Citation: A. M. Elaiw, N. H. AlShamrani. Stability of HTLV/HIV dual infection model with mitosis and latency[J]. Mathematical Biosciences and Engineering, 2021, 18(2): 1077-1120. doi: 10.3934/mbe.2021059
[1] | C. Casoli, E. Pilotti, U. Bertazzoni, Molecular and cellular interactions of HIV-1/HTLV coinfection and impact on AIDS progression, AIDS Rev., 9 (2007), 140–149. |
[2] | M. Tulius Silva, O. de Melo Espíndola, A. C. Bezerra Leite, A. Araújo, Neurological aspects of HIV/human T lymphotropic virus coinfection, AIDS Rev., 11 (2009), 71–78. |
[3] | C. Brites, J. Sampalo, A. Oliveira, HIV/human T-cell lymphotropic virus coinfection revisited: impact on AIDS progression, AIDS Rev., 11 (2009), 8–16. |
[4] | C. Isache, M. Sands, N. Guzman, D. Figueroa, HTLV-1 and HIV-1 co-infection: A case report and review of the literature, IDCases, 4 (2016), 53–55. doi: 10.1016/j.idcr.2016.03.002 |
[5] | M. A. Beilke, K. P. Theall, M. O'Brien, J. L. Clayton, S. M. Benjamin, E. L. Winsor, et al., Clinical outcomes and disease progression among patients coinfected with HIV and human T lymphotropic virus types 1 and 2, Clin. Infect. Dis., 39 (2004), 256–263. doi: 10.1086/422146 |
[6] | K. D. Pedro, A. J. Henderson, L. M. Agosto, Mechanisms of HIV-1 cell-to-cell transmission and the establishment of the latent reservoir, Virus Res., 265 (2019), 115–121. doi: 10.1016/j.virusres.2019.03.014 |
[7] | L. Wang, M. Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells, Math. Biosci., 200 (2006), 44–57. doi: 10.1016/j.mbs.2005.12.026 |
[8] | J. Wang, C. Qin, Y. Chen, X. Wang, Hopf bifurcation in a CTL-inclusive HIV-1 infection model with two time delays, Math. Biosci. Eng., 16 (2019), 2587–2612. doi: 10.3934/mbe.2019130 |
[9] | K. Hattaf, N. Yousfi, Dynamics of SARS-CoV-2 infection model with two modes of transmission and immune response, Math. Biosci. Eng., 17 (2020), 5326–5340. doi: 10.3934/mbe.2020288 |
[10] | G. Huang, X. Liu, Y. Takeuchi, Lyapunov functions and global stability for age-structured HIV infection model, SIAM J. Appl. Math., 72 (2012), 25–38. doi: 10.1137/110826588 |
[11] | M. Y. Li, A. G. Lim, Modelling the role of Tax expression in HTLV-1 persisence in vivo, Bull. Math. Biol., 73 (2011), 3008–3029. doi: 10.1007/s11538-011-9657-1 |
[12] | Y. Gao, J. Wang, Threshold dynamics of a delayed nonlocal reaction-diffusion HIV infection model with both cell-free and cell-to-cell transmissions, J. Math. Anal. Appl., 488 (2020). |
[13] | A. U. Neumann, N. P. Lam, H. Dahari, D. R. Gretch, T. E. Wiley, T. J, Layden, et al., Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy, Science, 282 (1998), 103–107. doi: 10.1126/science.282.5386.103 |
[14] | S. Zhang, X. Xu, Dynamic analysis and optimal control for a model of hepatitis C with treatment, Commun. Nonlinear Sci. Numer. Simul., 46 (2017), 14–25. doi: 10.1016/j.cnsns.2016.10.017 |
[15] | K. Wang, A. Fan, A. Torres, Global properties of an improved hepatitis B virus model, Nonlinear Anal. Real World Appl., 11 (2010), 3131–3138. doi: 10.1016/j.nonrwa.2009.11.008 |
[16] | S. Perera, S. S. N. Perera, Mathematical modeling and analysis of innate and humoral immune responses to dengue infections, Int. J. Biomath., 12 (2019). |
[17] | M. A. Nowak, R. M. May, Virus dynamics: Mathematical Principles of Immunology and Virology, Oxford University Press, (2000). |
[18] | M. A. Nowak, C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74–79. doi: 10.1126/science.272.5258.74 |
[19] | X. Shi, X. Zhou, X. Song, Dynamical behavior of a delay virus dynamics model with CTL immune response, Nonlinear Anal. Real World Appl., 11 (2010), 1795–1809. doi: 10.1016/j.nonrwa.2009.04.005 |
[20] | T. Guo, Z. Qiu, The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission, Math. Biosci. Eng., 16 (2019), 6822–6841. doi: 10.3934/mbe.2019341 |
[21] | H. Shu, L. Wang, J. Watmough, Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL imune responses, SIAM J. Appl. Math., 73 (2013), 1280–1302. doi: 10.1137/120896463 |
[22] | N. I. Stilianakis and J. Seydel, Modeling the T-cell dynamics and pathogenesis of HTLV-I infection, Bull. Math. Biol., 61 (1999), 935–947. doi: 10.1006/bulm.1999.0117 |
[23] | H. Gomez-Acevedo, M. Y. Li, Backward bifurcation in a model for HTLV-I infection of CD4$^{+}$T cells, Bull. Math. Biol., 67 (2005), 101–114. doi: 10.1016/j.bulm.2004.06.004 |
[24] | C. Vargas-De-Leon, The complete classification for global dynamics of amodel for the persistence of HTLV-1 infection, Appl. Math. Comput., 237 (2014), 489–493. |
[25] | L. Wang, M. Y. Li, D. Kirschner, Mathematical analysis of the global dynamics of a model for HTLV-I infection and ATL progression, Math. Biosci., 179 (2002), 207–217. doi: 10.1016/S0025-5564(02)00103-7 |
[26] | X. Pan, Y. Chen, H. Shu, Rich dynamics in a delayed HTLV-I infection model: Stability switch, multiple stable cycles, and torus, J. Math. Anal. Appl., 479 (2019), 2214–2235. doi: 10.1016/j.jmaa.2019.07.051 |
[27] | H. Gomez-Acevedo, M. Y. Li, S. Jacobson, Multi-stability in a model for CTL response to HTLV-I infection and its consequences in HAM/TSP development, and prevention, Bull. Math. Biol., 72 (2010), 681–696. doi: 10.1007/s11538-009-9465-z |
[28] | J. Lang, M. Y. Li, Stable and transient periodic oscillations in a mathematical model for CTL response to HTLV-I infection, J. Math. Biol., 65 (2012), 181–199. doi: 10.1007/s00285-011-0455-z |
[29] | M. Y. Li, H. Shu, Multiple stable periodic oscillations in a mathematical model of CTL response to HTLV-I infection, Bull. Math. Biol., 73 (2011), 1774–1793. doi: 10.1007/s11538-010-9591-7 |
[30] | L. Wang, Z. Liu, Y. Li, D. Xu, Complete dynamical analysis for a nonlinear HTLV-I infection model with distributed delay, CTL response and immune impairment, Discrete Continuous Dyn. Syst. Ser. B, 25 (2020), 917–933. doi: 10.3934/dcdsb.2019196 |
[31] | Y. Wang, J. Liu, J. M. Heffernan, Viral dynamics of an HTLV-I infection model with intracellular delay and CTL immune response delay, J. Math. Anal. Appl., 459 (2018), 506–527. doi: 10.1016/j.jmaa.2017.10.027 |
[32] | A. G. Lim, P. K. Maini, HTLV-Iinfection: A dynamic struggle between viral persistence and host immunity, J. Theor. Biol., 352 (2014), 92–108. doi: 10.1016/j.jtbi.2014.02.022 |
[33] | F. Li, W. Ma, Dynamics analysis of an HTLV-1 infection model with mitotic division of actively infected cells and delayed CTL immune response, Math. Methods Appl. Sci., 41 (2018), 3000–3017. doi: 10.1002/mma.4797 |
[34] | S. Li, Y. Zhou, Backward bifurcation of an HTLV-I model with immune response, Discrete Continuous Dyn. Syst. Ser. B, 21 (2016), 863–881. doi: 10.3934/dcdsb.2016.21.863 |
[35] | W. Wang, W. Ma, Global dynamics of a reaction and diffusion model for an HTLV-I infection with mitotic division of actively infected cells, J. Appl. Anal. Comput., 7 (2017), 899–930. |
[36] | A. M. Elaiw, N. H. AlShamrani, Analysis of a within-host HIV/HTLV-I co-infection model with immunity, Virus Res., (2020), Forthcoming. |
[37] | L. Agosto, M. Herring, W. Mothes, A. Henderson, HIV-1-infected CD4+ T cells facilitate latent infection of resting CD4+ T cells through cell-cell contact, Cell, 24 (2018), 2088–2100. |
[38] | W. Wang, X. Wang, K. Guo, W. Ma, Global analysis of a diffusive viral model with cell-to-cell infection and incubation period, Math. Methods Appl. Sci., 43 (2020), 5963–5978. doi: 10.1002/mma.6339 |
[39] | A. M. Elaiw, N. H. AlShamrani, Stability of a general CTL-mediated immunity HIV infection model with latent infected cell-to-cell spread, Adv. Differ. Equations, 2020 (2020). |
[40] | A. M. Elaiw, N. H. AlShamrani, A. D. Hobiny, Stability of an adaptive immunity delayed HIV infection model with active and latent cell-to-cell spread, Math. Biosci. Eng., 17 (2020), 6401–6458. doi: 10.3934/mbe.2020337 |
[41] | B. S. Goh, Management and Analysis of Biological Populations, Elsevier, (1980). |
[42] | Y. Takeuchi, Global Dynamical Properties of Lotka–Volterra Systems, World Scientific, (1996). |
[43] | A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879–883. doi: 10.1016/j.bulm.2004.02.001 |
[44] | A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69 (2007), 1871–1886. doi: 10.1007/s11538-007-9196-y |
[45] | A. M. Elaiw, Global properties of a class of HIV models, Nonlinear Anal. Real World Appl., 11 (2010), 2253–2263. doi: 10.1016/j.nonrwa.2009.07.001 |
[46] | A. M. Elaiw, Global properties of a class of virus infection models with multitarget cells, Nonlinear Dyn., 69 (2012), 423–435. doi: 10.1007/s11071-011-0275-0 |
[47] | A. Vandormael, F. Rego, S. Danaviah, L. Carlos Junior Alcantara, D. R. Boulware, et al., CD4$^+$ T-cell count may not be a useful strategy to monitor antiretroviral therapy response in HTLV-1/HIV co-infected patients, Curr. HIV Res., 15 (2017), 225–231. |
[48] | G. Huang, Y. Takeuchi, W. Ma, Lyapunov functionals for delay differential equations model of viral infections, SIAM J. Appl. Math., 70 (2010), 2693–2708. doi: 10.1137/090780821 |
[49] | P. W. Nelson, J. D. Murray, A. S. Perelson, A model of HIV-1 pathogenesis that includes an intracellular delay, Math. Biosci., 163 (2000), 201–215. doi: 10.1016/S0025-5564(99)00055-3 |
[50] | A. M. Elaiw, N. H. AlShamrani, Global stability of a delayed adaptive immunity viral infection with two routes of infection and multi-stages of infected cells, Commun. Nonlinear Sci. Numer. Simul., 86 (2020). |
[51] | R. V. Culshaw, S. Ruan, G. Webb, A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay, J. Math. Biol., 46 (2003), 425–444. doi: 10.1007/s00285-002-0191-5 |
[52] | N. Bellomo, K. J. Painter, Y. Tao, M. Winkler, Occurrence vs. Absence of taxis-driven instabilities in a May-Nowak model for virus infection, SIAM J. Appl. Math., 79 (2019), 1990–2010. doi: 10.1137/19M1250261 |
[53] | T. Inoue, T. Kajiwara, T. Saski, Global stability of models of humoral immunity against multiple viral strains, J. Biol. Dyn., 4 (2010), 282–295. doi: 10.1080/17513750903180275 |
[54] | A. S. Perelson, P. Essunger, Y. Cao, M. Vesanen, A. Hurley, K. Saksela, et al., Decay characteristics of HIV-1-infected compartments during combination therapy, Nature, 387 (1997), 188–191. doi: 10.1038/387188a0 |
[55] | D. S. Callaway, A.S. Perelson, HIV-1 infection and low steady state viral loads, Bull. Math. Biol., 64 (2002), 29–64. doi: 10.1006/bulm.2001.0266 |
[56] | E. A. Barbashin, Introduction to the theory of stability, Wolters-Noordhoff, (1970). |
[57] | J. P. LaSalle, The Stability of Dynamical Systems, SIAM, (1976). |
[58] | A. M. Lyapunov, The general problem of the stability of motion, Taylor & Francis, Ltd., (1992). |