Citation: Davide Bellandi. On the initial value problem for a class of discrete velocity models[J]. Mathematical Biosciences and Engineering, 2017, 14(1): 31-43. doi: 10.3934/mbe.2017003
[1] | [ G. Ajmone Marsan,N. Bellomo,A. Tosin, null, Complex Systems and Society: Modeling and Simulation, Springer, 2013. |
[2] | [ L. Arlotti,E. De Angelis,L. Fermo,M. Lachowicz,N. Bellomo, On a class of integro-differential equations modeling complex systems with nonlinear interactions, Appl.Math. Lett., 25 (2012): 490-495. |
[3] | [ N. Bellomo,A. Bellouquid, Global solution to the Cauchy problem for discrete velocity models of vehicular traffic, J. Differ. Equations, 252 (2012): 1350-1368. |
[4] | [ N. Bellomo,V. Coscia,M. Delitala, On the mathematical theory of vehicular traffic fow Ⅰ -Fluid dynamic and kinetic modeling, Math. Mod. Meth. Appl. Sci., 12 (2002): 1801-1843. |
[5] | [ N. Bellomo,C. Dogbé, On the modelling of traffic and crowds -a survey of models, speculations and perspectives, SIAM Rev., 53 (2011): 409-463. |
[6] | [ N. Bellomo,D. Knopoff,J. Soler, On the difficult interplay between life, "complexity", and mathematical sciences, Math. Mod. Meth. Appl. Sci., 23 (2013): 1861-1913. |
[7] | [ N. Bellomo, B. Piccoli and A. Tosin, Modeling crowd dynamics from a complex system viewpoint Math. Mod. Meth. Appl. Sci. 22 (2012), 1230004, 29pp. |
[8] | [ A. Bellouquid, E. De Angelis and L. Fermo, Towards the modeling of vehicular traffic as a complex system: A kinetic theory approach Math. Mod. Meth. Appl. Sci. 22(2012), 1140003, 35pp. |
[9] | [ A. Bellouquid,M. Delitala, null, Mathematical Modeling of Complex Biological Systems. A Kinetic Theory Approach, Birkhäuser, Boston, 2006. |
[10] | [ A. Benfenati,V. Coscia, Nonlinear microscale interactions in the kinetic theory of active particles, Appl. Math. Lett., 26 (2013): 979-983. |
[11] | [ V. Coscia,M. Delitala,P. Frasca, On the mathematical theory of vehicular traffic flow Ⅱ: Discrete velocity kinetic models, Int. J. Non-Linear Mech., 42 (2007): 411-421. |
[12] | [ V. Coscia,L. Fermo,N. Bellomo, On the mathematical theory of living systems Ⅱ: The interplay between mathematics and system biology, Comput. Math. Appl., 62 (2011): 3902-3911. |
[13] | [ M. Delitala,A. Tosin, Mathematical modeling of vehicular traffic: A discrete kinetic theory approach, Math. Mod. Meth. Appl. Sci., 17 (2007): 901-932. |
[14] | [ L. Arlotti, N. Bellomo, E. De Angelis and M. Lachowicz, Generalized Kinetic Models in Applied Sciences World Scientific, New Jersey, 2003. |
[15] | [ J. Banasiak and M. Lachowicz Methods of Small Parameter in Mathematical Biology Birkhauser, 2014. |
[16] | [ S. Kaniel,M. Shinbrot, The Boltzmann equation. Ⅰ. Uniqueness and local existence, Math. Phys., 58 (1978): 65-84. |
[17] | [ B. S. Kerner, The Physics of Traffic, Empirical Freeway Pattern Features Engineering Applications and Theory, Springer, 2004. |
[18] | [ P. Lax, Hyperbolic Partial Differential Equations Courant Lecture Notes, 2006. |