Long time behavior for the visco-elastic damped wave equation in $\mathbb{R}^n_+$ and the boundary effect

  • Received: 01 January 2018
  • Primary: 35B40; Secondary: 35A08

  • In this paper, we investigate the existence and long time behavior of the solution for the nonlinear visco-elastic damped wave equation in $\mathbb{R}^n_+$, provided that the initial data is sufficiently small. It is shown that for the long time, one can use the convected heat kernel to describe the hyperbolic wave transport structure and damped diffusive mechanism. The Green's function for the linear initial boundary value problem can be described in terms of the fundamental solution (for the full space problem) and reflected fundamental solution coupled with the boundary operator. Using the Duhamel's principle, we get the $ L^p $ decaying rate for the nonlinear solution $\partial_{{\bf x}}^{\alpha}u$ for $|\alpha|\le 1$.

    Citation: Linglong Du. Long time behavior for the visco-elastic damped wave equation in $\mathbb{R}^n_+$ and the boundary effect[J]. Networks and Heterogeneous Media, 2018, 13(4): 549-565. doi: 10.3934/nhm.2018025

    Related Papers:

  • In this paper, we investigate the existence and long time behavior of the solution for the nonlinear visco-elastic damped wave equation in $\mathbb{R}^n_+$, provided that the initial data is sufficiently small. It is shown that for the long time, one can use the convected heat kernel to describe the hyperbolic wave transport structure and damped diffusive mechanism. The Green's function for the linear initial boundary value problem can be described in terms of the fundamental solution (for the full space problem) and reflected fundamental solution coupled with the boundary operator. Using the Duhamel's principle, we get the $ L^p $ decaying rate for the nonlinear solution $\partial_{{\bf x}}^{\alpha}u$ for $|\alpha|\le 1$.



    加载中
    [1] Long time behavior of strongly damped nonlinear wave equations. J. Differ. Equ. (1998) 147: 231-241.
    [2] An optimal estimate for the difference of solutions of two abstract evolution equations. J. Differ. Equ. (2003) 193: 385-395.
    [3] Green's functions of wave equations in \begin{document}$R^n_+ × R_+$\end{document}. Arch. Ration. Mech. Anal. (2015) 216: 881-903.
    [4] Existence theory and Lp estimates for the solution of nonlinear viscous wave equation. Nonlinear Anal.: Real World Appl. (2010) 11: 4404-4414.
    [5] Half space problem for Euler equations with damping in 3-D. J. Differ. Equ. (2017) 263: 7372-7411.
    [6] Initial-boundary value problem for p-system with damping in half space. Nonlinear Anal. (2016) 143: 193-210.
    [7] Green's function and pointwise convergence for compressible Navier-Stokes equations. Quart. Appl. Math. (2017) 75: 433-503.
    [8] Long time wave behavior of the Navier-Stokes equations in half space. Discrete Contin. Dyn. Syst. (2018) 38: 1349-1363.
    [9] L. L. Du and C. X. Ren, Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $R^n_+$, preprint.
    [10] Initial boundary value problem of Euler equations with damping in \begin{document}$\mathbb{R}^n_+$\end{document}. Nonlinear Anal. (2018) 176: 157-177.
    [11] Pointwise decay estimates for multi-dimensional Navier-Stokes diffusion waves. Z. angew. Math. Phys. (1997) 48: 1-18.
    [12] Asymptotic profiles for wave equations with strong damping. J. Differ. Equ. (2014) 257: 2159-2177.
    [13] Some remarks on the asymptotic profiles of solutions for strongly damped wave equations on the 1-D half space. J. Math. Anal. Appl. (2015) 421: 905-916.
    [14] Global existence of weak solutions for two-dimensional semilinear wave equations with strong damping in an exterior domain. Nonlinear Anal. (2008) 69: 1396-1401.
    [15] Asymptotic profile of solutions for wave equations with frictional and viscoelastic damping terms. Asymptot. Anal. (2016) 98: 59-77.
    [16] Critical exponent for nonlinear wave equations with frictional and viscoelastic damping terms. Nonlinear Anal. (2017) 148: 228-253.
    [17] Asymptotic behavior of solutions of the Compressible Navier-Stokes Equations on the half space. Arch. Ration. Mech. Anal. (2005) 177: 231-330.
    [18] Green's function of Boltzmann equation, 3-D waves. Bullet. Inst. of Math. Academia Sinica (2006) 1: 1-78.
    [19] On boundary relation for some dissipative systems. Bullet. Inst. of Math. Academia Sinica (2011) 6: 245-267.
    [20] Boundary wave propagator for compressible Navier-Stokes equations. Found. Comput. Math. (2014) 14: 1287-1335.
    [21] The Lp-Lq estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media. J. Differ. Equ. (2003) 191: 445-469.
    [22] Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Comm. Math. Phys. (1983) 89: 445-464.
    [23] Lp-Lq estimates for damped wave equations and their applications to semilinear problem. J. Math. Soc. Japan (2004) 56: 586-626.
    [24] Global existence of small solutions to a class of nonlinear evolution equations. Nonlinear Anal. (1985) 9: 399-418.
    [25] I. Segal, Quantization and dispersion for nonlinear relativistic equations, in Mathematical Theory of Elementary Particles, MIT Press, Cambridge, MA, (1966), 79–108.
    [26] On the rate of decay of solutions to linear viscoelastic equation. Math. Meth. Appl. Sci. (2000) 23: 203-226.
    [27] S. X. Tang, J. Qi and J. Zhang, Formation tracking control for multi-agent systems: a waveequation based approach, preprint.
    [28] Stability of planar stationary waves for damped wave equations with nonlinear convection in multi-dimensional half space. Kinet. Relat. Models (2008) 1: 49-64.
    [29] H. T. Wang, Some Studies in Initial-Boundary Value Problem, Ph.D thesis, National University of Singapore, 2014.
    [30] Existence and asymptotic behavior for a strongly damped nonlinear wave equation. Canad. J. Math. (1980) 32: 631-643.
    [31] Asymptotic behavior of solutions for initial-boundary value problems for strongly damped nonlinear wave equations. Nonlinear Anal. (2008) 69: 2492-2495.
    [32] Initial boundary value problem for a class of nonlinear strongly damped wave equations. Math. Meth. Appl. Sci. (2003) 26: 1047-1066.
    [33] Dimension of the global attractor for strongly damped nonlinear wave equation. J. Math. Anal. Appl. (1999) 233: 102-115.
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6528) PDF downloads(366) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog