Citation: Marco Di Francesco, Simone Fagioli, Massimiliano D. Rosini. Many particle approximation of the Aw-Rascle-Zhang second order model for vehicular traffic[J]. Mathematical Biosciences and Engineering, 2017, 14(1): 127-141. doi: 10.3934/mbe.2017009
[1] | [ B. Andreianov,C. Donadello,U. Razafison,J. Y. Rolland,M. D. Rosini, Solutions of the Aw-Rascle-Zhang system with point constraints, Networks and Heterogeneous Media, 11 (2016): 29-47. |
[2] | [ B. Andreianov,C. Donadello,M. D. Rosini, A second-order model for vehicular traffics with local point constraints on the flow, Mathematical Models and Methods in Applied Sciences, 26 (2016): 751-802. |
[3] | [ A. Aw,A. Klar,T. Materne,M. Rascle, Derivation of continuum traffic flow models from microscopic Follow-the-Leader models, SIAM Journal on Applied Mathematics, 63 (2002): 259-278. |
[4] | [ A. Aw,M. Rascle, Resurrection of "second order" models of traffic flow, SIAM Journal on Applied Mathematics, 60 (2000): 916-938. |
[5] | [ P. Bagnerini,M. Rascle, A multi-class homogenized hyperbolic model of traffic flow, SIAM Journal of Mathematical Analysis, 35 (2003): 949-973. |
[6] | [ F. Berthelin,P. Degond,M. Delitala,M. Rascle, A model for the formation and evolution of traffic jams, Archive for Rational Mechanics and Analysis, 187 (2008): 185-220. |
[7] | [ A. Bressan, Hyperbolic Systems of Conservation Laws: The One-dimensional Cauchy Problem vol. 20, Oxford university press, 2000. |
[8] | [ C. Chalons,P. Goatin, Transport-equilibrium schemes for computing contact discontinuities in traffic flow modeling, Commun. Math. Sci., 5 (2007): 533-551. |
[9] | [ M. Di Francesco,M. Rosini, Rigorous derivation of nonlinear scalar conservation laws from Follow-the-Leader type models via many particle limit, Archive for Rational Mechanics and Analysis, 217 (2015): 831-871. |
[10] | [ M. Di Francesco, S. Fagioli and M. D. Rosini, Deterministic particle approximation of scalar conservation laws, preprint, arXiv: 1605.05883. |
[11] | [ M. Di Francesco, S. Fagioli, M. D. Rosini and G. Russo, Deterministic particle approximation of the Hughes model in one space dimension, preprint, arXiv: 1602.06153. |
[12] | [ M. Di Francesco, S. Fagioli, M. D. Rosini and G. Russo, Follow-the-leader approximations of macroscopic models for vehicular and pedestrian flows, preprint. |
[13] | [ R. E. Ferreira,C. I. Kondo, Glimm method and wave-front tracking for the Aw-Rascle traffic flow model, Far East J. Math. Sci., 43 (2010): 203-223. |
[14] | [ D. C. Gazis,R. Herman,R. W. Rothery, Nonlinear Follow-the-Leader models of traffic flow, Operations Res., 9 (1961): 545-567. |
[15] | [ M. Godvik,H. Hanche-Olsen, Existence of solutions for the Aw-Rascle traffic flow model with vacuum, Journal of Hyperbolic Differential Equations, 5 (2008): 45-63. |
[16] | [ M. Lighthill,G. Whitham, On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Royal Society of London. Series A, Mathematical and Physical Sciences, 229 (1955): 317-345. |
[17] | [ S. Moutari,M. Rascle, A hybrid lagrangian model based on the Aw-Rascle traffic flow model, SIAM Journal on Applied Mathematics, 68 (2007): 413-436. |
[18] | [ I. Prigogine and R. Herman, Kinetic theory of vehicular traffic IEEE Transactions on Systems, Man, and Cybernetics, 2 (1972), p295. |
[19] | [ P. I. Richards, Shock waves on the highway, Operations Research, 4 (1956): 42-51. |
[20] | [ A. I. Vol'pert, The spaces BV and quasilinear equations, (Russian) Mat. Sb. (N.S.), 73 (1967): 255-302. |
[21] | [ H. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B: Methodological, 36 (2002): 275-290. |