satisfying U(s) → 0 as s → −∞ and
U(s)→ u∗ as s→∞.

For c > c∗, such solutions are unique up to translation.
If c ∈ (0, c∗), no traveling wave solutions exists.

We observe that a traveling wave solution U(s) of (30) satisfies the delay differ-
ential equation:

dU ′′(s)− cU ′(s)− αU(s) + kB0

∫ ∞
0

b(a)f(U(s− ca))dν(a) = 0. (31)

The threshold condition R0 > 1 is necessary for the existence of traveling wave
solutions.

Remark 2. If R0 ≤ 1, there exists no nontrivial bounded nonnegative solution of
(29).

Proof. Suppose it does. Set Ū = supU . Since f is nondecreasing, Ū ≤ R0f(Ū). If
Ū > 0, this implies Ū < Ū .

Now our focus turns to showing the existence of traveling waves for the asymp-
totic form of our original system under the same conditions as in Theorem 5.1.

Theorem 5.2. Let R0 > 1 and c ≥ c∗. Then there exists traveling wave solutions
V (x+ ct) and B(x+ ct) of

Vt = dVxx − αV + k

∫ ∞
0

b(a)B(t− a, x)V (t− a, x)dν(a) (32)

Bt = −kBV
satisfying

B(−∞) = B0, B(+∞) = B0e
−ku∗ , V (±∞) = 0. (33)

B and V are positive and B is strictly decreasing. Moreover, V ∈ L1(R) and the
total amount of virus in the wave is given by∫

R
V (s)ds = cu∗ = cR0f(u∗). (34)

Proof. Let U be a traveling wave solution of (30) described in Theorem 5.1, which
also satisfies (31). Define B and V as follows:

V (s) = U ′(s)c, B(s) = B0e
−kU(s). (35)

Differentiating (31) and multiplying by c, we obtain

dV ′′(s)− cV ′(s)− αV (s) + k

∫ ∞
0

b(a)B0e
−kU(s−ca)V (s− ca)dν(a) = 0.

In view of (35), this becomes

dV ′′(s)− cV ′(s)− αV (s) + k

∫ ∞
0

b(a)B(s− ca)V (s− ca)dν(a) = 0. (36)

As U(s) is bounded on R with finite limits at ±∞ and U ′(s) ≥ 0, it follows that
U ′(±∞) = 0.
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B satisfies

B′(s) = −kB(s)V (s)/c.

Obviously, B is monotone decreasing and the limiting values of U imply that B has
the limits in (33). It follows that B and V satisfy (32).

Finally, we note that B′ is integrable on R, implying that BV is as well, and
since B is bounded from below, we conclude that V is integrable. (34) is obtained
by integrating (36) and changing the order of integration.

6. Special examples. Two important special cases of the general model are con-
sidered here. We first explore the case that the cumulative latency distribution is
of gamma type:

ν([0, a]) =

∫ a

0

gm(s; r)ds, gm(s, r) =
rmsm−1

(m− 1)!
e−rs, s ≥ 0. (37)

The mean latency is τ = m/r and the variance is σ2 = m/r2 wherem ∈ N and r > 0.
Furthermore, we assume that the burst size is independent of latency duration:

b(a) ≡ b (38)

In this case, the spreading speed is determined by (25) where Ψ (see (22)) is given
by

Ψ(s) = b

(
r

r + s

)m
= b

(
τ

τ + σ2s

)τ2/σ2

.

log(Ψ(s)/b) is an increasing function of the latent period variance v = σ2 and a
decreasing function of the mean latent period τ , implying that the spreading speed
c∗ is increasing with σ2 and decreasing with τ . Indeed,

∂

∂v
log(Ψ(s)/b) =

τ2

v2

(
log(1 + x)− x

1 + x

)
> 0

∂

∂τ
log(Ψ(s)/b) =

τ

v

(
− log(1 + x)−

(
log(1 + x)− x

1 + x

))
< 0

where x = vs/τ .
The basic phage reproduction number is given by

R0 =
kB0b

α
. (39)

Indeed, this expression for R0 holds whenever b is constant, regardless of the prob-
ability measure ν. Recall that nontrivial spreading solutions and traveling wave
solutions exist only when R0 > 1 and that α ≥ kB0 is required for biological
consistency. These relations imply that we must have

kB0 ≤ α < bkB0

to observe phage spreading.
If (37) and (38) hold and if we let

Ij(t, x) =
k

r

∫ ∞
0

gj(t− s; r)B(s, x)V (s, x)ds, 1 ≤ j ≤ m
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then we may write (4) as a coupled system of ODEs, that effectively produce the
latency delay, and a single PDE for viruses:

Vt = d∆V − αV + brIm

Bt = −kBV (40)

I1t = kBV − rI1

Ijt = r(Ij−1 − Ij), 2 ≤ j ≤ m

Here, we have assumed that the spreading initiated a very long time ago, so B and
V are defined for t ≤ 0 and that i(t, a, x) is given by the first expression of (2) for
all t. Therefore, the burst term in the V equation is given by

bk

∫ ∞
0

B(t− a, x)V (t− a, x)dν(a) = brIm(t, x).

(40) results from the linear chain trick, see e.g. [17]. We note that the case m = 1
gives an exponentially distributed latent period, yielding a system that is very
similar to the one proposed by Yin and McCaskill [24], the only difference being
the absence of the virus desorption reaction.

Another case of interest is when the latent period is assumed to be a fixed
constant τ , which results from the survivorship function F(a) = 1 − H(a − τ),
where H(t) is the usual Heaviside function with unit jump at the origin. In this
case, the equation for viruses becomes:

Vt = d∆V − αV + bkB(t− τ, x)V (t− τ, x), t > τ (41)

where b = b(τ).
In this case, the spreading speed is determined by (25) where Ψ (see (22)) is

given by

Ψ̃(s) = be−sτ .

and R0 by (39). It is easily seen that Ψ̃(s) < Ψ(s) for the same value of mean
latency τ and consequently (see (24)) the spreading speed c∗ is lower for the fixed
latency case than for the gamma-distributed latency.

7. Estimates and approximations of the spreading speed. Koch [10] argued

that the speed of spread is proportional to
√
d/τ . As far the diffusion constant is

concerned, we rigorously showed that this estimate is correct. We consider the case
of a fixed lysis time τ , in other words, where V is given by (41), and show that
the spreading speed is not proportional to 1/

√
τ . Koch made his argument in 1964

when it was not yet widely known that the solutions of reaction diffusion equations
spread with finite speed even when there is no delay.

We can assume that d = 1. Then

G(c, λ) =
βe−λcτ

λc+ α− λ2
,

with

β = kB0b = R0α. (42)

The spreading speed c∗ is the solution of

βe−λcτ =λc+ α− λ2,
cτ(λc+ α− λ2) =2λ− c,
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Figure 1. Plot showing phage density at time T = 5 (top) and
T = 15 (bottom) for (40) and (41). Solid lines correspond to
r = m = 2, dashed lines correspond to r = m = 3, and hashed lines
to r = m = ∞, i.e., to (41). In all cases the mean latent period
is 1.0 while its variance is 0.5, 0.33, and 0 respectively, confirming
that wave speed increases with the variance. Other parameters are
k = 1, α = 2, b = 30. A centered finite difference scheme in space
and an Adam-Bashforth scheme in time are used to approximate
the solutions.
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where β > α. We multiply the second equation by λ and set ξ = cλ,

βe−ξτ =ξ + α− λ2,
ξτ(ξ + α− λ2) =2λ2 − ξ.

We solve the second equation for λ2,

λ2 = ξ
τ(ξ + α) + 1

2 + ξτ
. (43)

We substitute the result into the first equation,

βe−ξτ = ξ + α− ξ τ(ξ + α) + 1

2 + ξτ
.

We rearrange

βe−ξτ (2 + ξτ) = (ξ + α)(2 + ξτ)− ξτ(ξ + α)− ξ.

We simplify,

0 = ξ + 2α− βe−ξτ (2 + ξτ) = F (τ, ξ). (44)

Once ξ has been found, we obtain c from (43) and ξ = cλ,

c2 =
(2 + ξτ)ξ

τ(ξ + α) + 1
. (45)

There are two cases at least in which the solutions can be explicitly found,

τ = 0 : ξ = 2(β − α), c2 = 4(β − α),

τ = 1/α : c2 = ξ = α ln(β/α).
(46)

F is a strictly increasing function of both τ and ξ. So there exists a unique
solution ξ > 0 which is a strictly decreasing function of τ ,

ξ ≤ 2(β − α). (47)

It follows from the implicit function theorem that ξ is a differentiable function of τ .
Let ζ = τξ. Then

0 = ξ + 2α− βe−ζ(2 + ζ) := G(ζ, ξ). (48)

G is a strictly increasing function of both ξ and ζ. So ζ is a strictly decreasing
function of ξ and thus a strictly increasing function of τ .

If τ →∞, ξ → 0 and ζ = ξτ ↗ ζ∞ where ζ∞ is the solution of

0 = α− βe−ζ∞
(

1 +
ζ∞
2

)
.

As a function of ξ and τ , c2 is a strictly increasing function of ξ and a strictly
decreasing function of τ . Since ξ is a strictly decreasing function of τ , c2, considered
as a function of τ , is a strictly decreasing function of τ . Further

(cτ)2 =
(2 + ζ)ζ

(ξ + α) + (1/τ)

is a strictly increasing function of ζ and τ and a strictly decreasing function of ξ
and thus a strictly increasing function of τ ,

(cτ)2 ↗ (2 + ζ∞)ζ∞
α

, τ →∞.
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So, for large τ , the spreading speed is approximately proportional to 1/τ . We
perform a Taylor expansion of

θ(ζ) = e−ζ(2 + ζ),

θ(0) = 2, θ′(ζ) = −e−ζ(ζ + 1)

θ′(0) = −1, θ′′(ζ) = e−ζζ.

Thus

θ(ζ) = 2− ζ +
1

2
ζ2e−ζ̃ ζ̃, 0 < ζ̃ < ζ.

Hence

2− ζ ≤ θ(ζ) ≤ 2− ζ +
1

2
ζ3, ζ ≥ 0.

We obtain the inequalities,

β[2− ξτ ] ≤ ξ + 2α ≤ β[2− ξτ + (1/2)(ξτ)3].

They can be transformed into

2(β − α)

1 + βτ
≤ ξ ≤ 2(β − α)

1 + βτ
+

(β/2)(ξτ)3

1 + βτ
. (49)

Since ξ ≤ 2(β − α),

2(β − α)

1 + βτ
≤ ξ ≤ 2(β − α)[1 + 2τ3β(β − α)2]

1 + βτ
. (50)

This means that the estimate from below is also a good approximation if τ is small
or β − α is small. Since c2 is an increasing function of ξ, by (45),

c2 ≥ 2(1 + βτ) + 2(β − α)τ

τ(2(β − α) + α(1 + βτ)) + 1 + βτ

2(β − α)

1 + βτ
.

We reorganize introducing δ = β − α

c2 ≥ (1 + βτ) + δτ

(1 + [β − δ]τ)(1 + βτ) + 2δτ

4(β − α)

1 + βτ
.

We simplify

c2 ≥ 4
β − α
1 + βτ

1 + βτ + δτ

(1 + βτ)2 + δτ − δβτ2
≥ 4

β − α
(1 + βτ)2

.

This is still a good approximation if τ is small,

c ≥ 2
√
β − α

1 + βτ
.

While the dependence of c on τ is interesting because of Koch’s conjecture, β is
the parameter that is most amenable to experimental manipulation by changing the
density of bacteria. As we already mentioned, our formulas are good approximations
if β is not much larger than α. Now we will explore how c depends on large β.
Arguments as before show that ξ and c are strictly increasing functions of β as to
be expected and that ξ →∞ and c→∞ as β →∞.

We rewrite (44) as

eξτ =β
2 + ξτ

ξ + 2α
=
β

α

1 + τ(ξ/2)

1 + α(ξ/2)
. (51)

We take logarithms,

ξτ = ln(β/α) + ln
(
1 + τ(ξ/2)

)
− ln

(
1 + (1/α)(ξ/2)

)
. (52)
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By a Taylor expansion,

ξτ ≤ 2 ln(β/α).

We substitute this inequality into (52),

ξτ ≤ ln(β/α) + ln
(
1 + ln(β/α)

)
.

We first consider the case ατ ≥ 1. Then ξτ ≥ ln(β/α). We conclude that
ξτ

ln(β/α) → 1 as β/α→∞.

If 1 ≥ ατ , then ξτ ≤ ln(β/α) and

ln(β/α)− ln
(

1 +
1

2α
ln(β/α)

)
≤ ξτ ≤ ln(β/α).

Again this implies that ξτ
ln(β/α) → 1 as β/α→∞. From (45), c2/ξ → 1 as ξ →∞,

so
c√

ln(β/α)
→
√
τ , β/α→∞. (53)

Recall that

ξτ ≤ 2 ln(β/α) = 2 ln
(

1 +
β − α
α

)
≤ 2

β − α
α

.

We substitute this inequality into (49),

2(β − α)

1 + βτ
≤ ξ ≤ 2(β − α)

1 + βτ
+

(β/2)
(

2β−αα

)3
1 + βτ

=
2(β − α)

1 + βτ

(
1 +

2β(β − α)2

α3

)
.

This shows that ξ ≈ 2(β−α)
1+βτ is also a good approximation if β − α > 0 is small,

uniformly for τ ≥ 0,

ξ(1 + βτ)

2(β − α)
→ 1, β ↘ α, uniformly for τ ≥ 0. (54)

Let ατ ≥ 1. Then c2 is an increasing function of ξτ and

2ξ

1 + ατ
≤ c2 ≤ 2ξ

1 + ατ

1 + ln(β/α)

1 + 2
1+ατ ln(β/α)

.

Let ατ ≤ 1. Then c2 is a decreasing function of ξτ and, since ξ ≤ 2(β − α),

2ξ

1 + ατ
≥ c2 ≥ 2ξ

1 + (β − α)τ

1 + ατ + 2(β − α)τ
= 2ξ

1 + (β − α)τ

1 + βτ + (β − α)τ
≥ 2ξ

1 + βτ
.

We conclude

c2

2ξ
(1 + ατ)→ 1, β ↘ α, uniformly for τ ≥ 0.

By (54),

c2

4(β − α)
(1 + ατ)(1 + βτ)→ 1, β ↘ α, uniformly for τ ≥ 0.

So

c
1 + ατ

2
√
β − α

→ 1, β ↘ α, uniformly for τ ≥ 0.
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