Research article

Stability of HTLV/HIV dual infection model with mitosis and latency

  • Received: 01 December 2020 Accepted: 28 December 2020 Published: 11 January 2021
  • In this paper, we formulate and analyze an HTLV/HIV dual infection model taking into consideration the response of Cytotoxic T lymphocytes (CTLs). The model includes eight compartments, uninfected CD$ 4^{+} $T cells, latent HIV-infected cells, active HIV-infected cells, free HIV particles, HIV-specific CTLs, latent HTLV-infected cells, active HTLV-infected cells and HTLV-specific CTLs. The HIV can enter and infect an uninfected CD$ 4^{+} $T cell by two ways, free-to-cell and infected-to-cell. Infected-to-cell spread of HIV occurs when uninfected CD$ 4^{+} $T cells are touched with active or latent HIV-infected cells. In contrast, there are two modes for HTLV-I transmission, (ⅰ) horizontal, via direct infected-to-cell touch, and (ⅱ) vertical, by mitotic division of active HTLV-infected cells. We analyze the model by proving the nonnegativity and boundedness of the solutions, calculating all possible steady states, deriving a set of key threshold parameters, and proving the global stability of all steady states. The global asymptotic stability of all steady states is proven by using Lyapunov-LaSalle asymptotic stability theorem. We performed numerical simulations to support and illustrate the theoretical results. In addition, we compared between the dynamics of single and dual infections.

    Citation: A. M. Elaiw, N. H. AlShamrani. Stability of HTLV/HIV dual infection model with mitosis and latency[J]. Mathematical Biosciences and Engineering, 2021, 18(2): 1077-1120. doi: 10.3934/mbe.2021059

    Related Papers:

  • In this paper, we formulate and analyze an HTLV/HIV dual infection model taking into consideration the response of Cytotoxic T lymphocytes (CTLs). The model includes eight compartments, uninfected CD$ 4^{+} $T cells, latent HIV-infected cells, active HIV-infected cells, free HIV particles, HIV-specific CTLs, latent HTLV-infected cells, active HTLV-infected cells and HTLV-specific CTLs. The HIV can enter and infect an uninfected CD$ 4^{+} $T cell by two ways, free-to-cell and infected-to-cell. Infected-to-cell spread of HIV occurs when uninfected CD$ 4^{+} $T cells are touched with active or latent HIV-infected cells. In contrast, there are two modes for HTLV-I transmission, (ⅰ) horizontal, via direct infected-to-cell touch, and (ⅱ) vertical, by mitotic division of active HTLV-infected cells. We analyze the model by proving the nonnegativity and boundedness of the solutions, calculating all possible steady states, deriving a set of key threshold parameters, and proving the global stability of all steady states. The global asymptotic stability of all steady states is proven by using Lyapunov-LaSalle asymptotic stability theorem. We performed numerical simulations to support and illustrate the theoretical results. In addition, we compared between the dynamics of single and dual infections.


    加载中


    [1] C. Casoli, E. Pilotti, U. Bertazzoni, Molecular and cellular interactions of HIV-1/HTLV coinfection and impact on AIDS progression, AIDS Rev., 9 (2007), 140–149.
    [2] M. Tulius Silva, O. de Melo Espíndola, A. C. Bezerra Leite, A. Araújo, Neurological aspects of HIV/human T lymphotropic virus coinfection, AIDS Rev., 11 (2009), 71–78.
    [3] C. Brites, J. Sampalo, A. Oliveira, HIV/human T-cell lymphotropic virus coinfection revisited: impact on AIDS progression, AIDS Rev., 11 (2009), 8–16.
    [4] C. Isache, M. Sands, N. Guzman, D. Figueroa, HTLV-1 and HIV-1 co-infection: A case report and review of the literature, IDCases, 4 (2016), 53–55. doi: 10.1016/j.idcr.2016.03.002
    [5] M. A. Beilke, K. P. Theall, M. O'Brien, J. L. Clayton, S. M. Benjamin, E. L. Winsor, et al., Clinical outcomes and disease progression among patients coinfected with HIV and human T lymphotropic virus types 1 and 2, Clin. Infect. Dis., 39 (2004), 256–263. doi: 10.1086/422146
    [6] K. D. Pedro, A. J. Henderson, L. M. Agosto, Mechanisms of HIV-1 cell-to-cell transmission and the establishment of the latent reservoir, Virus Res., 265 (2019), 115–121. doi: 10.1016/j.virusres.2019.03.014
    [7] L. Wang, M. Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells, Math. Biosci., 200 (2006), 44–57. doi: 10.1016/j.mbs.2005.12.026
    [8] J. Wang, C. Qin, Y. Chen, X. Wang, Hopf bifurcation in a CTL-inclusive HIV-1 infection model with two time delays, Math. Biosci. Eng., 16 (2019), 2587–2612. doi: 10.3934/mbe.2019130
    [9] K. Hattaf, N. Yousfi, Dynamics of SARS-CoV-2 infection model with two modes of transmission and immune response, Math. Biosci. Eng., 17 (2020), 5326–5340. doi: 10.3934/mbe.2020288
    [10] G. Huang, X. Liu, Y. Takeuchi, Lyapunov functions and global stability for age-structured HIV infection model, SIAM J. Appl. Math., 72 (2012), 25–38. doi: 10.1137/110826588
    [11] M. Y. Li, A. G. Lim, Modelling the role of Tax expression in HTLV-1 persisence in vivo, Bull. Math. Biol., 73 (2011), 3008–3029. doi: 10.1007/s11538-011-9657-1
    [12] Y. Gao, J. Wang, Threshold dynamics of a delayed nonlocal reaction-diffusion HIV infection model with both cell-free and cell-to-cell transmissions, J. Math. Anal. Appl., 488 (2020).
    [13] A. U. Neumann, N. P. Lam, H. Dahari, D. R. Gretch, T. E. Wiley, T. J, Layden, et al., Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy, Science, 282 (1998), 103–107. doi: 10.1126/science.282.5386.103
    [14] S. Zhang, X. Xu, Dynamic analysis and optimal control for a model of hepatitis C with treatment, Commun. Nonlinear Sci. Numer. Simul., 46 (2017), 14–25. doi: 10.1016/j.cnsns.2016.10.017
    [15] K. Wang, A. Fan, A. Torres, Global properties of an improved hepatitis B virus model, Nonlinear Anal. Real World Appl., 11 (2010), 3131–3138. doi: 10.1016/j.nonrwa.2009.11.008
    [16] S. Perera, S. S. N. Perera, Mathematical modeling and analysis of innate and humoral immune responses to dengue infections, Int. J. Biomath., 12 (2019).
    [17] M. A. Nowak, R. M. May, Virus dynamics: Mathematical Principles of Immunology and Virology, Oxford University Press, (2000).
    [18] M. A. Nowak, C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74–79. doi: 10.1126/science.272.5258.74
    [19] X. Shi, X. Zhou, X. Song, Dynamical behavior of a delay virus dynamics model with CTL immune response, Nonlinear Anal. Real World Appl., 11 (2010), 1795–1809. doi: 10.1016/j.nonrwa.2009.04.005
