Citation: Avner Friedman, Wenrui Hao. Mathematical modeling of liver fibrosis[J]. Mathematical Biosciences and Engineering, 2017, 14(1): 143-164. doi: 10.3934/mbe.2017010
[1] | Xianmin Geng, Shengli Zhou, Jiashan Tang, Cong Yang . A sufficient condition for classified networks to possess complex network features. Networks and Heterogeneous Media, 2012, 7(1): 59-69. doi: 10.3934/nhm.2012.7.59 |
[2] | Simone Göttlich, Stephan Martin, Thorsten Sickenberger . Time-continuous production networks with random breakdowns. Networks and Heterogeneous Media, 2011, 6(4): 695-714. doi: 10.3934/nhm.2011.6.695 |
[3] | Wenlian Lu, Fatihcan M. Atay, Jürgen Jost . Consensus and synchronization in discrete-time networks of multi-agents with stochastically switching topologies and time delays. Networks and Heterogeneous Media, 2011, 6(2): 329-349. doi: 10.3934/nhm.2011.6.329 |
[4] | Alessia Marigo, Benedetto Piccoli . A model for biological dynamic networks. Networks and Heterogeneous Media, 2011, 6(4): 647-663. doi: 10.3934/nhm.2011.6.647 |
[5] | Mirela Domijan, Markus Kirkilionis . Graph theory and qualitative analysis of reaction networks. Networks and Heterogeneous Media, 2008, 3(2): 295-322. doi: 10.3934/nhm.2008.3.295 |
[6] | M. D. König, Stefano Battiston, M. Napoletano, F. Schweitzer . On algebraic graph theory and the dynamics of innovation networks. Networks and Heterogeneous Media, 2008, 3(2): 201-219. doi: 10.3934/nhm.2008.3.201 |
[7] | Michael Damron, C. L. Winter . A non-Markovian model of rill erosion. Networks and Heterogeneous Media, 2009, 4(4): 731-753. doi: 10.3934/nhm.2009.4.731 |
[8] | Regino Criado, Julio Flores, Alejandro J. García del Amo, Miguel Romance . Structural properties of the line-graphs associated to directed networks. Networks and Heterogeneous Media, 2012, 7(3): 373-384. doi: 10.3934/nhm.2012.7.373 |
[9] | Roberto Serra, Marco Villani, Alex Graudenzi, Annamaria Colacci, Stuart A. Kauffman . The simulation of gene knock-out in scale-free random Boolean models of genetic networks. Networks and Heterogeneous Media, 2008, 3(2): 333-343. doi: 10.3934/nhm.2008.3.333 |
[10] | Martin Gugat, Rüdiger Schultz, Michael Schuster . Convexity and starshapedness of feasible sets in stationary flow networks. Networks and Heterogeneous Media, 2020, 15(2): 171-195. doi: 10.3934/nhm.2020008 |
The special issue webpage is avaiable at: https://aimspress.com/mbe/article/5630/special-articles.
An outbreak of atypical pneumonia caused by a novel coronavirus was first identified in Wuhan, China in December 2019. The causative agent was initially called 2019 novel coronavirus (2019-nCoV), later renamed as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the formal name for the associated disease given by the World Health Organization (WHO) is Coronavirus Disease 2019 (COVID-19). The virus swiftly spread to all areas of China and other countries. The WHO declared the coronavirus outbreak a public health emergency of international concern (PHEIC) on January 30, 2020. Mathematical models play an increasingly important role in forecasting transmission potential, optimizing control strategies, understanding the progression of infections within hosts, managing vaccine distribution and so on. These contributions have been recognized by many public health agencies like the WHO and the U.S. CDC.
To serve the needs of the fight against the COVID-19 pandemic, it is critical to accelerate the publication of modeling studies on COVID-19. With the support of Mathematical Biosciences and Engineering (MBE), we initiated a special issue entitled "Modeling the Biological, Epidemiological, Immunological, Molecular, Virological Aspects of COVID-19" on January 31, 2020. By the deadline of September 1, 2020, a total of 118 formal submissions from researchers across 40 countries around the world had been received, among which 38 papers were finally accepted for publication after peer review. Among the accepted contributions, the average times from submission to acceptance, and from acceptance to publication are 43 days and 9 days, respectively. The special issue covers a wide range of topics using different modeling approaches and different data sources.
The works of Zhou et al. (doi: 10.3934/mbe.2020147), Yang and Wang (10.3934/mbe.2020148), Chang et al. (10.3934/mbe.2020178), Feng et al. (10.3934/mbe.2020204), Aldila et al. (10.3934/mbe.2020335), Wang (10.3934/mbe.2020380), and Johnston and Pell (10.3934/mbe.2020401) investigate the role of behavior change or social distancing driven by media coverage or governmental action in curtailing the spread of COVID-19. The information propagation about COVID-19 in Chinese social media during the early phase of the epidemic is modeled and analyzed by Yin et al. (10.3934/mbe.2020146). Some studies focus on evaluating the impact of non-pharmaceutical interventions such as quarantine, isolation, personal hygiene, travel restriction and city lockdown on curbing the disease spread (Dai et al., 10.3934/mbe.2020152; Tian et al., 10.3934/mbe.2020158; Saldaña et al., 10.3934/mbe.2020231; Bugalia et al., 10.3934/mbe.2020318; Yousif and Ali, 10.3934/mbe.2020412; Srivastav et al., 10.3934/mbe.2021010). Some concentrate on assessing the importance of the timing to relax or lift mobility restrictions (Santana-Cibrian et al., 10.3934/mbe.2020330; Iboi et al., 10.3934/mbe.2020369). Some authors estimate key epidemiological parameters including basic reproduction number and effective reproduction number, peak time and peak size, final size, serial interval (Liu et al., 10.3934/mbe.2020172; Wang et al., 10.3934/mbe.2020173; Zhao, 10.3934/mbe.2020198; Feng et al., 10.3934/mbe.2020205). Besides human-to-human transmission, Yang and Wang (10.3934/mbe.2020148), Rong et al. (10.3934/mbe.2020149), Saldaña et al. (10.3934/mbe.2020231), and Zhong and Wang (10.3934/mbe.2020357) also take environment-to-human transmission into consideration. Some address the effect of delay in diagnosis (Rong et al., 10.3934/mbe.2020149), lack of medical resources (Wang et al., 10.3934/mbe.2020165), difference in interventions (Xia et al., 10.3934/mbe.2020274), incoming travelers (Deeb and Jalloul, 10.3934/mbe.2020302), superspreading events (Santana-Cibrian et al., 10.3934/mbe.2020330), nosocomial infections (Martos et al., 10.3934/mbe.2020410), transient behavior after mass vaccination (Akhavan Kharazian and Magpantay, 10.3934/mbe.2021019). Two models are proposed to describe SARS-CoV-2 dynamics in infected hosts (Li et al., 10.3934/mbe.2020159; Hattaf and Yousfi, 10.3934/mbe.2020288).
Most studies are based on deterministic ordinary differential equation type models whereas partial differential equation models (Zhu and Zhu, 10.3934/mbe.2020174; Wang and Yamamoto, 10.3934/mbe.2020266), complex network model (Yang et al., 10.3934/mbe.2020248), stochastic models (He et al., 10.3934/mbe.2020153; Olabode et al., 10.3934/mbe.2021050), discrete models (He et al., 10.3934/mbe.2020153, Li et al., 10.3934/mbe.2020208), individual-based model (Martos et al., 10.3934/mbe.2020410), and statistical models (Zhao, 10.3934/mbe.2020198; Nie et al., 10.3934/mbe.2020265; Xia et al., 10.3934/mbe.2020274; Chowdhury et al., 10.3934/mbe.2020323) are developed and analyzed as well. Early studies mainly deal with COVID-19 case data from China, and later studies fit models to data from various countries and regions including the United Kingdom (Feng et al., 10.3934/mbe.2020204), South Korea (Feng et al., 10.3934/mbe.2020205; Xia et al., 10.3934/mbe.2020274), Mexico (Saldaña et al., 10.3934/mbe.2020231; Santana-Cibrian et al., 10.3934/mbe.2020330), the United States (Wang and Yamamoto, 10.3934/mbe.2020266), Lebanon (Deeb and Jalloul, 10.3934/mbe.2020302), India (Bugalia et al., 10.3934/mbe.2020318; Srivastav et al., 10.3934/mbe.2021010), Indonesia (Aldila et al., 10.3934/mbe.2020335), Nigeria (Iboi et al., 10.3934/mbe.2020369), Canada (Wang, 10.3934/mbe.2020380), Saudi Arabia (Yousif and Ali, 10.3934/mbe.2020412) and so on. Mobile terminal positioning data (Nie et al., 10.3934/mbe.2020265) and Google community mobility data (Wang and Yamamoto, 10.3934/mbe.2020266) have also been used. In addition, Costris-Vas et al. (10.3934/mbe.2020383) write a survey paper on evaluating the accuracy of various models from recent pandemics.
With the broad spectrum of topics, we believe that these 38 peer-reviewed papers could represent a significant contribution of mathematical modeling in the fight against COVID-19. In fact, they have already received considerable attention in the field. For example, the paper by Yang and Wang (10.3934/mbe.2020148) is ranked the first most read paper in MBE with 2765 article views, 4465 PDF downloads and 54 citations. We hope the readers of this special issue will find helpful information for their own research and decision-making. So far, the ongoing COVID-19 pandemic has resulted in more than 85.62 million cases including 1.85 million deaths (data source: https://coronavirus.jhu.edu/map.html). With the joint efforts of health-care workers, vaccine developers, epidemiologists, modelers, the public and others, we look forward to returning to normal life in the near future.
The guest editors sincerely appreciate all authors for their valuable contributions and all referees for their constructive feedback. The guest editors thank the Editor-in-Chief, Professor Yang Kuang, and Editor-in-Chief of Mathematics section, Professor Shigui Ruan, for their kind invitation, and the Editorial Assistants for their patience and help, and the publisher AIMS for the generous support. Finally, DG acknowledge the financial support from the NSF of China (12071300), and NSF of Shanghai (20ZR1440600 and 20JC1413800). DH was partially supported by an Alibaba (China) Co. Ltd. Collaborative Research grant.
[1] | [ B. C. A. and R. J. -P., Cytokines and Cytokine Receptors: Physiology and Pathological Disorders CRC Press. |
[2] | [ L. A. Adams, Biomarkers of liver fibrosis, J. Gastroenterol Hepatol, 26 (2011): 802-809. |
[3] | [ S. Albeiroti,K. Ayasoufi,D. R. Hill,B. Shen,C. A. de la Motte, Platelet hyaluronidase-2: An enzyme that translocates to the surface upon activation to function in extracellular matrix degradation, Blood, 125 (2015): 1460-1469. |
[4] | [ A. Baranova, P. Lal, A. Birerdinc and Z. M. Younossi, Non-invasive markers for hepatic fibrosis BMC Gastroenterol 11 (2011), 91. |
[5] | [ L. Barron,T. A. Wynn, Fibrosis is regulated by Th2 and Th17 responses and by dynamic interactions between fibroblasts and macrophages, Am. J. Physiol. Gastrointest. Liver Physiol., 300 (2011): G723-728. |
[6] | [ D. C. Baumgart,S. R. Carding, Inflammatory bowel disease: Cause and immunobiology, Lancet, 369 (2007): 1627-1640. |
[7] | [ K. D. Bentsen,J. H. Henriksen,S. Boesby,K. Horslev-Petersen,I. Lorenzen, Hepatic and renal extraction of circulating type Ⅲ procollagen amino-terminal propeptide and hyaluronan in pig, J. Hepatol., 9 (1989): 177-183. |
[8] | [ C. E. Boorsma, C. Draijer and B. N. Melgert, Macrophage heterogeneity in respiratory diseases Mediators Inflamm. 2013 (2013), 769214, 19pp. |
[9] | [ A. Camelo, R. Dunmore, M. A. Sleeman and D. L. Clarke, The epithelium in idiopathic pulmonary fibrosis: breaking the barrier Front Pharmacol 4 (2014), 173. |
[10] | [ A. Cequera,M. C. Garcia de Leon Mendez, [Biomarkers for liver fibrosis: Advances, advantages and disadvantages], Rev Gastroenterol Mex, 79 (2014): 187-199. |
[11] | [ C. Chizzolini, T cells, B cells, and polarized immune response in the pathogenesis of fibrosis and systemic sclerosis, Curr Opin Rheumatol, 20 (2008): 707-712. |
[12] | [ D. L. Clarke, A. M. Carruthers, T. Mustelin and L. A. Murray, Matrix regulation of idiopathic pulmonary fibrosis: The role of enzymes Fibrogenesis Tissue Repair 6 (2013), 20. |
[13] | [ M. K. Connolly,A. S. Bedrosian,J. Mallen-St Clair,A. P. Mitchell,J. Ibrahim,A. Stroud,H. L. Pachter,D. Bar-Sagi,A. B. Frey,G. Miller, In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-alpha, J. Clin. Invest., 119 (2009): 3213-3225. |
[14] | [ Z. D. Daniil,E. Papageorgiou,A. Koutsokera,K. Kostikas,T. Kiropoulos, Serum levels of oxidative stress as a marker of disease severity in idiopathic pulmonary fibrosis, Pulm Pharmacol Ther, 21 (2008): 26-31. |
[15] | [ J. Day,A. Friedman,L. S. Schlesinger, Modeling the immune rheostat of macrophages in the lung in response to infection, Proc. Natl. Acad. Sci. U.S.A., 106 (2009): 11246-11251. |
[16] | [ P. Deepak,S. Kumar,D. Kishore,A. Acharya, IL-13 from Th2-type cells suppresses induction of antigen-specific Th1 immunity in a T-cell lymphoma, Int. Immunol., 22 (2010): 53-63. |
[17] | [ J. A. Dranoff,R. G. Wells, Portal fibroblasts: Underappreciated mediators of biliary fibrosis, Hepatology, 51 (2010): 1438-1444. |
[18] | [ J. S. Duffield, Macrophages and immunologic inflammation of the kidney, Semin. Nephrol., 30 (2010): 234-254. |
[19] | [ H. L. Fallatah, Noninvasive biomarkers of liver fibrosis: An overview Adva. in Hepa. 2014 (2014), Article ID 357287, 15pp. |
[20] | [ J. M. Fan,Y. Y. Ng,P. A. Hill,D. J. Nikolic-Paterson,W. Mu,R. C. Atkins,H. Y. Lan, Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro, Kidney Int., 56 (1999): 1455-1467. |
[21] | [ S. Fichtner-Feigl,W. Strober,K. Kawakami,R. K. Puri,A. Kitani, IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis, Nat. Med., 12 (2006): 99-106. |
[22] | [ S. L. Friedman, Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver, Physiol. Rev., 88 (2008): 125-172. |
[23] | [ R. M. Greco,J. A. Iocono,H. P. Ehrlich, Hyaluronic acid stimulates human fibroblast proliferation within a collagen matrix, J. Cell. Physiol., 177 (1998): 465-473. |
[24] | [ J. Guechot,L. Serfaty,A. M. Bonnand,O. Chazouilleres,R. E. Poupon,R. Poupon, Prognostic value of serum hyaluronan in patients with compensated HCV cirrhosis, J. Hepatol., 32 (2000): 447-452. |
[25] | [ M. F. Hadi,E. A. Sander,J. W. Ruberti,V. H. Barocas, Simulated remodeling of loaded collagen networks via strain-dependent enzymatic degradation and constant-rate fiber growth, Mech Mater, 44 (2012): 72-82. |
[26] | [ P. Halfon, M. Bourliere, G. Penaranda, R. Deydier, C. Renou, D. Botta-Fridlund, A. Tran, I. Portal, I. Allemand, A. Rosenthal-Allieri and D. Ouzan, Accuracy of hyaluronic acid level for predicting liver fibrosis stages in patients with hepatitis C virus, Comp Hepatol 4 (2005), 6. |
[27] | [ L. Hammerich,F. Tacke, Role of gamma-delta T cells in liver inflammation and fibrosis, World J Gastrointest Pathophysiol, 5 (2014): 107-113. |
[28] | [ A. Hancock,L. Armstrong,R. Gama,A. Millar, Production of interleukin 13 by alveolar macrophages from normal and fibrotic lung, Am. J. Respir. Cell Mol. Biol., 18 (1998): 60-65. |
[29] | [ W. Hao,E. D. Crouser,A. Friedman, Mathematical model of sarcoidosis, Proc. Natl. Acad. Sci. U.S.A., 111 (2014): 16065-16070. |
[30] | [ W. Hao and A. Friedman, The LDL-HDL Profile Determines the risk of atherosclerosis: a Mathematical Model PLoS ONE 9 (2014), e90497. |
[31] | [ W. Hao, A. Friedman and C. Marsh, a mathematical model of idiopathic pulmonary fibrosis Plos One 10 (2015), e0135097. |
[32] | [ W. Hao,B. H. Rovin,A. Friedman, Mathematical model of renal interstitial fibrosis, Proc. Natl. Acad. Sci. U.S.A., 111 (2014): 14193-14198. |
[33] | [ W. Hao, L. S. Schlesinger and A. Friedman, Modeling granulomas in response to infection in the lung PLoS ONE 11 (2016), e0148738. |
[34] | [ E. L. Herzog,R. Bucala, Fibrocytes in health and disease, Exp. Hematol., 38 (2010): 548-556. |
[35] | [ K. Iyonaga,M. Takeya,N. Saita,O. Sakamoto,T. Yoshimura,M. Ando,K. Takahashi, Monocyte chemoattractant protein-1 in idiopathic pulmonary fibrosis and other interstitial lung diseases, Hum. Pathol., 25 (1994): 455-463. |
[36] | [ C. Jakubzick,E. S. Choi,B. H. Joshi,M. P. Keane,S. L. Kunkel, Therapeutic attenuation of pulmonary fibrosis via targeting of IL-4-and IL-13-responsive cells, J. Immunol., 171 (2003): 2684-2693. |
[37] | [ C. A. Janeway, T. P., W. M. and M. J. Shlomchik, Immunobiology, 5th edition, The Immune System in Health and Disease 2001. |
[38] | [ R. Khan,R. Sheppard, Fibrosis in heart disease: Understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia, Immunology, 118 (2006): 10-24. |
[39] | [ N. Kikuchi, Y. Ishii, Y. Morishima, Y. Yageta, N. Haraguchi, K. Itoh, M. Yamamoto and N. Hizawa, Nrf2 protects against pulmonary fibrosis by regulating the lung oxidant level and Th1/Th2 balance Respir. Res. 11 (2010), 31. |
[40] | [ C. R. Kliment,T. D. Oury, Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis, Free Radic. Biol. Med., 49 (2010): 707-717. |
[41] | [ P. Kong,P. Christia,N. G. Frangogiannis, The pathogenesis of cardiac fibrosis, Cell. Mol. Life Sci., 71 (2014): 549-574. |
[42] | [ T. Lan, T. Kisseleva and D. A. Brenner, Deficiency of NOX1 or NOX4 Prevents Liver inflammation and Fibrosis in Mice through inhibition of Hepatic Stellate cell activation PLoS ONE 10 (2015), e0129743. |
[43] | [ A. Leask, TGFbeta, cardiac fibroblasts, and the fibrotic response, Cardiovasc. Res., 74 (2007): 207-212. |
[44] | [ A. Leask,D. J. Abraham, TGF-beta signaling and the fibrotic response, FASEB J., 18 (2004): 816-827. |
[45] | [ B. Lee, X. Zhou, K. Riching, K. W. Eliceiri, P. J. Keely, S. A. Guelcher, A. M. Weaver and Y. Jiang, a three-dimensional computational model of collagen network mechanics PLoS ONE 9 (2014), e111896. |
[46] | [ C. Liedtke, T. Luedde, T. Sauerbruch, D. Scholten, K. Streetz, F. Tacke, R. Tolba, C. Trautwein, J. Trebicka and R. Weiskirchen, Experimental liver fibrosis research: Update on animal models, legal issues and translational aspects Fibrogenesis Tissue Repair 6 (2013), 19. |
[47] | [ P. Lijnen,V. Petrov, Transforming growth factor-beta 1-induced collagen production in cultures of cardiac fibroblasts is the result of the appearance of myofibroblasts, Methods Find Exp Clin Pharmacol, 24 (2002): 333-344. |
[48] | [ L. Liu,P. Kou,Q. Zeng,G. Pei,Y. Li,H. Liang,G. Xu,S. Chen, CD4+ T Lymphocytes, especially Th2 cells, contribute to the progress of renal fibrosis, Am. J. Nephrol., 36 (2012): 386-396. |
[49] | [ T. Liu,X. Wang,M. A. Karsdal,D. J. Leeming,F. Genovese, Molecular serum markers of liver fibrosis, Biomark Insights, 7 (2012): 105-117. |
[50] | [ Y. Liu,X. M. Wen,E. L. Lui,S. L. Friedman,W. Cui,N. P. Ho,L. Li,T. Ye,S. T. Fan,H. Zhang, Therapeutic targeting of the PDGF and TGF-beta-signaling pathways in hepatic stellate cells by PTK787/ZK22258, Lab. Invest., 89 (2009): 1152-1160. |
[51] | [ S. Lo Re,D. Lison,F. Huaux, CD4+ T lymphocytes in lung fibrosis: Diverse subsets, diverse functions, J. Leukoc. Biol., 93 (2013): 499-510. |
[52] | [ N. J. Lomas,K. L. Watts,K. M. Akram,N. R. Forsyth,M. A. Spiteri, Idiopathic pulmonary fibrosis: immunohistochemical analysis provides fresh insights into lung tissue remodelling with implications for novel prognostic markers, Int J Clin Exp Pathol, 5 (2012): 58-71. |
[53] | [ P. Lu,K. Takai,V. M. Weaver,Z. Werb, Extracellular matrix degradation and remodeling in development and disease, Cold Spring Harb Perspect Biol, 3 (2011): 1-25. |
[54] | [ I. G. Luzina,N. W. Todd,A. T. Iacono,S. P. Atamas, roles of T lymphocytes in pulmonary fibrosis, J. Leukoc. Biol., 83 (2008): 237-244. |
[55] | [ K. J. Maloy,F. Powrie, Intestinal homeostasis and its breakdown in inflammatory bowel disease, Nature, 474 (2011): 298-306. |
[56] | [ S. Marino,I. B. Hogue,C. J. Ray,D. E. Kirschner, a methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008): 178-196. |
[57] | [ D. I. McRitchie,N. Isowa,J. D. Edelson,A. M. Xavier,L. Cai, Production of tumour necrosis factor alpha by primary cultured rat alveolar epithelial cells, Cytokine, 12 (2000): 644-654. |
[58] | [ D. L. Motola,P. Caravan,R. T. Chung,B. C. Fuchs, Noninvasive biomarkers of Liver Fibrosis: Clinical applications and Future Directions, Curr Pathobiol Rep, 2 (2014): 245-256. |
[59] | [ L. A. Murray,Q. Chen,M. S. Kramer,D. P. Hesson,R. L. Argentieri,et. al, TGF-beta driven lung fibrosis is macrophage dependent and blocked by Serum amyloid P, Int. J. Biochem. Cell Biol., 43 (2011): 154-162. |
[60] | [ S. Nakatsuji,J. Yamate,S. Sakuma, Macrophages, myofibroblasts, and extracellular matrix accumulation in interstitial fibrosis of chronic progressive nephropathy in aged rats, Vet. Pathol., 35 (1998): 352-360. |
[61] | [ Y. E. Nassef,M. M. Shady,E. M. Galal,M. A. Hamed, Performance of diagnostic biomarkers in predicting liver fibrosis among hepatitis C virus-infected Egyptian children, Mem. Inst. Oswaldo Cruz, 108 (2013): 887-893. |
[62] | [ Q.H. Nie,Y. F. Zhang,Y. M. Xie,X. D. Luo,B. Shao,J. Li,Y. X. Zhou, Correlation between TIMP-1 expression and liver fibrosis in two rat liver fibrosis models, World J. Gastroenterol., 12 (2006): 3044-3049. |
[63] | [ D. J. Nikolic-Paterson, CD4+ T cells: A potential player in renal fibrosis, Kidney Int., 78 (2010): 333-335. |
[64] | [ A. Pellicoro,P. Ramachandran,J. P. Iredale,J. A. Fallowfield, Liver fibrosis and repair: Immune regulation of wound healing in a solid organ, Nat. Rev. Immunol., 14 (2014): 181-194. |
[65] | [ M. Perepelyuk,M. Terajima,A. Y. Wang,P. C. Georges,P. A. Janmey,M. Yamauchi,R. G. Wells, Hepatic stellate cells and portal fibroblasts are the major cellular sources of collagens and lysyl oxidases in normal liver and early after injury, Am. J. Physiol. Gastrointest. Liver Physiol., 304 (2013): G605-g614. |
[66] | [ M. P. Rastaldi,F. Ferrario,L. Giardino,G. Dell'Antonio,C. Grillo,P. Grillo,F. Strutz,G. A. Muller,G. Colasanti,G. D'Amico, Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies, Kidney Int., 62 (2002): 137-146. |
[67] | [ E. F. Redente,R. C. Keith,W. Janssen,P. M. Henson,L. A. Ortiz,G. P. Downey,D. L. Bratton,D. W. Riches, Tumor necrosis factor-alpha accelerates the resolution of established pulmonary fibrosis in mice by targeting profibrotic lung macrophages, Am. J. Respir. Cell Mol. Biol., 50 (2014): 825-837. |
[68] | [ S. D. Ricardo,H. van Goor,A. A. Eddy, Macrophage diversity in renal injury and repair, J. Clin. Invest., 118 (2008): 3522-3530. |
[69] | [ J. Rosenbloom,S. V. Castro,S. A. Jimenez, Narrative review: Fibrotic diseases: Cellular and molecular mechanisms and novel therapies, Ann. Intern. Med., 152 (2010): 159-166. |
[70] | [ N. Sakai,A. M. Tager, Fibrosis of two: Epithelial cell-fibroblast interactions in pulmonary fibrosis, Biochim. Biophys. Acta, 1832 (2013): 911-921. |
[71] | [ M. Selman,A. Pardo, role of epithelial cells in idiopathic pulmonary fibrosis: From innocent targets to serial killers, Proc. Am. Thorac. Soc., 3 (2006): 364-372. |
[72] | [ M. Selman,A. Pardo, revealing the pathogenic and aging-related mechanisms of the enigmatic idiopathic pulmonary fibrosis. an integral model, Am. J. Respir. Crit. Care Med., 189 (2014): 1161-1172. |
[73] | [ G. Shiha, Serum hyaluronic acid: A promising marker of hepatic fibrosis in chronic hepatitis B, Saudi J Gastroenterol, 14 (2008): 161-162. |
[74] | [ Y. Shimizu,H. Kuwabara,A. Ono,S. Higuchi,T. Hisada,K. Dobashi,M. Utsugi,Y. Mita,M. Mori, Intracellular Th1/Th2 balance of pulmonary CD4(+) T cells in patients with active interstitial pneumonia evaluated by serum KL-6, Immunopharmacol Immunotoxicol, 28 (2006): 295-304. |
[75] | [ M. S. Simonson,F. Ismail-Beigi, Endothelin-1 increases collagen accumulation in renal mesangial cells by stimulating a chemokine and cytokine autocrine signaling loop, J. Biol. Chem., 286 (2011): 11003-11008. |
[76] | [ F. Strutz,M. Zeisberg, renal fibroblasts and myofibroblasts in chronic kidney disease, J. Am. Soc. Nephrol., 17 (2006): 2992-2998. |
[77] | [ F. Strutz,M. Zeisberg,A. Renziehausen,B. Raschke,V. Becker,C. van Kooten,G. Muller, TGF-beta 1 induces proliferation in human renal fibroblasts via induction of basic fibroblast growth factor (FGF-2), Kidney Int., 59 (2001): 579-592. |
[78] | [ F. Tacke,H. W. Zimmermann, Macrophage heterogeneity in liver injury and fibrosis, J. Hepatol., 60 (2014): 1090-1096. |
[79] | [ N. Takemoto,N. Koyano-Nakagawa,T. Yokota,N. Arai,S. Miyatake,K. Arai, Th2-specific DNase I-hypersensitive sites in the murine IL-13 and IL-4 intergenic region, Int. Immunol., 10 (1998): 1981-1985. |
[80] | [ R. J. Tan,Y. Liu, Macrophage-derived TGF-beta in renal fibrosis: not a macro-impact after all, Am. J. Physiol. Renal Physiol., 305 (2013): F821-822. |
[81] | [ T. T. Tapmeier,A. Fearn,K. Brown,P. Chowdhury,S. H. Sacks,N. S. Sheerin,W. Wong, Pivotal role of CD4+ T cells in renal fibrosis following ureteric obstruction, Kidney Int., 78 (2010): 351-362. |
[82] | [ A. L. Tatler,G. Jenkins, TGF-beta activation and lung fibrosis, Proc. Am. Thorac. Soc., 9 (2012): 130-136. |
[83] | [ S. S. Veidal,M. A. Karsdal,E. Vassiliadis,A. Nawrocki,M. R. Larsen,Q. H. Nguyen,P. Hagglund,Y. Luo,Q. Zheng,B. Vainer,D. J. Leeming, MMP mediated degradation of type Ⅵ collagen is highly associated with liver fibrosis-identification and validation of a novel biochemical marker assay, PLoS ONE, 6 (2011): e24753. |
[84] | [ R. Venkayya,M. Lam,M. Willkom,G. Grunig,D. B. Corry, The Th2 lymphocyte products IL-4 and IL-13 rapidly induce airway hyperresponsiveness through direct effects on resident airway cells, Am. J. Respir. Cell Mol. Biol., 26 (2002): 202-208. |
[85] | [ T. Veremeyko, S. Siddiqui, I. Sotnikov, A. Yung and E. D. Ponomarev, IL-4/IL-13-dependent and independent expression of mir-124 and its contribution to M2 phenotype of monocytic cells in normal conditions and during allergic inflammation PLoS ONE 8 (2013), e81774. |
[86] | [ M. A. Vernon,K. J. Mylonas,J. Hughes, Macrophages and renal fibrosis, Semin. Nephrol., 30 (2010): 302-317. |
[87] | [ T. Wada,K. Furuichi,N. Sakai,Y. Iwata,K. Kitagawa,Y. Ishida,T. Kondo,H. Hashimoto,Y. Ishiwata,N. Mukaida,N. Tomosugi,K. Matsushima,K. Egashira,H. Yokoyama, Gene therapy via blockade of monocyte chemoattractant protein-1 for renal fibrosis, J. Am. Soc. Nephrol., 15 (2004): 940-948. |
[88] | [ T. Wada,H. Yokoyama,K. Matsushima,K. Kobayashi, Monocyte chemoattractant protein-1: does it play a role in diabetic nephropathy?, Nephrol. Dial. Transplant., 18 (2003): 457-459. |
[89] | [ L. Wei, Immunological aspect of cardiac remodeling: T lymphocyte subsets in inflammation-mediated cardiac fibrosis, Exp. Mol. Pathol., 90 (2011): 74-78. |
[90] | [ X. Weng,L. Wang,J. Wang,Y. Hu,H. Du,C. Xu,Y. Xing,X. Li,J. Xiao,Q. Zhang, Grain number, plant height, and heading date7 is a central regulator of growth, development, and stress response, Plant Physiol., 164 (2014): 735-747. |
[91] | [ T. A. Wynn, Fibrotic disease and the T(H)1/T(H)2 paradigm, Nat. Rev. Immunol., 4 (2004): 583-594. |
[92] | [ L. Xiao,Y. Du,Y. Shen,Y. He,H. Zhao,Z. Li, TGF-beta 1 induced fibroblast proliferation is mediated by the FGF-2/ErK pathway, Front Biosci (Landmark Ed), 17 (2012): 2667-2674. |
[93] | [ A. Yates,R. Callard,J. Stark, Combining cytokine signalling with T-bet and GaTa-3 regulation in Th1 and Th2 differentiation: a model for cellular decision-making, J. Theor. Biol., 231 (2004): 181-196. |
[94] | [ H. Zhao,Y. Dong,X. Tian,T. K. Tan,Z. Liu,Y. Zhao,Y. Zhang,D. C. h. Harris,G. Zheng, Matrix metalloproteinases contribute to kidney fibrosis in chronic kidney diseases, World J Nephrol, 2 (2013): 84-89. |
[95] | [ J. Zhao, N. Tang, K. Wu, W. Dai, C. Ye, J. Shi, J. Zhang, B. Ning, X. Zeng and Y. Lin, Mir-21 simultaneously regulates ErK1 signaling in HSC activation and hepatocyte EMT in hepatic fibrosis PLoS ONE 9 (2014), e108005. |
1. | Qu Qinqin, Gao Chao, Qiu Lei, Liu Yue, 2019, Congestion control strategy for power scale-free communication network by link addition, 978-1-7281-0510-9, 1714, 10.1109/ICEMI46757.2019.9101412 |