Citation: François KREMER, Stéphane RAEL, Matthieu URBAIN. 1D electrochemical model of lithium-ion battery for a sizing methodology of thermal power plant integrated storage system[J]. AIMS Energy, 2020, 8(5): 721-748. doi: 10.3934/energy.2020.5.721
[1] | GE Power, General Electric PI-BESS Leaflet., 2016. Available from: https://www.ge.com/content/dam/gepower-pgdp/global/en_US/documents/product/power%20plants/pi-bess-leaflet-20160624.pdf. |
[2] | Energy-Storage news, Articles on the hybridization of a gas turbine and a BESS, 2016. Available from: https://www.energy-storage.news/news/ge-southern-california-edison-introduce-first-battery-storage-gas-turbine-h. |
[3] | Delille G, Francois B, Malarange G (2012) Dynamic frequency control support by energy storage to reduce the impact of wind and solar generation on isolated power system's inertia. IEEE Trans Sustainable Energy 3: 931-939. doi: 10.1109/TSTE.2012.2205025 |
[4] | Kremer F, Remy D, Merville W, et al. (2020) Battery energy storage system integration in a combined Cycle power plant for the purpose of the angular and voltage stability. In: Németh B, Ekonomou L (Eds.), Flexitranstore, Cham, Springer International Publishing, 84-94. |
[5] | Kremer F, Buquet M, Biellmann H, et al. (2019) Analysis of battery energy storage system integration in a combined cycle power plant. 2019 International Conference on Smart Energy Systems and Technologies (SEST), Porto, Portugal, IEEE, 1-6. |
[6] | Technical information on the Enhanced frequency response services. National Grid ESO. Available from: https://www.nationalgrideso.com/balancing-services/frequency-response-services/frequency-auction-trial. |
[7] | Yang Y, Bremner S, Menictas C, et al. (2018) Battery energy storage system size determination in renewable energy systems: A review. Renewable Sustainable Energy Rev 91: 109-125. doi: 10.1016/j.rser.2018.03.047 |
[8] | San Martín I, Berrueta A, Sanchis P, et al. (2018) Methodology for sizing stand-alone hybrid systems: A case study of a traffic control system. Energy 153: 870-881. doi: 10.1016/j.energy.2018.04.099 |
[9] | Samba A (2015) Battery Electrical Vehicles-Analysis of Thermal Modelling and Thermal Management. Electrical power. Université de caen Basse Normandie, Vrije Universiteit Brussel, 2015. English. |
[10] | Astaneh M, Roshandel R, Dufo-López R, et al. (2018) A novel framework for optimization of size and control strategy of lithium-ion battery based off-grid renewable energy systems. Energy Convers Manage 175: 99-111. doi: 10.1016/j.enconman.2018.08.107 |
[11] | Bouabdallah A, Olivier JC, Bourguet S, et al. (2015) Safe sizing methodology applied to a standalone photovoltaic system. Renewable Energy 80: 266-274. doi: 10.1016/j.renene.2015.02.007 |
[12] | Meng J, Luo G, Ricco M, et al. (2018) Overview of lithium-ion battery modeling methods for state-of-charge estimation in electrical vehicles. Appl Sci 8: 1-17. |
[13] | Wang Y, Liu C, Pan R, et al. (2017) Modeling and state-of-charge prediction of lithium-ion battery and ultracapacitor hybrids with a co-estimator. Energy 121: 739-750. doi: 10.1016/j.energy.2017.01.044 |
[14] | Urbain M, Raël S, Davat B, et al. (2007) State estimation of a lithium ion battery through kalman filter. 2007 Power Electronics Specialists Conference, Orlando, USA, IEEE, 2804-2810. |
[15] | Lin X, Pereza HE, Mohan S, et al. (2014) A lumped-parameter electro-thermal model for cylindrical batteries. J Power Sources 257: 1-11. doi: 10.1016/j.jpowsour.2014.01.097 |
[16] | Wang Y, Gao G, Li X, et al. (2020) A fractional-order model-based state estimation approach for lithium-ion battery and ultra-capacitor hybrid power source system considering load trajectory. J Power Sources 449: 1-12. |
[17] | Urbain M, Hinaje M, Raël S, et al. (2010) Energetical modeling of lithium-ion batteries including electrode porosity effects. IEEE Trans Energy Convers 25: 862-872. doi: 10.1109/TEC.2010.2049652 |
[18] | Smith K, Wang CY (2006) Solid-state diffusion limitations on pulse operation of a lithium ion cell for hybrid electric vehicles. J Power Sources 161: 628-639. doi: 10.1016/j.jpowsour.2006.03.050 |
[19] | Legrand N, Knosp B, Desprez P, et al. (2014) Physical characterization of the charging process of a Li-ion battery and prediction of Li plating by electrochemical modelling. J Power Sources 245: 208-216. doi: 10.1016/j.jpowsour.2013.06.130 |
[20] | Doyle M, Fuller TF, Newman J (1993) Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J Electrochem Soc 140: 1526-1533. |
[21] | Fuller TF, Doyle M, Newman J (1994) Simulation and optimization of the dual lithium ion insertion cell. J Electrochem Soc 141: 1-10. |
[22] | Smith K, Wang CY (2006) Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles. J Power Sources 160: 662-673. doi: 10.1016/j.jpowsour.2006.01.038 |
[23] | Kai L, White LE (2011) Mathematical modeling of a lithium ion battery with thermal effects in COMSOL Inc. Multiphysics (MP) software. J Power Sources 196: 5985-5989. doi: 10.1016/j.jpowsour.2011.03.017 |
[24] | Di Domenico D, Stefanopoulou A, Fiengo G (2010) Lithium-Ion battery state of charge and critical surface charge estimation using an electrochemical model-based extended kalman filter. J Dyn Syst, Meas, Control 132: 061302. doi: 10.1115/1.4002475 |
[25] | Dey S, Ayalew B, Pisu P (2015) Nonlinear robust observers for State-of-Charge estimation of Lithium-Ion cells based on a reduced electrochemical Model. IEEE Trans Control Syst Technol 23: 1935-1942. doi: 10.1109/TCST.2014.2382635 |
[26] | Blondel P, Postoyan P, Raël S, et al. (2019) Nonlinear circle-criterion observer design for an electrochemical battery model. IEEE Trans Control Syst Technol 27: 889-897. doi: 10.1109/TCST.2017.2782787 |
[27] | Moura SJ, Bribiesca Argomedo F, Klein R, et al. (2017) Battery state estimation for a single particle model with electrolyte dynamics. IEEE Trans Control Syst Technol 25: 453-468. doi: 10.1109/TCST.2016.2571663 |
[28] | Forman JC, Bashash S, Stein JL, et al. (2011) Reduction of an electrochemistry-based Li-ion battery model via quasi-linearization and Padé approximation. J Electrochem Soc 158: A93-A101. doi: 10.1149/1.3519059 |
[29] | Smith K, Rahn C, Wang CY (2007) Control oriented 1D electrochemical model of lithium ion battery. Energy Convers Manage 48: 2565-2578. doi: 10.1016/j.enconman.2007.03.015 |
[30] | Meyers J, Doyle M, Darling R, et al. (2000) The impedance response of a porous electrode composed of intercalation particles. J Electrochem Soc 147: 2930-2940. doi: 10.1149/1.1393627 |
[31] | Summerfield JH, Curtis CN (2015) Modeling the Lithium Ion/Electrode Battery Interface Using Fick's Second Law of Diffusion, the Laplace Transform, Charge Transfer Functions, and a [4, 4] Padé Approximant. Int J Electrochem 2015: 496905. |
[32] | Tran NT, Vilathgamuwa M, Farrell T, et al. (2018) A padé approximate model of lithium ion batteries. J Electrochem Soc 165: A1409-A1421. doi: 10.1149/2.0651807jes |
[33] | Sarasketa-Zabala E, Laresgoiti I, Alava I, et al. (2013) Validation of the methodology for lithium-ion batteries lifetime prognosis. 2013 World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, Spain, IEEE, 1-12. |