    [20] T. Guo, Z. Qiu, The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission, Math. Biosci. Eng., 16 (2019), 6822–6841. doi: 10.3934/mbe.2019341
    [21] H. Shu, L. Wang, J. Watmough, Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL imune responses, SIAM J. Appl. Math., 73 (2013), 1280–1302. doi: 10.1137/120896463
    [22] N. I. Stilianakis and J. Seydel, Modeling the T-cell dynamics and pathogenesis of HTLV-I infection, Bull. Math. Biol., 61 (1999), 935–947. doi: 10.1006/bulm.1999.0117
    [23] H. Gomez-Acevedo, M. Y. Li, Backward bifurcation in a model for HTLV-I infection of CD4$^{+}$T cells, Bull. Math. Biol., 67 (2005), 101–114. doi: 10.1016/j.bulm.2004.06.004
    [24] C. Vargas-De-Leon, The complete classification for global dynamics of amodel for the persistence of HTLV-1 infection, Appl. Math. Comput., 237 (2014), 489–493.
    [25] L. Wang, M. Y. Li, D. Kirschner, Mathematical analysis of the global dynamics of a model for HTLV-I infection and ATL progression, Math. Biosci., 179 (2002), 207–217. doi: 10.1016/S0025-5564(02)00103-7
    [26] X. Pan, Y. Chen, H. Shu, Rich dynamics in a delayed HTLV-I infection model: Stability switch, multiple stable cycles, and torus, J. Math. Anal. Appl., 479 (2019), 2214–2235. doi: 10.1016/j.jmaa.2019.07.051
    [27] H. Gomez-Acevedo, M. Y. Li, S. Jacobson, Multi-stability in a model for CTL response to HTLV-I infection and its consequences in HAM/TSP development, and prevention, Bull. Math. Biol., 72 (2010), 681–696. doi: 10.1007/s11538-009-9465-z
    [28] J. Lang, M. Y. Li, Stable and transient periodic oscillations in a mathematical model for CTL response to HTLV-I infection, J. Math. Biol., 65 (2012), 181–199. doi: 10.1007/s00285-011-0455-z
    [29] M. Y. Li, H. Shu, Multiple stable periodic oscillations in a mathematical model of CTL response to HTLV-I infection, Bull. Math. Biol., 73 (2011), 1774–1793. doi: 10.1007/s11538-010-9591-7
    [30] L. Wang, Z. Liu, Y. Li, D. Xu, Complete dynamical analysis for a nonlinear HTLV-I infection model with distributed delay, CTL response and immune impairment, Discrete Continuous Dyn. Syst. Ser. B, 25 (2020), 917–933. doi: 10.3934/dcdsb.2019196
    [31] Y. Wang, J. Liu, J. M. Heffernan, Viral dynamics of an HTLV-I infection model with intracellular delay and CTL immune response delay, J. Math. Anal. Appl., 459 (2018), 506–527. doi: 10.1016/j.jmaa.2017.10.027
    [32] A. G. Lim, P. K. Maini, HTLV-Iinfection: A dynamic struggle between viral persistence and host immunity, J. Theor. Biol., 352 (2014), 92–108. doi: 10.1016/j.jtbi.2014.02.022
    [33] F. Li, W. Ma, Dynamics analysis of an HTLV-1 infection model with mitotic division of actively infected cells and delayed CTL immune response, Math. Methods Appl. Sci., 41 (2018), 3000–3017. doi: 10.1002/mma.4797
    [34] S. Li, Y. Zhou, Backward bifurcation of an HTLV-I model with immune response, Discrete Continuous Dyn. Syst. Ser. B, 21 (2016), 863–881. doi: 10.3934/dcdsb.2016.21.863
    [35] W. Wang, W. Ma, Global dynamics of a reaction and diffusion model for an HTLV-I infection with mitotic division of actively infected cells, J. Appl. Anal. Comput., 7 (2017), 899–930.
    [36] A. M. Elaiw, N. H. AlShamrani, Analysis of a within-host HIV/HTLV-I co-infection model with immunity, Virus Res., (2020), Forthcoming.
    [37] L. Agosto, M. Herring, W. Mothes, A. Henderson, HIV-1-infected CD4+ T cells facilitate latent infection of resting CD4+ T cells through cell-cell contact, Cell, 24 (2018), 2088–2100.
    [38] W. Wang, X. Wang, K. Guo, W. Ma, Global analysis of a diffusive viral model with cell-to-cell infection and incubation period, Math. Methods Appl. Sci., 43 (2020), 5963–5978. doi: 10.1002/mma.6339
    [39] A. M. Elaiw, N. H. AlShamrani, Stability of a general CTL-mediated immunity HIV infection model with latent infected cell-to-cell spread, Adv. Differ. Equations, 2020 (2020).
    [40] A. M. Elaiw, N. H. AlShamrani, A. D. Hobiny, Stability of an adaptive immunity delayed HIV infection model with active and latent cell-to-cell spread, Math. Biosci. Eng., 17 (2020), 6401–6458. doi: 10.3934/mbe.2020337
    [41] B. S. Goh, Management and Analysis of Biological Populations, Elsevier, (1980).
    [42] Y. Takeuchi, Global Dynamical Properties of Lotka–Volterra Systems, World Scientific, (1996).
    [43] A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879–883. doi: 10.1016/j.bulm.2004.02.001
    [44] A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69 (2007), 1871–1886. doi: 10.1007/s11538-007-9196-y
    [45] A. M. Elaiw, Global properties of a class of HIV models, Nonlinear Anal. Real World Appl., 11 (2010), 2253–2263. doi: 10.1016/j.nonrwa.2009.07.001
    [46] A. M. Elaiw, Global properties of a class of virus infection models with multitarget cells, Nonlinear Dyn., 69 (2012), 423–435. doi: 10.1007/s11071-011-0275-0
    [47] A. Vandormael, F. Rego, S. Danaviah, L. Carlos Junior Alcantara, D. R. Boulware, et al., CD4$^+$ T-cell count may not be a useful strategy to monitor antiretroviral therapy response in HTLV-1/HIV co-infected patients, Curr. HIV Res., 15 (2017), 225–231.
    [48] G. Huang, Y. Takeuchi, W. Ma, Lyapunov functionals for delay differential equations model of viral infections, SIAM J. Appl. Math., 70 (2010), 2693–2708. doi: 10.1137/090780821
    [49] P. W. Nelson, J. D. Murray, A. S. Perelson, A model of HIV-1 pathogenesis that includes an intracellular delay, Math. Biosci., 163 (2000), 201–215. doi: 10.1016/S0025-5564(99)00055-3
    [50] A. M. Elaiw, N. H. AlShamrani, Global stability of a delayed adaptive immunity viral infection with two routes of infection and multi-stages of infected cells, Commun. Nonlinear Sci. Numer. Simul., 86 (2020).
    [51] R. V. Culshaw, S. Ruan, G. Webb, A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay, J. Math. Biol., 46 (2003), 425–444. doi: 10.1007/s00285-002-0191-5
    [52] N. Bellomo, K. J. Painter, Y. Tao, M. Winkler, Occurrence vs. Absence of taxis-driven instabilities in a May-Nowak model for virus infection, SIAM J. Appl. Math., 79 (2019), 1990–2010. doi: 10.1137/19M1250261
    [53] T. Inoue, T. Kajiwara, T. Saski, Global stability of models of humoral immunity against multiple viral strains, J. Biol. Dyn., 4 (2010), 282–295. doi: 10.1080/17513750903180275
    [54] A. S. Perelson, P. Essunger, Y. Cao, M. Vesanen, A. Hurley, K. Saksela, et al., Decay characteristics of HIV-1-infected compartments during combination therapy, Nature, 387 (1997), 188–191. doi: 10.1038/387188a0
    [55] D. S. Callaway, A.S. Perelson, HIV-1 infection and low steady state viral loads, Bull. Math. Biol., 64 (2002), 29–64. doi: 10.1006/bulm.2001.0266
    [56] E. A. Barbashin, Introduction to the theory of stability, Wolters-Noordhoff, (1970).
    [57] J. P. LaSalle, The Stability of Dynamical Systems, SIAM, (1976).
    [58] A. M. Lyapunov, The general problem of the stability of motion, Taylor & Francis, Ltd., (1992).
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2590) PDF downloads(230) Cited by(0)

Article outline

Figures and Tables

Figures(11)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog