Citation: Maria do Rosário de Pinho, Filipa Nunes Nogueira. On application of optimal control to SEIR normalized models: Pros and cons[J]. Mathematical Biosciences and Engineering, 2017, 14(1): 111-126. doi: 10.3934/mbe.2017008
[1] | [ M. Biswas,L. Paiva,M. de Pinho, A SEIR model for control of infectious diseases with constraints, Mathematical Biosciences and Engineering, 11 (2014): 761-784. |
[2] | [ F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology Springer-Verlag, New York, 2001. |
[3] | [ C. Buskens,D. Wassel, The ESA NLP solver WORHP, Modeling and optimization in space engineering, Springer Optim. Appl., Springer, New York, 73 (2013): 85-110. |
[4] | [ V. Capasso, Mathematical Structures of Epidemic Systems Springer-Verlag, Berlin Heidelberg, 2008. |
[5] | [ F. Clarke, Optimization and Nonsmooth Analysis John Wiley & Sons, New York, 1983. |
[6] | [ M. de Pinho,I. Kornienko,H. Maurer, Optimal control of a SEIR model with mixed constraints and $L^1$ cost, Springer International Publishing, Switzerland, Lecture Notes in Electrical Engineering, 312 (2015): 135-145. |
[7] | [ R. Fourer,D. Gay,B. Kernighan, AMPL: A Modeling Language for Mathematical Programming, Duxbury Press, Brooks–Cole Publishing Company, USA, null (1993). |
[8] | [ A. Friedman and C. Kao, Mathematical Modeling of Biological Processes Springer, Switzerland, 2014. |
[9] | [ H. Hethcote, The mathematics of infectious diseases, SIAM Review, 42 (2000): 599-653. |
[10] | [ H. Hethcote, The basic epidemiology models: Models, expressions for $r_0$, parameter estimation, and applications, Mathematical Understanding of Infectious Disease Dynamics (S. Ma and Y. Xia, Eds.), World Scientific Publishing Co. Pte. Ltd., Singapore, 16 (2009): 1-61. |
[11] | [ W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics, Proceedings of the Royal Society of London. Series A Containing papers of a Mathematical and Physical Nature, 115. |
[12] | [ A. Korobeinikov,E. V. Grigorieva,E. N. Khailov, Optimal control for an epidemic in a population of varying size, Discrete Contin. Dyn. Syst., null (2015): 549-561. |
[13] | [ U. Ledzewicz,H. Schaettler, On optimal singular controls for a general sir-model with vaccination and treatment supplement, Discrete and Continuous Dynamical Systems, Series B, 2 (2011): 981-990. |
[14] | [ M. Y. Li,J. R. Graef,L. Wang,J. Karsai, Global dynamics of a SEIR model with varying total population size, Mathematical Biosciences, 160 (1999): 191-213. |
[15] | [ H. Maurer,C. Buskens,J.-H. R. Kim,C. Y. Kaya, Optimization methods for the verification of second order sufficient conditions for bang-bang controls, Optimal Control Applications and Methods, 26 (2015): 129-156. |
[16] | [ H. Maurer and M. R. de Pinho, Optimal control of seir models in epidemiology with l$^1$ objectives, https://hal.inria.fr/hal-01101291/file/Maurer-dePinho-SEIR.pdf. (Accepted) |
[17] | [ R. M. Neilan,S. Lenhart, An introduction to optimal control with an application in disease modeling, DIMACS Series in Discrete Mathematics, 75 (2010): 67-81. |
[18] | [ K. Okosun,O. Rachid,N. Marcus, Optimal control strategies and cost-effectiveness analysis of a malaria model, Biosystems, 111 (2013): 83-101. |
[19] | [ N P. Osmolovskii and H. Maurer, Applications to Regular and Bang-Bang Control: Second-order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control SIAM Advances in Design and Control, 24 SIAM Publications, Philadelphia, 2012. |
[20] | [ H. Schaettler and U. Ledzewicz, Geometric Optimal Control. Theory, Methods and Examples Springer, New York, 2012. |
[21] | [ A. Wächter,L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006): 25-57. |