Loading [MathJax]/jax/output/SVG/jax.js

Self-similar solutions in a sector for a quasilinear parabolic equation

  • Received: 01 January 2012 Revised: 01 October 2012
  • Primary: 35C06, 35C07; Secondary: 35K59, 35B40.

  • We study a two-point free boundary problem in a sector for a quasilinear parabolic equation. The boundary conditions are assumed to be spatially and temporally "self-similar" in a special way. We prove the existence, uniqueness and asymptotic stability of an expanding solution which is self-similar at discrete times. We also study the existence and uniqueness of a shrinking solution which is self-similar at discrete times.

    Citation: Bendong Lou. Self-similar solutions in a sector for a quasilinear parabolic equation[J]. Networks and Heterogeneous Media, 2012, 7(4): 857-879. doi: 10.3934/nhm.2012.7.857

    Related Papers:

    [1] Linglong Du, Min Yang . Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks and Heterogeneous Media, 2021, 16(1): 49-67. doi: 10.3934/nhm.2020033
    [2] Linglong Du . Long time behavior for the visco-elastic damped wave equation in $\mathbb{R}^n_+$ and the boundary effect. Networks and Heterogeneous Media, 2018, 13(4): 549-565. doi: 10.3934/nhm.2018025
    [3] Hantaek Bae . On the local and global existence of the Hall equations with fractional Laplacian and related equations. Networks and Heterogeneous Media, 2022, 17(4): 645-663. doi: 10.3934/nhm.2022021
    [4] Günter Leugering, Sergei A. Nazarov, Jari Taskinen . The band-gap structure of the spectrum in a periodic medium of masonry type. Networks and Heterogeneous Media, 2020, 15(4): 555-580. doi: 10.3934/nhm.2020014
    [5] Seung-Yeal Ha, Gyuyoung Hwang, Hansol Park . Emergent behaviors of Lohe Hermitian sphere particles under time-delayed interactions. Networks and Heterogeneous Media, 2021, 16(3): 459-492. doi: 10.3934/nhm.2021013
    [6] Arianna Giunti . Convergence rates for the homogenization of the Poisson problem in randomly perforated domains. Networks and Heterogeneous Media, 2021, 16(3): 341-375. doi: 10.3934/nhm.2021009
    [7] Francesca Alessio, Piero Montecchiari, Andrea Sfecci . Saddle solutions for a class of systems of periodic and reversible semilinear elliptic equations. Networks and Heterogeneous Media, 2019, 14(3): 567-587. doi: 10.3934/nhm.2019022
    [8] Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo . On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks and Heterogeneous Media, 2018, 13(4): 585-607. doi: 10.3934/nhm.2018027
    [9] María Anguiano, Francisco Javier Suárez-Grau . Newtonian fluid flow in a thin porous medium with non-homogeneous slip boundary conditions. Networks and Heterogeneous Media, 2019, 14(2): 289-316. doi: 10.3934/nhm.2019012
    [10] Wen Shen . Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks and Heterogeneous Media, 2019, 14(4): 709-732. doi: 10.3934/nhm.2019028
  • We study a two-point free boundary problem in a sector for a quasilinear parabolic equation. The boundary conditions are assumed to be spatially and temporally "self-similar" in a special way. We prove the existence, uniqueness and asymptotic stability of an expanding solution which is self-similar at discrete times. We also study the existence and uniqueness of a shrinking solution which is self-similar at discrete times.


    In this paper, we study the pointwise long time behavior of the solution for the nonlinear wave equation with frictional and visco-elastic damping terms

    $ {2tuc2Δu+ν1tuν2tΔu=f(u),u|t=0=u0(x),ut|t=0=u1(x), $ (1)

    in multi-dimensional half space $ \mathbb{R}^n_+: = \mathbb{R}_+\times \mathbb{R}^{n-1} $, with absorbing and radiative boundary condition

    $ (a1x1u+a2u)(x1=0,x,t)=0. $ (2)

    $ {\bf{x}} = (x_1, {\bf{x}}') $ is the space variable with $ x_1\in \mathbb{R}_+: = (0,\infty) $, $ {\bf{x'}} = (x_2,\cdots, x_n)\in\mathbb{R}^{n-1} $, $ t>0 $ is the time variable. $ \nu_1 $ and $ \nu_2 $ are positive constant viscosities, $ a_1 $ and $ a_2 $ are constants. The Laplacian $ \Delta = \sum_{j = 1}^n\partial_{x_j}^2 $, $ f(u) $ is the smooth nonlinear term and $ f(u) = O(|u|^k) $ when $ k>0 $.

    Over the past few decades, many mathematicians have concentrated on solving different kinds of damped nonlinear wave equations. The first kind is called the frictional damped wave equation, which is given as follows

    $ {2tuc2Δu+νtu=f(u),u|t=0=u0(x),ut|t=0=u1(x), $ (3)

    see [9,19,20,23] for the references. It is showed that for the long time, the fundamental solution for the linear system of (3) behaves like the Gauss kernel $ \frac{e^{-\frac{|{\bf{x}}|^2}{C(t+1)}}}{(t+1)^{\frac{n}{2}}} $. The second kind is called the visco-elastic damped wave, which is given by the following

    $ {2tuc2ΔuνtΔu=f(u),u|t=0=u0(x),ut|t=0=u1(x). $ (4)

    One can refer to [22] for the decaying rate of the linear solution, [11,12] for the asymptotic profiles of the linear problem, [4,21] for the nonlinear equation, etc. In [9], the authors studied the fundamental solution for the linear system of (4). The results show that the hyperbolic wave transport mechanism and the visco-elastic damped mechanism interact with each other so that the solution behaves like the convented heat kernel, i.e., $ \frac{e^{-\frac{(|{\bf{x}}|-ct)^2}{C(t+1)}}}{(t+1)^{\frac{3n-3}{4}}} $ for the odd dimensional case and $ \frac{e^{-\frac{(|{\bf{x}}|-ct)^2}{C(t+1)}}}{(t+1)^{\frac{3n-1}{4}}}+\frac{H(ct-|{\bf{x}}|)}{(1+t)^{\frac{3n-2}{4}}(ct-|{\bf{x}}|+\sqrt{t})^{\frac{1}{2}}} $ for the even dimensional case. The solution exhibits the generalized Huygens principle. For other damped wave equations, one can refer to [2,27] for the damped abstract wave equation, and [14,15,16] for the existence and large time behavior of the solutions for the Cauchy problem of mixed damping (both frictional and visco-elastic damping terms are involved) wave equation.

    For the initial-boundary value problem of the different damped wave equations, many authors studied the global well-posedness existence, long time behaviors, global attractors and decaying rate estimates of some elementary wave by using delicate energy estimate method, for example [1,13,25,26,28,29]. In this paper, we will use the pointwise estimate technique to give the long time behavior of the solution for system (1) with boundary condition (2). The main part of this technique is the construction and estimation of the Green's functions for the following linear systems:

    $ {2tG1c2ΔG1+ν1tG1ν2tΔG1=0,x1,y1>0,xRn1,t>0,G1(x1,x,0;y1)=δ(x1y1)δ(x),G1t(x1,x,0;y1)=0,a1x1G1(0,x,t;y1)+a2G1(0,x,t;y1)=0; $ (5)
    $ {2tG2c2ΔG2+ν1tG2ν2tΔG2=0,x1,y1>0,xRn1,t>0,G2(x1,x,0;y1)=0,G2t(x1,x,0;y1)=δ(x1y1)δ(x),a1x1G2(0,x,t;y1)+a2G2(0,x,t;y1)=0. $ (6)

    The way of estimating the Green's functions $ \mathbb{G}_i $ was initiated by [17] and developed by [3,5,6,8,10,18,24] and the reference therein. Following the scheme in [10], we will find the relations between the fundamental solutions for the linear Cauchy problem and Green's functions for the linear half space problem, by comparing their symbols in the transformed tangential-spatial and time variables. Then the Green's functions can be described in terms of the fundamental solutions and the boundary surface operator.

    With the help of the accurate expression of Green's functions for the linear half space problem and the Duhamel's principle, we get the pointwise long time behavior for the nonlinear solution $ \partial_{{\bf{x}}}^{\alpha}u $, $ |\alpha|\le1 $. We only treat the case $ a_1a_2<0 $. The boundary condition of Dirichlet type ($ a_1 = 0 $) and Neumann type ($ a_2 = 0 $) are much simpler. For the case of $ a_1a_2>0 $, the linear problem is unstable. The main results of our paper are given as follows:

    Theorem 1.1. Let $ n = 2,3 $ be the spatial dimension, $ k>1+\frac{2}{n} $. Assume the initial data $ (u_0({\bf{x}}), u_1({\bf{x}}))\in (H^{l+1}\cap W^{l,1})\times (H^{l}\cap W^{l,1}) $, $ l\ge[\frac{n}{2}]+2 $, and satisfy

    $ |αxu0,αxu1|O(1)ε(1+|x|2)r,  r>n2,  |α|1, $

    $ \varepsilon $ sufficiently small, then there exists a unique global classical solution to the problem (1) with the mixed boundary condition (2) while $ a_{1}a_{2}\le0 $. The solution has the following pointwise estimate:

    $ |αxu(x,t)|O(1)ε(1+t)|α|/2(1+t+|x|2)n2. $

    Moreover, we get the following optimal $ L^p(\mathbb{R}^n_+) $ estimate of the solution

    $ αxu(,t)Lp(Rn+)O(1)ε(1+t)n2(11p)|α|2,  p(1,]. $

    Remark 1. We can develop a similar theorem for the case of higher space dimension with a suitable choice of $ k $ which guarantees the existence of the solution. In Section 2.2, the approximation used in the calculation of the singular part depends on the space dimension. One could modify the short wave part expression of Green's functions for the linear half space problem to prove the results for the general case.

    Notations. Let $ C $ and $ O(1) $ be denoted as generic positive constants. For multi-indices $ \alpha = (\alpha_1, \cdots, \alpha_n) $, $ \partial_{{\bf{x}}}^\alpha = \partial_{x_1}^{\alpha_1}\cdots\partial_{x_n}^{\alpha_n} $, $ |\alpha| = \sum_{i = 1}^n\alpha_i $. Let $ L^p $ denotes the usual $ L^p $ space on $ {\bf{x}}\in\mathbb{R}^n_+ $. For nonnegative integer $ l $, we denote by $ W^{l,p} (1\le p<\infty) $ the usual $ L^p- $ Soblev space of order $ l $: $ W^{l,p} = \{u\in L^p:\partial_{{\bf{x}}}^{\alpha}u\in L^p(|\alpha|\le l)\}(l\ge 1), W^{0,p} = L^p. $ The norm is denoted by $ \|\cdot\|_{W^{l,p}} = $ $ \|u\|_{W^{l,p}} = \sum_{|\alpha|\le l}\| \partial_{{\bf{x}}}^{\alpha}u \|_{L^p} $. When $ p = 2 $, we define $ W^{l,2} = H^l $ for all $ l\ge 0 $. We denote $ \mathcal{D}_{\delta}: = \{{\boldsymbol{\xi}}\in \mathbb{C}^n| |Im(\xi_i)|\le\delta, i = 1,2,\cdots,n\} $. Introduce the Fourier transform and Laplace transform of $ f({\bf{x}},t) $ as follows:

    $ f(ξ,t):=F[f](ξ,t)=Rneiξxf(x,t)dx,f(x,s):=L[f](x,s)=0estf(x,t)dt. $

    The rest of paper is arranged as follows: in Section 2, we study the fundamental solutions for the linear Cauchy problem and give a pointwise description of the fundamental solutions in $ ({\bf{x}},t) $ variables. We also describe the fundamental solutions in other transformed variables. In Section 3, the Green's functions for the half space problem are constructed in the transformed tangential-spatial and time domain. By comparing the symbols in the transformed space, we get the relationship between the fundamental solutions and the Green's functions. Finally in Section 4, we give the long time behavior of the solution for the nonlinear problem. Some useful lemmas are given in Appendix.

    The fundamental solutions for the linear damped wave equations are defined by

    $ {2tG1c2ΔG1+ν1tG1ν2tΔG1=0G1(x,0)=δ(x),G1t(x,0)=0, $ (7)
    $ {2tG2c2ΔG2+ν1tG2ν2tΔG2=0G2(x,0)=0,G2t(x,0)=δ(x). $ (8)

    Applying the Fourier transform to (7) and (8) in the space variable $ {\bf{x}} $, one can compute the fundamental solutions $ G_i({\boldsymbol{\xi}},t) $ ($ i = 1,2 $) in the Fourier space,

    $ G1(ξ,t)=σ+eσtσeσ+tσ+σ,  G2(ξ,t)=eσ+teσtσ+σ,σ±=ν1+ν2|ξ|22±12ν21+(2ν1ν24c2)|ξ|2+ν22|ξ|4. $

    In [16], authors have studied the pointwise estimates of the fundamental solutions by long wave-short wave decomposition in the Fourier space. Here we will use the local analysis and inverse Fourier transform to get the pointwise structures of the fundamental solutions in the physical variables $ ({\bf{x}},t) $. Outside the finite Mach number region $ |{\bf{x}}|\ge 3(t+1) $, one can use the weighted energy estimates to get the exponentially decaying estimates of solution in time and space. Inside the finite Mach number region $ |{\bf{x}}|\le 4(t+1) $, we will use the long wave short wave decomposition to get the long wave regular parts and short wave singular parts. Here the long wave and short wave are defined as follows:

    $ f(x,t)=fL(x,t)+fS(x,t),F[fL]=H(1|ξ|ε0)F[f](ξ,t),F[fS]=(1H(1|ξ|ε0))F[f](ξ,t), $

    with the parameter $ \varepsilon_0\ll1 $, the Heaviside function $ H(x) $ is defined by

    $ H(x)={1,  x>0,0,  x<0. $

    Long wave component. When $ |{\boldsymbol{\xi}}|\le \varepsilon_0\ll 1 $, we have the following Taylor expansion for $ \sigma_{\pm} $ and $ \sigma_+-\sigma_- $:

    $ {σ+=c2|ξ|2ν1+o(|ξ|2),σ=ν1+(ν2+c2ν1)|ξ|2+o(|ξ|2), $
    $ σ+σ=ν1+(ν1ν22c2)|ξ|2ν1+o(|ξ|2). $

    Then

    $ σ+eσt=(c2|ξ|2ν1+o(|ξ|2))e(ν1+(ν2+c2ν1)|ξ|2+o(|ξ|2))t=c2ν1|ξ|2eν1t+o(|ξ|2)eCt,σeσ+t=(ν1+(ν2+c2ν1)|ξ|2+o(|ξ|2))e(c2|ξ|2ν1+o(|ξ|2))t=ν1ec2ν1|ξ|2t+O(|ξ|2)eC|ξ|2t,1σ+σ=1ν1+O(|ξ|2). $

    So we can approximate the fundamental solutions as follows

    $ σ+eσtσeσ+tσ+σ=c2|ξ|2ν21eν1t+ec2ν1|ξ|2t+o(|ξ|2)eCt+O(|ξ|2)eC|ξ|2t,eσ+teσtσ+σ=1ν1ec2ν1|ξ|2t1ν1eν1t+O(|ξ|2)eCt+o(|ξ|2)eC|ξ|2t. $

    Using Lemma 5.1 in Appendix, for $ |\alpha|\ge0 $ we have

    $ |DαxGL1(x,t)|O(1)(e|x|2C(t+1)(1+t)n+|α|2+e|x|+tC),|DαxGL2(x,t)|O(1)(e|x|2C(t+1)(1+t)n+|α|2+e|x|+tC). $

    Short wave component. We adopt the local analysis method to give a description about all types of singular functions for the short wave component of the fundamental solutions. When $ |{\boldsymbol{\xi}}|\ge N $ for $ N $ sufficiently large, we have the following Taylor expansion for $ \sigma_{\pm} $:

    $ {σ+=c2ν2+c2(ν1ν2c2)ν321|ξ|2+O(|ξ|4),σ=σ+(ν1+ν2|ξ|2). $

    This non-decaying property results in the singularities of the fundamental solution $ G_i $ in spatial variable. To investigate the singularities, we approximate the spectra $ \sigma_{\pm} $ by $ \sigma_{\pm}^* $:

    $ {σ+=c2ν2+c2(ν1ν2c2)ν32(11+|ξ|2+1(1+|ξ|2)2)+c2(ν1ν2c2)ν32O((1+|ξ|2)3),σ=σ+(ν1+ν2|ξ|2), $
    $ infξDε0|σ(ξ)σ+(ξ)|>0,supξDε0Re(σ±(ξ))J0,  supξDε0|ξ|8|σ±(ξ)σ±(ξ)|<  as  |ξ|. $

    Therefore, the approximated analytic spectra $ \sigma_{\pm}^* $ given above satisfy

    $ |σ+eσtσeσ+tσ+σσ+eσtσeσ+tσ+σ, eσ+teσtσ+σeσ+teσtσ+σ|O(1)(1+|ξ|2)4. $

    By Lemma 5.4 in the Appendix, we have

    $ F1[σ+eσtσeσ+tσ+σσ+eσtσeσ+tσ+σ](,t)L(Rn)=O(1),F1[eσ+teσtσ+σeσ+teσtσ+σ](,t)L(Rn)=O(1), $

    which asserts that all singularities are contained in $ \frac{\sigma_+^*e^{\sigma_-^*t}-\sigma_-^*e^{\sigma_+^*t}}{\sigma_+^*-\sigma_-^*} $, $ \frac{e^{\sigma_+^*t}-e^{\sigma_-^*t}}{\sigma_+^*-\sigma_-^*} $. Moreover, one can also prove that the errors of this approximation decay exponentially fast in the space-time domain, just like the proof in [7].

    Now we seek out all the singularities. For the short wave part of $ G_1({\boldsymbol{\xi}},t) $, one breaks

    $ σ+eσtσeσ+tσ+σ=eσ+tσ+eσ+tσ+σ+σ+eσtσ+σ. $

    The first term is

    $ eσ+t=ec2tν2ec2(ν1ν2c2)tν3211+|ξ|2+c2(ν1ν2c2)tν321(1+|ξ|2)2+c2(ν1ν2c2)tν32O(1(1+|ξ|2)3)=ec2tν2(1+c2(ν1ν2c2)tν3211+|ξ|2+c2(ν1ν2c2)tν321(1+|ξ|2)2)+ec2tν2c2(ν1ν2c2)tν32O(1(1+|ξ|2)3)=ec2tν2+c2(ν1ν2c2)ν32tec2tν21+|ξ|2+c2(ν1ν2c2)ν32tec2tν2(1+|ξ|2)2+tec2tν2c2(ν1ν2c2)ν32O(1(1+|ξ|2)3). $

    It can be estimated as follows

    $ |F1[eσ+t]ec2t/ν2δ(x)tc2(ν1ν2c2)ν32ec2t/ν2Yn(x)|Ce|x|+tC. $

    The second term contains no singularities and we have

    $ σ+eσ+tσ+σ=c2ν22ec2t/ν21+|ξ|2+ec2tν2O(1(1+|ξ|2)2), $

    so

    $ |F1[σ+eσ+tσ+σ]+c2v22ec2t/v2Yn(x)|Ce|x|+tC. $

    For the third term, the function $ \mathcal{F}^{-1} \left[\frac{\sigma_+^*e^{\sigma_-^*t}}{\sigma_+^*-\sigma_-^*}\right] $ does not contain singularities in $ {\bf{x}} $ variable due to its asymptotic when $ |{\boldsymbol{\xi}}|\rightarrow\infty $ for $ t > 0 $ :

    $ |σ+eσtσ+σ|K0e|ξ|2t/C1J0t1+|ξ|2, $

    $ K_0 > 0 $ and $ J_0^* $ is a constant. One has that there exist generic constant $ C>0 $ such that for $ \delta = (-\varepsilon_0,\varepsilon_0) $,

    $ Im(ξk)=δ1kn|σ+eσtσ+σ|dξCRne|ξ|2t/CJ0t(1+|ξ|)2dξ=CΓ(n)0er2t/CJ0t(1+r)2rn1drCet/CLn(t), $ (9)

    where

    $ Ln(t){1,n=1,log(t),n=2,tn22,n3. $

    We denote

    $ j1(x,t):=F1[σ+eσtσ+σ], $

    following the way of proof for Lemma 5.4, we get

    $ |j1(x,t)|Ce(|x|+t)/CLn(t) $

    from (9). So the following estimate for $ G_1^S({\bf{x}},t) $ hold,

    $ |GS1(x,t)j1(x,t)ec2t/ν2δn(x)(tc2ν32(ν1ν2c2)+c2ν22)ec2t/ν2Yn(x)|e|x|+tC. $

    For the short wave part of $ G_2({\boldsymbol{\xi}},t) $, one breaks

    $ eσ+teσtσ+σ=eσ+tσ+σeσtσ+σ. $

    The first term is

    $ eσ+tσ+σ=ν12ec2t/ν21+|ξ|2+ec2tν2O(1(1+|ξ|2)2), $

    and we have

    $ |F1[eσ+tσ+σ]ν12ec2t/ν2Yn(x)|Ce|x|+tC. $

    The second term contains no singularities. If denoting

    $ j2(x,t)F1(eσtσ+σ), $

    then there exists $ C>0 $ such that

    $ |j2(x,t)|Ce(|x|+t)/CLn(t), $

    and we have the following estimate for $ G_2^S({\bf{x}},t) $,

    $ |GS2(x,t)j2(x,t)ν12ec2t/ν2Yn(x)|Ce|x|+tC. $

    Hence the short wave components have the following estimates in the finite Mach number region $ |{\bf{x}}|\le 4(t+1) $:

    $ |GS1(x,t)j1(x,t)ec2tν2δn(x)(tc2(ν1ν2c2)ν32+c2ν22)ec2tν2Yn(x)|Ce|x|+tC.|GS2(x,t)j2(x,t)ν12ec2tν2Yn(x)|Ce|x|+tC. $

    Outside the finite Mach number region $ |{\bf{x}}|\ge 3(t+1) $.

    We choose the weighted function $ w $ to be $ w = e^{(|{\bf{x}}|-at)/M} $, $ M $ and $ a $ will be determined later. It satisfies

    $ wt=aMw,w=xM|x|w,Δw=wM2. $

    Consider the linear damped wave equation outside the finite Mach number region:

    $ {2tuic2Δui+ν1tuiν2tΔui=0,|x|3(t+1),ui|t=0=0,uit|t=0=0,ui||x|=3(t+1)=Gi||x|=3(t+1). $ (10)

    Denote the outside finite Mach number region $ \{{\bf{x}}\in\mathbb{R}^n, |{\bf{x}}|\ge 3(t+1)\} $ by $ D_t $ and its boundary by $ \partial D_t $. Multiplying each side of the equation in $ (10)_1 $ by $ wu_t $ and integrating with respective to $ {\bf{x}} $ on $ D_t $, choosing $ 2<a<3 $, $ M $ sufficiently large such that $ \nu_1>\frac{c^2}{M} $ and $ \frac{\nu_1}{2}+\frac{a}{2M} -\frac{\nu_2}{2M^2}>0 $, we have

    $ c2DtwtuiuidSx+ν2DtwtuituidSx=12ddtDtw((tui)2+c2|ui|2)dx+Dt(ν1w12wt12ν2Δw)(tui)2dx+c2Dttuiwuidx+ac22MDtw|ui|2dx+ν2Dtw|tui|2dx=12ddtDtw((tui)2+c2|ui|2)dx+Dt(ν1+a2Mν22M2)w(tui)2dx+c2DtwtuixM|x|uidx+ac22MDtw|ui|2dx+ν2Dtw|tui|2dx12ddtDtw((tui)2+c2|ui|2)dx+Dtw(ac24M|ui|2+(ν12+a2Mν22M2)(tui)2+ν2|tui|2)dx. $

    On the boundary $ \partial D_t $, by the structures of the fundamental solutions in the finite Mach number region $ |{\bf{x}}|\le 4(t+1) $, we have

    $ |tui|,|ui|,|tui|CeCt, xDt. $

    So

    $ ddtDtw((tui)2+c2|ui|2)dx+2δ0Dtw((tui)2+c2|ui|2)dxCeCt, $ (11)

    $ \delta_0 = \min\{\frac{a}{4M},\frac{\nu_1}{2}+\frac{a}{2M} -\frac{\nu_2}{2M^2}\} $.

    One can also get similar estimates for any higher order derivatives $ l $:

    $ l|α|=1(ddtRnw((tαxui)2+c2|αxui|2)dx)        +δ|α|Rnw((tαxui)2+c2|αxui|2)dx)CeCt. $ (12)

    Integrating (11) and (12) over $ t $, using Sobolev's inequality, we have

    $ sup(x,t)Dt((tαxui)2+c2|αxui|2)Ce(|x|at)/CCe(|x|+t)/C,  for |α|<ln2, $

    since $ |{\bf{x}}|\ge3(t+1) $. This means that the fundamental solutions $ G_i(i = 1,2) $ satisfy the following estimate outside the finite Mach number region $ D_t $:

    $ |DαxGi(x,t)|Ce(|x|+t)/C,  for |α|<ln2. $

    To summarize, we have the following pointwise estimates for the fundamental solutions:

    Lemma 2.1. The fundamental solutions have the following estimates for all $ {\bf{x}}\in\mathbb{R}^n $, $ |\alpha|\ge0 $:

    $ |Dαx(G1(x,t)j1(x,t)ec2t/ν2δn(x)(tc2ν32(ν1ν2c2)+c2ν22)ec2t/ν2Yn(x))|O(1)(e|x|2C(t+1)(t+1)n+|α|2+e(|x|+t)/C),|Dαx(G2(x,t)j2(x,t)ν12ec2t/ν2Yn(x))|O(1)(e|x|2C(t+1)(t+1)n+|α|2+e(|x|+t)/C). $

    Here

    $ |j1(x,t),j2(x,t)|O(1)Ln(t)e(|x|+t)/C,L2(t)=log(t),  Ln(t)=tn22  for  n3,Y2(x)=O(1)12πBesselK0(|x|),  Yn(x)=O(1)e|x||x|n2  for  n3. $

    $ Bessel K_0(|{\bf{x}}|) $ is the modified Bessel function of the second kind with degree $ 0 $.

    Applying Laplace transform in $ t $ and Fourier transform in $ {\bf{x}} $ to the equations in (7) and (8), denoting the transformed variables by $ s $ and $ {\boldsymbol{\xi}} $ respectively, we get the transformed fundamental solutions in $ ({\boldsymbol{\xi}},s) $ variables:

    $ G1(ξ,s)=s+ν1+ν2|ξ|2s2+ν1s+(c2+ν2s)|ξ|2,  G2(ξ,s)=1s2+ν1s+(c2+ν2s)|ξ|2. $

    Now we give a lemma:

    Lemma 2.2.

    $ 12πReiξ1x1s2+ν1s+ν2s|ξ|2+c2|ξ|2dξ1=1ν2s+c2eλ|x1|2λ, $

    where $ \lambda = \lambda\left({\boldsymbol{\xi}}',s\right) = \frac{\sqrt{(\nu_2s+c^2)|{\boldsymbol{\xi}}'|^2+s^2+\nu_1s}}{\nu_2s+c^2} $.

    Proof. We prove it by using the contour integral and the residue theorem. Note that

    $ 12πReiξ1x1s2+ν1s+ν2s|ξ|2+c2|ξ|2dξ1=12π1ν2s+c2Reiξ1x1ξ21+|ξ|2+s2+ν1sν2s+c2dξ1=12π1ν2s+c2Reiξ1x1(ξ1λi)(ξ1+λi)dξ1. $

    Define a closed path $ \gamma $ containing $ \Gamma': = [-R,R] $ while $ R $ is a positive constant, $ \Omega = \gamma-\Gamma' = \{z|z = Re^{i\theta}\} $.

    If $ x_1>0 $, set $ 0\le\theta\le\pi $, $ R $ is chosen to be sufficiently large such that $ \lambda i $ is contained in the domain surrounded by $ \gamma $. Consider the contour integral over path $ \gamma $. The contribution of the integration over $ \Omega $ approaches to $ 0 $ when $ R\to\infty $, therefore by the residue theorem, we have for $ x_1>0 $,

    $ 12π1ν2s+c2Reiξ1x1(ξ1λi)(ξ1+λi)dξ1=12π1ν2s+c22πiRes(eiξ1x1(ξ1λi)(ξ1+λi)|ξ1=λi)=eλx12(ν2s+c2)λ. $

    The computation for the case $ x_1<0 $ is similar. Set $ \pi\le\theta\le2\pi $,

    $ 12π1ν2s+c2Reiξ1x1(ξ1λi)(ξ1+λi)dξ1=12π1ν2s+c22πiRes(eiξ1x1(ξ1λi)(ξ1+λi)|ξ1=λi)=eλx12(ν2s+c2)λ. $

    Hence we prove this lemma.

    With the help of Lemma 2.2, we get the expression of fundamental solutions $ G_1 $ and $ G_2 $ in $ (x_1,{\boldsymbol{\xi}}',s) $ variables:

    $ G1(x1,ξ,s)=1ν2s+c2(ν2δ(x1)+c2(s+ν1)ν2s+c2eλ|x1|2λ),G2(x1,ξ,s)=eλ|x1|2λ(ν2s+c2). $

    In particular, when $ \bar{x}_1>0 $, we have

    $ G1(ˉx1,ξ,s)=c2(s+ν1)(ν2s+c2)2eλˉx12λ,  G2(ˉx1,ξ,s)=eλˉx12λ(ν2s+c2). $

    In this section, we will give the pointwise estimates of the Green's functions for the initial boundary value problem. Firstly, we compute the transformed Green's functions in the partial-Fourier and Laplace transformed space. Then by comparing the symbols of the fundamental solutions and the Green's functions in this transformed space, we get the simplified expressions of Green's functions for the initial-boundary value problem. With the help of the pointwise estimates of the fundamental solutions and boundary operator, we finally get the sharp estimates of Green functions for the half space linear problem.

    Before computing, we make the initial value zero by considering the error function $ R_i(x_1,{\bf{x}}',t;y_1) = \mathbb{G}_i(x_1,{\bf{x}}',t;y_1)-G_i(x_1-y_1,{\bf{x}}',t) $, which satisfies the following system:

    $ {2tRic2ΔRi+ν1tRiν2tΔRi=0,xRn+,t>0,Ri|t=0=0,Rit|t=0=0,(a1x1+a2)Ri(0,x,t;y1)=(a1x1+a2)Gi(x1y1,x,t)|x1=0. $

    Taking Fourier transform only with respect to the tangential spatial variable $ {\bf{x'}} $, Laplace transform with respect to time variable $ t $, the following ODE system can be obtained:

    $ {(s2+ν1s)Ri(c2+ν2s)Rix1x1+(c2+ν2s)|ξ|2Ri=0,(a1x1+a2)Ri(0,ξ,s;y1)=(a1y1a2)Gi(y1,ξ,s)=(a1λ+a2)Gi(y1,ξ,s). $

    Solving it and dropping out the divergent mode as $ x_1\to+\infty $, using the boundary relationship, we have

    $ Ri(x1,ξ,s;y1)=a1λ+a2a2a1λeλx1Gi(y1,ξ,s)=a1λ+a2a2a1λGi(x1+y1,ξ,s), $

    where $ \lambda $ is defined in Lemma 2.2.

    Therefore the transformed Green's functions $ \mathbb{G}_{i}\left(x_1,{\boldsymbol{\xi}}',s;y_1\right) $ $ (i = 1,2) $ are

    $ Gi(x1,ξ,s;y1)=Gi(x1y1,ξ,s)a1λ+a2a2a1λGi(x1+y1,ξ,s)=Gi(x1y1,ξ,s)+Gi(x1+y1,ξ,s)2a2a2a1λGi(x1+y1,ξ,s), $

    which reveal the connection between fundamental solutions and the Green's functions.

    Hence,

    $ Gi(x1,x,t;y1)=Gi(x1y1,x,t)+Gi(x1+y1,x,t)F1ξxL1st[2a2a2a1λ]x,tGi(x1+y1,x,t). $

    Now we estimate the boundary operator $ \mathcal{F}^{-1}_{{\boldsymbol{\xi}}'\to {\bf{x}}'}\mathcal{L}^{-1}_{s\to t}\left[\frac{2a_{2}}{a_{2}-a_{1}\lambda}\right] $. The function $ \frac{1}{a_{2}-a_{1}\lambda} $ has the poles in the right half time space if $ a_1a_2>0 $, which suggests that the boundary term will grow exponentially in time. In the following we only consider the case $ a_1a_2<0 $.

    Instead of inverting the boundary symbol, we follow the differential equation method. Notice that

    $ F1ξxL1st[2a2a2a1λGi(x1+y1,ξ,s)]=2a2a1x1+a2Gi(x1+y1,x,t), $

    setting

    $ g(x1,x,t)2a2a1x1+a2Gi(x1,x,t), $

    then the function $ g\left(x_1, {\bf{x}}',t\right) $ satisfies

    $ (a2+a1x1)g=2a2Gi(x1,x,t). $

    Solving this ODE gives

    $ g(x1,x,t)=2γx1eγ(zx1)Gi(z,x,t)dz=2γ0eγzGi(x1+z,x,t)dz. $ (13)

    Summarizing previous results we obtain

    Lemma 3.1. The Green's functions $ \mathbb{G}_i(x_1,{\bf{x}}',t;y_1) $ $ (i = 1,2) $ of the linear initial-boundary value problem (5) and (6) can be represented as follows

    $ Gi(x1,x,t;y1)=GLi(x1,x,t;y1)+GSi(x1,x,t;y1). $

    Meanwhile, the following estimates hold:

    $ |DαxGLi(x1,x,t;y1)|O(1)(e(x1y1)2+(xy)2C(t+1)(t+1)n+|α|2+e(x1+y1)2+(xy)2C(t+1)(t+1)n+|α|2),|α|0; $
    $ |GS1(x1,x,t;y1)|O(1)(j1(x1y1,x,t)+j1(x1+y1,x,t)+ec2tν2(δn(x1y1,x)+δn(x1+y1,x))+ec2tν2(tc2ν32(ν1ν2c2)+c2ν22)(Yn(x1y1,x)+Yn(x1+y1,x))) $

    and

    $ |GS2(x1,x,t;y1)|O(1)(j1(x1y1,x,t)+j2(x1+y1,x,t)+ν12ec2tν2(Yn(x1y1,x)+Yn(x1+y1,x))). $

    Proof. Note that

    $ Gi(x1,x,t;y1)=Gi(x1y1,x,t)+Gi(x1+y1,x,t)g(x1+y1,x,t), $

    based on the long-wave short-wave decomposition of the fundamental solutions

    $ Gi(x,t)=GLi(x,t)+GSi(x,t), $

    we can write

    $ GLi(x1,x,t;y1)=O(1)(GLi(x1y1,x,t)+GLi(x1+y1,x,t)),GSi(x1,x,t;y1)=O(1)(GSi(x1y1,x,t)+GSi(x1+y1,x,t)), $

    and get the estimates directly from Lemma 2.1 and (13).

    The study of boundary operator in the last section suggests that we can only consider the case $ a_1a_2<0 $ for the nonlinear stability. In [15,16], they proved a threshold $ k = 1+\frac{2}{n} $ between global and non-global existence of small data solutions. Here under the assumption of $ k>1+\frac{2}{n} $, the global in time existence of solution for the initial-boundary value problem can be proved using the fixed point theorem of Banach, which is similar to the proof given by [16], we omit the details.

    Now we give the pointwise long time behavior of the solution for the nonlinear problem and prove the Theorem 1.1. The Green's functions $ \mathbb{G}_i(x_1,{\bf{x}}',t;y_1) $($ i = 1,2 $) give the representation of the solution $ u({\bf{x}},t) $:

    $ αxu(x,t)=αxRn+(G1(x1,xy,t;y1)u0(y)+G2(x1,xy,t;y1)u1(y))dy+αxt0Rn+G2(x1,xy,tτ;y1)f(u)(y,τ)dydταxI(x,t)+αxN(x,t). $ (14)

    The initial part $ \partial_{{\bf{x}}}^\alpha\mathcal{I}({\bf{x}},t) $ contains two parts:

    $ αxI(x,t)=αxIL(x,t)+αxIS(x,t), $

    where

    $ αxIL(x,t)=αxRn+(GL1(x1,xy,t;y1)u0(y)+GL2(x1,xy,t;y1)u1(y))dyαxIS(x,t)=αxRn+(GS1(x1,xy,t;y1)u0(y)+GS2(x1,xy,t;y1)u1(y))dy. $

    By lemma 5.2, we have the following estimates in the finite Mach number region $ |{\bf{x}}|\le 4(t+1) $,

    $ |IL(x,t)|O(1)εRn+e(xy)2C(t+1)(t+1)n2(1+|y|2)rdyO(1)ε(ex2C(t+1)(t+1)n2+(1+t+|x|2)n2), $ (15)
    $ |IS(x,t)|O(1)εe(|x|+t)C|Rn(Ln(t)+δn(xy)               +[tc2ν32(ν1ν2c2)+c2ν22]Yn(xy))(1+|y|2)rdy|+O(1)εe(|x|+t)C|Rn(Ln(t)+ν12Yn(xy))(1+|y|2)rdy|O(1)ε(ex2C(t+1)(t+1)n2+(1+t+|x|2)n2). $ (16)

    Hence we combine (15) and (16) to get the estimate of the first part in (14) when $ |\alpha| = 0 $

    $ |I(x,t)|O(1)ε(ex2C(t+1)(t+1)n2+(1+t+|x|2)n2). $ (17)

    Similarly, when $ |\alpha| = 1 $, we have

    $ |αxI(x,t)|=|αxIL(x,t)+αxIS(x,t)|O(1)εRn+(e(x1y1)2+(xy)2C(t+1)(t+1)n2+12+e(x1+y1)2+(xy)2C(t+1)(t+1)n2+12)(1+|y|2)rdy+1{αx=x1}O(1)εe(|x|+t)C|Rn1Ln(t)+δn(x1y1,xy,t)      +δn(x1+y1,xy,t)+(tc2ν32(ν1ν2c2)+c2ν22)     (Yn(x1y1,xy)+Yn(x1+y1,xy))(1+|y|2)rdy|y1=0|+O(1)εe(|x|+t)C|Rn+Ln(t)+δn(x1y1,xy,t)+δn(x1+y1,xy,t)     +(tc2ν32(ν1ν2c2)+c2ν22)      (Yn(x1y1,xy)+Yn(x1+y1,xy))(1+|y|2)rdy|+1{αx=x1}O(1)εe(|x|+t)C|Rn1(Ln(t)+ν11Yn(x1y1,xy)    +ν11Yn(x1+y1,xy))(1+|y|2)rdy|y1=0|+O(1)εe(|x|+t)C|Rn1(Ln(t)+ν11Yn(x1y1,xy)    +ν11Yn(x1+y1,xy))(1+|y|2)rdy|O(1)ε(1+t)|α|2(ex22C(t+1)(t+1)n2+(1+t+|x|2)r)+O(1)εe(|x|+t)/C. $

    where

    $ 1{αx=x1}={1, if αx=x1,0, otherwise. $

    Here we use the integration by parts to estimate the short wave component part. Outside the finite Mach number region, we have

    $ |αxI(x,t)|O(1)εeν1tRn+e|xy|(1+y2)rdyO(1)εeν1t(1+|x|2)r,|α|1. $ (18)

    Based on the estimates of (17)-(18), the ansatz is posed for the solution as follows:

    $ |αxu(x,t)|O(1)ε(1+t)|α|2(1+t+|x|2)n2,|α|1. $

    Straightforward computations show that

    $ |f(u)(x,t)|O(1)εk(1+t+|x|2)nk2. $

    Now we justify the ansatz for the nonlinear term. For $ \mathcal N({\bf{x}},t) $, we have

    $ |N(x,t)|=|t0Rn+G2(x1,xy,tτ;y1)f(u)(y,τ)dydτ||t0Rn+GL2(x1,xy,tτ;y1)f(u)(y,τ)dydτ|+|t0Rn+GS2(x1,xy,tτ;y1)f(u)(y,τ)dydτ|=N1+N2. $

    Using Lemma 5.3, one gets

    $ N1O(1)εk|t00Rn1(e(x1y1)2+(xy)2C(tτ+1)(tτ+1)n2+e(x1+y1)2+(xy)2C(tτ+1)(tτ+1)n2)                  (1+τ+|y|2)nk2dydy1dτ|O(1)εk|t0Rne(x1y1)2+(xy)2C(tτ+1)(tτ+1)n2(1+τ+|y|2)nk2dydτ|O(1)εk(1+t+|x|2)n2, $
    $ N2O(1)εk|t0Rn+ec2(tτ)ν2(Ln(tτ)+ν12Yn(x1,xy;y1))                  (1+τ+|y|2)nk2dydτ|O(1)εk(1+t+|x|2)n2. $

    Now we compute the estimate of $ \partial_{{\bf{x}}}^\alpha\mathcal{N} $ when $ |\alpha| = 1 $:

    $ |αxN(x,t)|=|αxt0Rn+G2(x1,xy,tτ;y1)f(u)(y,τ)dydτ||t0Rn+αxGL2(x1,xy,tτ;y1)f(u)(y,τ)dydτ|+|t0Rn+αxGS2(x1,xy,tτ;y1)f(u)(y,τ)dydτ|=αxN1+αxN2. $

    Similarly we have

    $ αxN1=|O(1)εkt00Rn1(e(x1y1)2+(xy)2C(tτ+1)(tτ+1)n2+|α|2+e(x1+y1)2+(xy)2C(tτ+1)(tτ+1)n2+|α|2)     (1+τ+|y|2)nk2dydy1dτ||O(1)εkt0Rne(x1y1)2+(xy)2C(tτ+1)(tτ+1)n2+|α|2(1+τ+|y|2)nk2dydτ|O(1)εk(1+t)|α|2(1+t+|x|2)n2, $
    $ αxN2=|t0Rn+αxGS2(x1,xy,tτ;y1)f(u)(y,τ)dydτ|=1{αx=x1}|t0Rn1GS2(x1,xy,tτ;y1)f(u)(y,τ)dy|y1=0dτ|+|t0Rn+GS2(x1,xy,tτ;y1)αyf(u)(y,τ)dydτ|. $ (19)

    The boundary term in (19) has the following estimates:

    $ |t0Rn1GS2(x1,xy,tτ;y1)f(u)(y,τ)dy|y1=0dτ||(t/20+tt/2)Rn1GS2(x1,xy,tτ;y1)f(u)(y,τ)dy|y1=0dτ|O(1)εk(1+t)|α|2(1+t+|x|2)n2. $

    The second term in (19) satisfies

    $ |t0Rn+GS2(x1,xy,tτ;y1)αyf(u)(y,τ)dydτ||O(1)εkt0Rn+ec2(tτ)ν2(Ln(tτ)+ν12Yn(x1,xy;y1))(1+τ)|α|2(1+τ+|y|2)nk2dydτ|O(1)εk(1+t)|α|2(1+t+|x|2)n2. $

    Therefore one has the following estimate for the nonlinear term

    $ |αxN|O(1)εk(1+t)|α|2(1+t+|x|2)n2,|α|1. $

    Outside the finite Mach number region,

    $ |αxN|O(1)εk|t0Rn+eν1(tτ)e|xy|(1+τ+|y2|)nk2dydτ|O(1)εk(1+t+|x|2)nk2,|α|1. $

    Thus, we verify the ansatz and finish the proof of pointwise estimates of the solution.

    The $ L^p $ $ (p>1) $ estimate can be easily proved using the following equalities:

    $ (Rn+(1+t+|x|2)n2pdx)1p=(Rn+(1+t)n2p(1+|x|21+t)n2pdx)1p=(1+t)n2(1+t)n2p=(1+t)n2(11p). $

    Hence we finish the proof of Theorem 1.1.

    Lemma 5.1. [10] In the finite Mach number region $ |{\bf{x}}|\le 4(t+1) $, we have the following estimate for the inverse Fourier transform:

    $ |1(2π)n|ξ|ε0(iξ)αeiξxe1κ|ξ|2tdξ|O(1)e|x|2C(t+1)(1+t)n+|α|2+O(1)e|x|+tC,|α|0. $

    Lemma 5.2. [9] We have the follow estimate for $ |\alpha|\le 1 $ and $ r>\frac{n}{2} $,

    $ Rne(xy)2C(t+1)(1+t)n2+|α|2(1+|y|2)rdyO(1)(1+t)|α|2(ex22C(t+1)(t+1)n2+(1+t+|x|2)r). $

    Lemma 5.3. [9] For $ {\bf{x}}\in\mathbb R^n $, $ |\alpha|\le 1 $, we have

    $ t0Rneν(tτ)2Yn(xy)(1+τ)|α|2(1+τ+|y|2)nk2dydτO(1)(1+t)|α|2(1+t+|x|)nk/2, $
    $ t0Rne(xy)2C(tτ+1)(1+t)n2+|α|2(1+τ+|y|2)nk2dydτO(1)(1+t)|α|2(1+t+|x|2)n2. $

    Lemma 5.4. [7] Suppose a function $ f\in L^1(\mathbb{R}^n) $ and its Fourier transform $ \mathcal{F}[f]({\boldsymbol{\xi}}) $ is analytic in $ \mathcal{D}_{\delta} $ and satisfies

    $ |F[f](ξ)|E(1+|ξ|)n+1,  for  |Im(ξi)|δ,  and  i=1,2,,n. $

    Then, the function $ f({\bf{x}}) $ satisfies

    $ |f(x)|Eeδ|x|/C, $

    for any positive constant $ C>1 $.

    The authors would like to thank the referees very much for their valuable comments and suggestions which improve the presentation of papersignicantly.

    [1] P. Brunovský, P. Poláčik and B. Sandstede, Convergence in general periodic parabolic equation in one space dimension, Nonlinear Anal., 18 (1992), 209-215. doi: 10.1016/0362-546X(92)90059-N
    [2] Y.-L. Chang, J.-S. Guo and Y. Kohsaka, On a two-point free boundary problem for a quasilinear parabolic equation, Asymptotic Anal., 34 (2003), 333-358.
    [3] X. Chen and J.-S. Guo, Motion by curvature of planar curves with end points moving freely on a line, Math. Ann., 350 (2011), 277-311. doi: 10.1007/s00208-010-0558-7
    [4] H.-H. Chern, J.-S. Guo and C.-P. Lo, The self-similar expanding curve for the curvature flow equation, Proc. Amer. Math. Soc., 131 (2003), 3191-3201. doi: 10.1090/S0002-9939-03-07055-2
    [5] G. Dong, Initial and nonlinear oblique boundary value problems for fully nonlinear parabolic equations, J. Partial Differential Equations, 1 (1988), 12-42.
    [6] A. Friedman, "Partial Differential Equations of Parabolic Type," Prentice-Hall, Inc., Englewood Cliffs, N.J. 1964.
    [7] M.-H. Giga, Y. Giga and H. Hontani, Selfsimilar expanding solutions in a sector for a crystalline flow, SIAM J. Math. Anal., 37 (2005), 1207-1226. doi: 10.1137/040614372
    [8] J.-S. Guo and B. Hu, A shrinking two-point free boundary problem for a quasilinear parabolic equation, Quart. Appl. Math., 64 (2006), 413-431.
    [9] J.-S. Guo and Y. Kohsaka, Self-similar solutions of two-point free boundary problem for heat equation, in "Nonlinear Diffusion Systems and Related Topics" RIMS Kokyuroku 1258, Kyoto University, (2002), 94-107.
    [10] D. Hilhorst, R. van der Hout, M. Mimura and I. Ohnishi, A mathematical study of the one-dimensional Keller and Rubinow model for Liesegang bands, J. Stat. Phys., 135 (2009), 107-132. doi: 10.1007/s10955-009-9701-9
    [11] J. B. Keller and S. I. Rubinow, Recurrent precipitation and Liesegang rings, J. Chem. Phys., 74 (1981), 5000-5007. doi: 10.1063/1.441752
    [12] Y. Kohsaka, Free boundary problem for quasilinear parabolic equation with fixed angle of contact to a boundary, Nonlinear Anal., 45 (2001), 865-894. doi: 10.1016/S0362-546X(99)00422-8
    [13] G. M. Lieberman, "Second Order Parabolic Differential Equations," World Scientific Publishing Co., Inc., NJ, 1996.
    [14] O. A. Ladyzhenskia, V. A. Solonnikov and N. N. Uraltseva, "Linear and Quasi-linear Equations of Parabolic Type," Amer. Math. Soc., Providence, Rhode Island, 1968.
    [15] preprint.
    [16] H. Matano, K. I. Nakamura and B. Lou, Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit, Netw. Heterog. Media, 1 (2006), 537-568. doi: 10.3934/nhm.2006.1.537
    [17] D. A. V. Stow, "Sedimentary Rocks in the Field: A Color Guide," Academic Press, 2005.
    [18] K. H. W. J. Ten Tusscher and A. V. Panfilov, Wave propagation in excitable media with randomly distributed obstacles, Multiscale Model. Simul., 3 (2005), 265-282. doi: 10.1137/030602654
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5256) PDF downloads(65) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog