Newtonian fluid flow in a thin porous medium with non-homogeneous slip boundary conditions

  • Received: 01 April 2018 Revised: 01 September 2018
  • Primary: 76A20, 76M50, 35B27; Secondary: 76S05

  • We consider the Stokes system in a thin porous medium $ \Omega_\varepsilon $ of thickness $ \varepsilon $ which is perforated by periodically distributed solid cylinders of size $ \varepsilon $. On the boundary of the cylinders we prescribe non-homogeneous slip boundary conditions depending on a parameter $ \gamma $. The aim is to give the asymptotic behavior of the velocity and the pressure of the fluid as $ \varepsilon $ goes to zero. Using an adaptation of the unfolding method, we give, following the values of $ \gamma $, different limit systems.

    Citation: María Anguiano, Francisco Javier Suárez-Grau. Newtonian fluid flow in a thin porous medium with non-homogeneous slip boundary conditions[J]. Networks and Heterogeneous Media, 2019, 14(2): 289-316. doi: 10.3934/nhm.2019012

    Related Papers:

  • We consider the Stokes system in a thin porous medium $ \Omega_\varepsilon $ of thickness $ \varepsilon $ which is perforated by periodically distributed solid cylinders of size $ \varepsilon $. On the boundary of the cylinders we prescribe non-homogeneous slip boundary conditions depending on a parameter $ \gamma $. The aim is to give the asymptotic behavior of the velocity and the pressure of the fluid as $ \varepsilon $ goes to zero. Using an adaptation of the unfolding method, we give, following the values of $ \gamma $, different limit systems.



    加载中


    [1] Self-assembly of block copolymer thin films. Materials Today (2010) 13: 24-33.
    [2] Homogenization of the Navier-Stokes equations with a slip boundary condition. Comm. Pure Appl. Math. (1989) 44: 605-642.
    [3] Homogenization and two-scale convergence. SIAM J. Math. Anal. (1992) 23: 1482-1518.
    [4] M. Anguiano and F. J. Suárez-Grau, Homogenization of an incompressible non-Newtonian flow through a thin porous medium, Z. Angew. Math. Phys., 68 (2017), Art. 45, 25 pp. doi: 10.1007/s00033-017-0790-z
    [5] Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. (1990) 21: 823-836.
    [6] Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow. SIAM J. Math.Anal. (1996) 27: 1520-1543.
    [7] Homogenisation of the Stokes problem with a pure non-homogeneous slip boundary condition by the periodic unfolding method. Euro. J. of Applied Mathematics (2011) 22: 333-345.
    [8] Homogenization in open sets with holes. J. Math. Anal. Appl. (1979) 71: 590-607.
    [9] Homogénéisation du problème du Neumann non homogène dans des ouverts perforés. Asymptotic Analysis (1988) 1: 115-138.
    [10] Exact internal controllability in perforated domains. J. Math. Pures Appl. (1989) 68: 185-213.
    [11] D. Cioranescu and J. Saint Jean Paulin, Truss structures: Fourier conditions and eigenvalue problems, in Boundary Control and Boundary Variation (Ed. J.P. Zolezio), Springer-Verlag, 178 (1992), 125-141. doi: 10.1007/BFb0006691
    [12] Homogenization of the Stokes problem with non homogeneous slip boundary conditions. Math. Meth. Appl. Sci. (1996) 19: 857-881.
    [13] Periodic unfolding and homogenization. C.R. Acad. Sci. Paris Ser. I (2002) 335: 99-104.
    [14] Periodic unfolding and Robin problems in perforated domains. C. R. Math. (2006) 342: 469-474.
    [15] The periodic unfolding method in perforated domains. Portugaliae Mathematica (2006) 63: 467-496.
    [16] The periodic unfolding method in domains with holes. SIAM J. of Math. Anal. (2012) 44: 718-760.
    [17] On the application of the homogenization theory to a class of problems arising in fluid mechanics. J. Math. Pures Appl. (1985) 64: 31-75.
    [18] The period unfolding method for the wave equations in domains with holes. Advances in Mathematical Sciences and Applications (2012) 22: 521-551.
    [19] The periodic unfolding method for the heat equation in perforated domains. Science China Mathematics (2016) 59: 891-906.
    [20] Equation et phénomenes de surface pour l'écoulement dans un modèle de milieux poreux. J. Mech. (1975) 14: 73-108.
    [21] Chemical Interactions and Their Role in the Microphase Separation of Block Copolymer Thin Films. Int. J. of Molecular Sci. (2009) 10: 3671-3712.
    [22] Lattice gas analysis of liquid front in non-crimp fabrics. Transp. Porous Med. (2011) 84: 75-93.
    [23] Design and simulation of passive mixing in microfluidic systems with geometric variations. Chem. Eng. J. (2009) 152: 575-582.
    [24] J.-L. Lions and E. Magenes, Problèmes aux Limites non Homogènes et Applications, Dunod, Paris, 1968.
    [25] Measurements of the permeability tensor of compressed fibre beds. Transp. Porous Med. (2002) 47: 363-380.
    [26] Two-scale convergence for thin domain and its applications to some lower-dimensional model in fluid mechanics. Asymptot. Anal. (2000) 23: 23-57.
    [27] J. Nečas, Les méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris, 1967.
    [28] A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. (1989) 20: 608-623.
    [29] Effect of multi-scale porosity in local permeability modelling of non-crimp fabrics. Transp. Porous Med. (2008) 73: 109-124.
    [30] Enabling nanotechnology with self assembled block copolymer patterns. Polymer (2003) 44: 6725-6760.
    [31] F. F. Reuss, Notice sur un Nouvel Effet de L'electricité Galvanique, Mémoire Soc. Sup. Imp. de Moscou, 1809.
    [32] E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, 127. Springer-Verlag, Berlin-New York, 1980.
    [33] Micro-PIV measurement of flow upstream of papermaking forming fabrics. Transp. Porous Med. (2015) 107: 435-448.
    [34] Multiscale modeling of unsaturated flow in dual-scale fiber preforms of liquid composite molding I: Isothermal flows. Compos. Part A Appl. Sci. Manuf. (2012) 43: 1-13.
    [35] L. Tartar, Incompressible fluid flow in a porous medium convergence of the homogenization process., in Appendix to Lecture Notes in Physics, 127 (1980).
    [36] Homogenization of eigenvalues problems in perforated domains. Proc. Indian Acad. of Science (1981) 90: 239-271.
    [37] Homogenization of a Stokes problem in a porous medium by the periodic unfolding method. Asymptotic Analysis (2012) 79: 229-250.
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3845) PDF downloads(409) Cited by(9)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog