Research article Special Issues

Minimal realization and approximation of commensurate linear fractional-order systems via Loewner matrix method

  • Received: 31 August 2020 Accepted: 16 December 2020 Published: 08 January 2021
  • In this paper we propose a data driven realization and model order reduction (MOR) for linear fractional-order system (FoS) by applying the Loewner-matrix method. Given the interpolation data which obtained by sampling the transfer function of a FoS, the minimal fractional-order state space descriptor model that matching the interpolation data is constructed with low computational cost. Based on the framework, the commensurate order $ \alpha $ of the fractional-order system is estimated by solving a least squares optimization in terms of sample data in case of unknown order-$ \alpha $. In addition, we present an integer-order approximation model using the interpolation method in the Loewner framework for FoS with delay. Finally, several numerical examples demonstrate the validity of our approach.

    Citation: Lihong Meng, Xu Yang, Umair Zulfiqar, Xin Du. Minimal realization and approximation of commensurate linear fractional-order systems via Loewner matrix method[J]. Mathematical Biosciences and Engineering, 2021, 18(2): 1063-1076. doi: 10.3934/mbe.2021058

    Related Papers:

  • In this paper we propose a data driven realization and model order reduction (MOR) for linear fractional-order system (FoS) by applying the Loewner-matrix method. Given the interpolation data which obtained by sampling the transfer function of a FoS, the minimal fractional-order state space descriptor model that matching the interpolation data is constructed with low computational cost. Based on the framework, the commensurate order $ \alpha $ of the fractional-order system is estimated by solving a least squares optimization in terms of sample data in case of unknown order-$ \alpha $. In addition, we present an integer-order approximation model using the interpolation method in the Loewner framework for FoS with delay. Finally, several numerical examples demonstrate the validity of our approach.


    加载中


    [1] A. J. Mayo, A. C. Antoulas, A framework for the solution of the generalized realization problem, Linear Algebra Its Appl., 425 (2007), 634–662.
    [2] A. C. Antoulas, The Loewner framework and transfer functions of singular/rectangular systems, Appl. Math. Letters, 54 (2016), 36–47.
    [3] A. C. Antoulas, S. Lefteriu, A. C. Ionita, P. Benner, A. Cohen, A tutorial introduction to the Loewner framework for model reduction, Model Reduction Approxim.: Theory Algorithms, 15 (2017), 335.
    [4] A. C. Antoulas, C. A. Beattie, S. G. gercin, Interpolatory methods for model reduction, SIAM Comput. Sci. Eng., 2020.
    [5] B. Peherstorfer, S. Gugercin, K. Willcox, Data-driven reduced model construction with time-domain Loewner models, SIAM J. Sci. Comput., 39 (2017), 2152–2178.
    [6] M. Sahouli, S. Wahid, A. Dounavis, Iterative Loewner matrix macromodeling approach for noisy frequency responses, IEEE Trans. Microwave Theory Tech., 67 (2018), 634–641.
    [7] S. Lefteriu, A. C. Ionita, A. C. Antoulas, Modeling systems based on noisy frequency and time domain measurements, Perspect. Math. Syst. Theory, Control, Signal Process., 2010,365–378.
    [8] P. Schulze, B. Unger, C. Beattie, S. Gugercin, Data-driven structured realization, Linear Algebra Appl., 537 (2018), 250–286. doi: 10.1016/j.laa.2017.09.030
    [9] E. H. Dulf, D. C. Vodnar, A. Danku, C. I. Muresan, Fractional-order models for biochemical processes, Fractal Fract., 4 (2020), 12. doi: 10.3390/fractalfract4020012
    [10] R. Toledo-Hernandez, V. Rico-Ramirez, G. A. Iglesias-Silva, U. M. Diwekar, A fractional calculus approach to the dynamic optimization of biological reactive systems Part I: Fractional models for biological reactions, Chem. Eng. Sci., 117 (2014), 217–228.
    [11] R. Toledo-Hernandez, V. Rico-Ramirez, G. A. Iglesias-Silva, U. M. Diwekar, A fractional calculus approach to the dynamic optimization of biological reactive systems Part II: Numerical solution of fractional optimal control problems, Chem. Eng. Sci., 117 (2014), 239–247. doi: 10.1016/j.ces.2014.06.033
    [12] A. M. Khan, L.Mistri, Stability analysis and numerical solution for the fractional order biochemical reaction model, Nonlinear Anal. Diff. Equations HIKARI, (2016), 521–530.
    [13] L. Wang, P. Cheng, Y. Wang, Frequency domain subspace identification of commensurate fractional order input time delay systems, Int. J. Control, Autom. Syst., 9 (2011), 310–316. doi: 10.1007/s12555-011-0213-4
    [14] Z. Gao, Stable model order reduction method for fractional-order systems based on unsymmetric Lanczos algorithm, IEEE/CAA J. Autom. Sin., 6 (2019), 485–492. doi: 10.1109/JAS.2019.1911399
    [15] Y. Li, S. Yu, Identification of non-integer order systems in frequency domain, Acta Autom. Sin., 23 (2007), 882.
    [16] Z. Liao, C. Peng, Y. Wang, Subspace identification in time-domain for fractional order systems based on short memory principle, J. Appl. Sci., 29 (2011), 209–215.
    [17] N. Gehring, J. Rudolph, An algebraic approach to the identification of linear systems with fractional derivatives, IFAC-PapersOnLine, 50 (2017), 6214–6219. doi: 10.1016/j.ifacol.2017.08.1018
    [18] D. Casagrande, W. Krajewski, U. Viaro, The integer-order approximation of fractional-order systems in the Loewner framework, IFAC-PapersOnLine, 52 (2019), 43–48.
    [19] M. Bettayeb, S. Djennoune, A note on the controllability and the observability of fractional dynamical systems, IFAC Proceed. Vol., 39 (2006), 493–498.
    [20] C. M. Qin, N. M. Qi, K. Zhu, State space modeling and stability theory of variable fractional order system, Control Decis., 26 (2011), 1757–1760.
    [21] I. Podlubny, Fractional-order systems and fractional-order controllers, Inst. Exp. Phys., Slovak Acad. Sci., Kose, 12 (1994), 1–18.
    [22] M. Tavakoli-Kakhki, M. Haeri, The minimal state space realization for a class of fractional order transfer functions, SIAM J. Control Opt., 48 (2010), 4317–4326.
    [23] I. V. Gosea, M. Petreczky, A. C. Antoulas, Data-driven model order reduction of linear switched systems in the Loewner framework, SIAM J. Sci. Comput., 40 (2018), 572–610.
    [24] P. Schulze, B. Unger, Data-driven interpolation of dynamical systems with delay, Sys. Control Letters, 97 (2016), 125–131. doi: 10.1016/j.sysconle.2016.09.007
    [25] B. D. O. Anderson, A. C. Antoulas, Rational interpolation and state-variable realizations, Linear Algebra Its Appl., 137 (1990), 479–509.
    [26] S. Lefteriu, A. C. Antoulas, A new approach to modeling multiport systems from frequency-domain data, IEEE Trans. Comput.-Aided Design Int. Circuits.Syst., 29 (2009), 14–27.
    [27] A. C. Antoulas, Approximation of large-scale dynamical systems, Soc. Ind. Appl. Math., 2005.
    [28] A. C. Antoulas, C. A. Beattie, S. Gugercin, Interpolatory model reduction of large-scale dynamical systems, Effic. Model. Control Large-Scale Systems, 2010, 5–38.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2610) PDF downloads(207) Cited by(1)

Article outline

Figures and Tables

Figures(2)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog