Citation: Robert Carlson. Spectral theory for nonconservative transmission line networks[J]. Networks and Heterogeneous Media, 2011, 6(2): 257-277. doi: 10.3934/nhm.2011.6.257
| [1] | A. Agarwal, S. Das and D. Sen, Power dissipation for systems with junctions of multiple quantum wires, Physical Review B, 81 (2010). |
| [2] | L. Ahlfors, "Complex Analysis," McGraw-Hill, New York, 1966. |
| [3] | F. Ali Mehmeti, "Nonlinear Waves in Networks," Akademie Verlag, Berlin, 1994. |
| [4] |
R. Carlson, Inverse eigenvalue problems on directed graphs, Transactions of the American Mathematical Society, 351 (1999), 4069-4088. doi: 10.1090/S0002-9947-99-02175-3
|
| [5] | R. Carlson, Linear network models related to blood flow, in Quantum Graphs and Their Applications, Contemporary Mathematics, 415 (2006), 65-80. |
| [6] |
C. Cattaneo and L. Fontana, D'Alembert formula on finite one-dimensional networks, J. Math. Anal. Appl., 284 (2003), 403-424. doi: 10.1016/S0022-247X(02)00392-X
|
| [7] |
G. Chen, S. Krantz, D. Russell, C. Wayne, H. West and M. Coleman, Analysis, designs, and behavior of dissipative joints for coupled beams, SIAM Journal on Applied Mathematics., 49 (1989), 1665-1693. doi: 10.1137/0149101
|
| [8] |
S. Cox and E. Zuazua, The rate at which energy decays in a string damped at one end, Indiana Univ. Math. J., 44 (1995), 545-573. doi: 10.1512/iumj.1995.44.2001
|
| [9] |
E. B. Davies, Eigenvalues of an elliptic system, Math. Z., 243 (2003), 719-743. doi: 10.1007/s00209-002-0464-0
|
| [10] | E. B. Davies, P. Exner and J. Lipovsky, Non-Weyl asymptotics for quantum graphs with general coupling conditions, J. Phys. A, 43 (2010). |
| [11] | Y. Fung, "Biomechanics," Springer, New York, 1997. |
| [12] | I. Herstein, "Topics in Algebra," Xerox College Publishing, Waltham, 1964. |
| [13] |
B. Jessen and H. Tornhave, Mean motions and zeros of almost periodic functions, Acta Math., 77 (1945), 137-279. doi: 10.1007/BF02392225
|
| [14] | T. Kato, "Perturbation Theory for Linear Operators," Springer-Verlag, New York, 1995. |
| [15] | V. Kostrykin, J. Potthoff and R. Schrader, Contraction semigroups on metric graphs, in Analysis on Graphs and Its Applications, PSUM, 77 (2008), 423-458. |
| [16] |
T. Kottos and U. Smilansky, Periodic orbit theory and spectral statistics for quantum graphs, Ann. Phys., 274 (1999), 76-124. doi: 10.1006/aphy.1999.5904
|
| [17] |
M. Kramar and E. Sikolya, Spectral properties and asymptotic periodicity of flows in networks, Math. Z., 249 (2005), 139-162. doi: 10.1007/s00209-004-0695-3
|
| [18] |
M. Kramar Fijavz, D. Mugnolo and E. Sikolya, Variational and semigroup methods for waves and diffusions in networks, Appl. Math. Optim., 55 (2007), 219-240. doi: 10.1007/s00245-006-0887-9
|
| [19] | M. Krein and A. Nudelman, Some spectral properties of a nonhomogeneous string with a dissipative boundary condition, J. Operator Theory, 22 (1989), 369-395. |
| [20] | B. Levin, "Distribution of Zeros of Entire Functions," American Mathematical Society, Providence, 1980. |
| [21] | S. Lang, "Algebra," Addison-Wesley, 1984. |
| [22] | G. Lumer, "Equations de Diffusion Generales sur des Reseaux Infinis," Seminar Goulaouic-Schwartz, 1980. |
| [23] | G. Lumer, "Connecting of Local Operators and Evolution Equations on Networks," Lecture Notes in Math., 787, Springer, 1980. |
| [24] | P. Magnusson, G. Alexander, V. Tripathi and A. Weisshaar, "Transmission Lines and Wave Propagation," CRC Press, Boca Raton, 2001. |
| [25] | G. Miano and A. Maffucci, "Transmission Lines and Lumped Circuits," Academic Press, San Diego, 2001. |
| [26] |
L. J. Myers and W. L. Capper, A transmission line model of the human foetal circulatory system, Medical Engineering and Physics, 24 (2002), 285-294. doi: 10.1016/S1350-4533(02)00019-X
|
| [27] | S. Nicaise, Spectre des reseaux topologiques finis, Bulletin des sciences mathematique, 111 (1987), 401-413. |
| [28] |
J. Ottesen, M. Olufsen and J. Larsen, "Applied Mathematical Models in Human Physiology," SIAM, 2004. doi: 10.1137/1.9780898718287
|
| [29] | A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Springer, New York, 1983. |
| [30] |
S. Sherwin, V. Franke, J. Peiro and K. Parker, One-dimensional modeling of a vascular network in space-time variables, Journal of Engineering Mathematics, 47 (2003), 217-250. doi: 10.1023/B:ENGI.0000007979.32871.e2
|
| [31] |
J. von Below, A characteristic equation associated to an eigenvalue problem on C2 networks, Lin. Alg. Appl., 71 (1985), 309-325. doi: 10.1016/0024-3795(85)90258-7
|
| [32] |
L. Zhou and G. Kriegsmann, A simple derivation of microstrip transmission line equations, SIAM J. Appl. Math., 70 (2009), 353-367. doi: 10.1137/080737563
|