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Abstract. In this paper we investigate the initial value problem for a class of

hyperbolic systems relating the mathematical modeling of a class of complex
phenomena, with emphasis on vehicular traffic flow. Existence and uniqueness

for large times of solutions, a basic requisite both for models building and for

their numerical implementation, are obtained under weak hypotheses on the
terms modeling the interaction among agents. The results are then compared

with the existing literature on the subject.

1. Introduction. In recent years the mathematical modeling based on suitable
generalizations of kinetic theory has shown its ability to describe many of the fea-
tures characterizing the phenomenon of complexity [14]. These features include,
among others, the emergence of collective behaviors that are not immediately de-
ducible from the mutual microscopic interactions among the individual constituents.
The systems exhibiting aspects typical of complexity that have been successfully ap-
proached by kinetic modeling include social [1] and biological systems [6, 12, 15], as
well as pedestrian crowds [7] and vehicular traffic flow [4, 5, 8]. The phenomenol-
ogy of the latter reveals a number of features, such as stop-and-go waves and ghost
queues [17], that makes vehicular traffic a prototype of complex systems.

Models referring to generalized kinetic theory describe the system under inves-
tigation using a distribution function f(t, x, v) such that f(t, x, v)dxdv represents
the number of vehicles at time t in an infinitesimal neighborhood (x+dx, v+dv) in
the phase space, x being the spatial position and v the velocity. The evolution of f
is then obtained as solution to a partial differential equation describing the balance
in time between inflow and outflow in the neighborhood (x, x+ dx)× (v, v+ dv) as
resulting from interactions among vehicles. The granular aspects of vehicular traf-
fic naturally suggest the use of discrete velocities kinetic models [13, 11], in which
the speed v can only assume a finite number of values, corresponding to vehicles
collected according their “typical” velocity. In the discrete velocities modeling the
distribution function becomes a vector function f = (f1(t, x), . . . , fn(t, x)), each
component fi(t, x) related to the corresponding velocity class of vehicles.

This paper deals with the existence and uniqueness of solutions to a large class
of discrete velocity kinetic models related the mathematical description of vehicular
traffic flow. The question of well-posedness is of fundamental relevance both for a
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proper selection of mathematically meaningful class of models and for the robust-
ness of their numerical implementation and simulation. A basic requirement for any
admissible mathematical model of vehicular flow is that it should posses global (i.e.,
for large times) existence and uniqueness of solutions in any traffic condition, pro-
vided the interaction terms are “sufficiently reasonable”. It is worth observing that
the mathematical problem related to the well-posedness for large times of discrete
velocities traffic models is a difficult task due to the nonlinearity of interactions
and to their hyperbolic multi-characteristics aspect. This issue has been addressed
in [2], while the recent, more comprehensive, results are given in [3], which is the
starting point of the present work. In the latter the Authors obtain global in time
existence of solutions under general hypotheses. Their approach, however, requires
a key tool the introduction of an a priori cut off on the interaction terms that freezes
the interactions when the traffic density reaches a critical value. As the Authors of
[3] themselves emphasize in their concluding remarks, such an assumption, though
mimicking the phenomenological observations that show the existence of different
phases in the traffic flow corresponding to different densities [17], should possibly
appear as a byproduct of the model rather than being introduced into it from the
very beginning in order to achieve the well-posedness.

In this paper we prove global existence and uniqueness under hypotheses similar
to that in [3], but under weaker assumptions on the structure of the interaction
terms. Specifically, we prove global in time existence and uniqueness of solution
without assuming that the interaction terms as the density of vehicles becomes
large. In Sect. 2 the mathematical problem is formulated and the main hypotheses
on the interaction terms are introduced. The main results of this paper are given
in Sect. 3 where existence and uniqueness of solutions for any time is proven in the
case of non-local interactions. Finally, Sect. 4 reports a toy model that explicitly
shows how the global existence results of Sects. 3 are in fact more general than
those available in the existing literature, and ends with some concluding remarks
and perspectives.

2. Statement of the problem. In this paper we study the initial-value problem
for a class of discrete velocities models of the form:{

∂tfi(t, x) + vi∂xfi(t, x) = Ji(f)(t, x),

fi(0, x) = f i(x),
i = 1, . . . , n. (1)

Such a class of models, here applied to the study of vehicles traffic flow, find appli-
cations al in the context of mathematical biology.

Here the vector distribution function f = (f1, . . . , fn) is such that:

fi = fi(t, x) : R+ × R→ R+, i = 1 . . . , n,

and the velocity can assume only a finite set {v1, . . . , vn} of values, with vi < vi+1 for
i = 1, . . . , n− 1, while f i(x) are the values of the distribution function components
at t = 0. Introducing the number density:

ρ(t, x) :=

n∑
i=1

fi(t, x), (2)

such that ρ(x, t)dx represents the number af cars at time t in the spatial neighbor-
hood (x, x+ dx), the terms Ji at right hand side of (1) describing the interactions
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between the vehicles of the i-class and the others read:

Ji(f) = Γi(f)− fiΛi(f), (3)

where:

Γi(f)(t, x) :=

n∑
h,k=1

fh(t, x)

∫
Dx

η(ρ(t, y))Bihk(ρ(t, y))fk(t, y)dy, (4)

is a gain term that describes the inflow of the i-th velocity class, while:

Λi(f)(t, x) :=

n∑
h=1

∫
Dx

η(ρ(t, y))fh(t, y)dy. (5)

is the corresponding loss term, i.e., the flow of cars leaving the i-th velocity class.
The presence of an integral in the r.h.s. of (4), (5) takes into account that vehicles
exhibit non-local interactions in a domain related to a certain drivers’ visibility
zone. In other words, a vehicle positioned in x interacts with other cars within the
interaction domain Dx ⊆ R, and it does not interact with other vehicles which are
outside from interaction domain, in general

Dx = [x−∆−, x+ ∆+],

where ∆± ≥ 0 and (∆+,∆−) 6= (0, 0). Moreover:

• η is the encounter rate that gives the number of interactions per unit time.
We assume that it depends on the local number density ρ.

• Bihk is a transition probability density that gives the probability that a vehicle
in the h-th velocity class changes its velocity to vi after an interaction with a
vehicle with velocity vk.

From the definition of Bihk itself, the following properties:

Bihk(ρ) ≥ 0,

n∑
i=1

Bihk(ρ) = 1, ∀ρ ≥ 0, ∀h, k = 1, . . . , n. (6)

hold true. Thanks to (6) we have that:
n∑
i=1

Ji(f) = 0. (7)

This relation reflects the absence in the system of proliferative and destructive
effects, and will lead to the conservation of the total number of vehicles, as we shall
see later on.

Now we state the basic assumptions we need in order to get local and global
existence of solutions for (1).

• The encounter rate η is Lipschitz continuous and bounded, i.e., there exist
Lη > 0 and Cη > 0 such that:

|η(ρ1)− η(ρ2)| ≤ Lη|ρ1 − ρ2|, ∀ρ1, ρ2 ∈ R,

|η(ρ)| ≤ Cη, ∀ρ ∈ R.
(8)

• Transition probability density Bihk is locally Lipschitz for all h, k, i = 1, . . . , n,
i.e, for all r > 0 there exists a CBihk,r > 0 such that:

|Bihk(ρ1)−Bihk(ρ2)| ≤ CBihk,r|ρ1 − ρ2|, ∀ρ1, ρ2 ∈ R with |ρ1| < r, |ρ2| < r, (9)

and verifies (6).
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These hypotheses are crucial in order to have global solutions to system (1) in a
suitable space.

3. Global existence and uniqueness of solutions. The well-posedness of prob-
lem (1) in the spatially homogeneous case is well known. We refer to the paper [13],
in which the result is achieved under similar hypotheses. Here we study the non-
homogeneous problem, pointing out that (1) is a system of n semilinear first-order
hyperbolic equations. Thanks to the fact that the velocities vi are constant we get
the existence of characteristics for all t ≥ 0 [18]. If we fix the point (t, x) in the
t− x plane the i-th characteristic passing through (t, x) is:

ξ = γi(τ, t, x) = x+ vi(τ − t).

Finding no problem for existence of characteristics we can introduce the idea of
mild solution, presented in [16] for kinetic equations, that is related integrability
properties of f ,

Definition 3.1. Let T > 0 be a positive number, a mild solution of (1) is a function
f : [0, T ]× R→ Rn verifying

fi(t, x) = f i(γi(0, t, x)) +

∫ t

0

Ji(f(τ, γi(τ, t, x)))dτ, (10)

for all i = 1, . . . , n and for all (t, x) ∈ [0, T ]× R.

We put:

X = (L1(R) ∩ L∞(R))n,

and define:

‖u‖X := ‖u‖1 + ‖u‖∞, u ∈ X,
where:

‖u‖∞ := max
i
‖ui‖L∞ , and ‖u‖1 :=

n∑
i=1

‖ui‖L1 .

It is easy to verify that (X, ‖ · ‖X) is a Banach space.

Lemma 3.2. Let η and Bihk be functions verifying (6), (8) and (9), then function
J , defined in (3)-(5), maps X into itself.

Proof. We have to prove that if f ∈ X then:

‖J(f)‖X = ‖J(f)‖1 + ‖J(f)‖∞ < +∞.

We start analyzing the L1 norm ‖ · ‖1. We have:∫
R
|Ji(f(x))|dx ≤

∫
R
|Γi(f(x))|dx+

∫
R
|fi(x)Λi(f(x))|dx.

Evaluating the gain term, we find∫
R
|Γi(f(x))|dx ≤

n∑
h,k=1

∫
R
|fh(x)|

(∫
Dx

|η(ρ(y))Bihk(ρ(y))fk(y)|dy
)
dx

≤
n∑

h,k=1

‖fh‖L1

∫
R
|η(ρ(y))Bihk(ρ(y))fk(y)|dy,
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and using the boundedness of η and Bihk we find∫
R
|Γi(f(x))|dx ≤

n∑
h,k=1

Cη‖fh‖L1

∫
R
|fk(y)|dy =

n∑
h,k=1

Cη‖fh‖L1‖fk‖L1 < +∞.

Similarly, we have:∫
R
|fi(x)Λi(f(x))|dx ≤ ‖fi‖L1

n∑
h=1

∫
R
|η(ρ(y))fh(y)|dy

≤ Cη‖fi‖L1

n∑
h=1

∫
R
|fh(y)|dy ≤ Cη‖fi‖

n∑
h=1

‖fh‖ < +∞.

Coming to analyze the L∞ part, we find:

|Γi(f(x))| ≤
n∑

h,k=1

‖fh‖L∞
∫
Dx

|η(ρ(y))Bihk(ρ(y))fk(y)|dy

≤ Cη
n∑

h,k=1

‖fh‖L∞‖fk‖L1 < +∞,

which gives the boundedness of ‖Γi(f)‖L∞ . Furthermore:

|fi(x)Λi(f(x))| ≤ Cη‖fi‖L∞
n∑

h,k=1

‖fh‖L1 < +∞,

which ends the proof.

Lemma 3.3. Let η and Bihk be functions verifying (6), (8) and (9), then function
J is locally Lipschitz on X.

Proof. Let r > 0 and f, g ∈ X such that ‖f‖X , ‖g‖X < r. Then:

|Ji(f(x))− Ji(g(x))| ≤ |Γi(f(x))− Γi(g(x))|+ |fi(x)Λi(f(x))− gi(x)Λi(g(x))|.

Now:

|Γi(f(x))− Γi(g(x))| ≤
n∑

h,k=1

∣∣∣∣fh(x)

∫
Dx

η(ρf (y))Bihk(ρf (y))fk(y)dy

− gh(x)

∫
Dx

η(ρg(y))Bihk(ρg(y))gk(y)dy

∣∣∣∣
≤

n∑
h,k=1

|fh(x)− gh(x)|
∫
R
|η(ρf (y))Bihk(ρf (y))fk(y)|dy

+

n∑
h,k=1

|gh(x)|
∫
R
|η(ρf (y))Bihk(ρf (y))fk(y)− η(ρg(y))Bihk(ρg(y))gk(y)|dy

= I1(x) + I2(x).

Reminding that, by 9, the quantities Bihk are locally Lipschitz for all i, h, k with
Lipschitz constants CBihkr we find the following inequalities

I1(x) ≤ Cη|fh(x)− fk(x)|
∫
R
fk(y)dy
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≤ Cη
n∑

h,k=1

‖fk‖L1 |fh(x)− gh(x)| ≤ Cηnr
n∑
h=1

|fh(x)− gh(x)|,

from which we have
‖I1‖L1 ≤ Cηnr‖f − g‖1, (11)

‖I1‖L∞ ≤ Cηn2r‖f − g‖∞. (12)

For I2,

I2(x) ≤
n∑

h,k=1

|gh(x)|
(∫

R

∣∣η(ρf (y))Bihk(ρf (y))− η(ρg(y))Bihk(ρg(y))
∣∣ |fk(y)|dy

+

∫
R
|Bihk(ρg(y))η(ρg(y))(fk(y)− gk(y))|dy

)
≤

n∑
h,k=1

|gh(x)|
(
‖fk‖L∞

∫
R

(
Lη + LBihkCη

)
|ρf (y)− ρg(y)| dy

+Cη

∫
R
|fk(y)− gk(y)|dy

)
≤ rn (Lη + (1 + Lβr)Cη) ‖f − g‖1

n∑
h=1

|gh(x)|,

with Cβr = maxi,h,k CBihkr, from which follows,

‖I2‖L1 ≤ r2n (Lη + (1 + Lβr)Cη) ‖f − g‖1, (13)

‖I2‖L∞ ≤ r2n2 (Lη + (1 + Lβr)Cη) ‖f − g‖1. (14)

In a similar way we have

|fi(x)Λi(f)(x)− gi(x)Λi(g)(x)| ≤
n∑
h=1

|fi(x)− gi(x)|
∫
R
|η(ρf (y))fh(y)|dy

+

n∑
h=1

|gi(x)|
∫
R
|η(ρf (y))fh(y)− η(ρg(y))gh(y)|dy,

which leads to the following inequalities

‖fiΛi(f)− giΛi(g)‖L∞ ≤ Cηr‖f − g‖∞ +
(
Cηr + Lηr

2
)
‖f − g‖1, (15)

and
‖fiΛi(f)− giΛi(g)‖L1 ≤

(
2Cηr + Lηr

2
)
‖f − g‖1. (16)

Combining the previous inequalities we conclude the proof.

The previous lemma is crucial in order to use a fixed point argument in the
following theorem.

Theorem 3.4 (Local existence and uniqueness). Let η and Bihk be functions ver-

ifying (6), (8), (9) and let f ∈ X. Then, there exists T > 0 and an unique
f ∈ C([0, T ], X) mild solution of (1).

Proof. Let δ > 0 such that ‖f‖X ≤ δ. We take r := 1 + δ and 0 < a ≤ 1 and define:

Dr(a) :=

{
u ∈ C([0, a], X)

∣∣∣∣∣‖u‖∗ := sup
t∈[0,a]

‖u(t)‖X ≤ r

}
.

Let u ∈ C([0, a], X), We introduce the map:

Φ(u)i(t, x) := f i(γi(0, t, x)) +

∫ t

0

Ji(u(τ, γi(τ, t, x)))(τ, γi(τ, t, x))dt. (17)
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Clearly Φ(u) ∈ C([0, a], X). If we take u, v ∈ C([0, a], X) we easily find the following
estimate:

‖Φ(u)(t)‖X ≤ δ +

∫ t

0

(‖J(u(τ))− J(0)‖X + ‖J(0)‖X)ds,

and thus, reminding that J(0) = 0,

‖Φ(u)(t)‖X ≤ δ + aLr,

with Lr > 0 the Lipschitz constant of J . Moreover:

‖Φ(u)(t)− Φ(v)(t)‖X ≤
∫ t

0

‖J(u(τ))− J(v(τ))‖Xdτ ≤ aLr‖u− v‖∗,

and thus:

‖Φ(u)− Φ(v)‖∗ ≤ aLr‖u− v‖∗. (18)

Then, for every a ∈ (0, Lr/2], we have that Φ(u) ∈ Dr(a) and that Φ is Lipschitz in
Dr(a) with Lipschitz constant less then or equal to 1/2. Since Dr(a) is a complete
metric space with respect to the metric induced by ‖ · ‖L∞ , we have the existence
and uniqueness of a fixed point f = Φ(f) ∈ Dr(a), which is also solution of (1).

Theorem 3.4 states that if the initial datum f belongs to X, then there is a mild
solution of (1), overlooking that we are interested to positive initial data. Now, let
us suppose that the initial datum f ∈ X is positive, i.e. f i(x) ≥ 0 for all x ∈ R and
for i = 1, . . . , n. Let us defined the total number of vehicles at time t as:

N(t) :=

∫
R
ρ(t, x)dx =

∫
R

(
n∑
i=1

fi(t, x)

)
dx, (19)

Integrating on x the n equations of (1), summing over i and taking account of (7),
we have:

n∑
i=1

∫
R

(∂tfi(t, x) + vi∂xfi(t, x))dx = 0, (20)

from which:
n∑
i=1

(∫
R
∂tfi(t, x)dx+ vi[fi(t, x))]+∞−∞

)
=

n∑
i=1

∫
R
∂tfi(t, x)dx = 0, (21)

and finally:
dN

dt
(t) = 0, (22)

that is, the total vehicles number is conserved and is equal to its initial value N0.
The following proposition shows that if the system has non-negative initial data

then the solution remains non-negative.

Lemma 3.5. Let f ∈ C([0, T ], X) be a mild solution to problem (1) corresponding
to a non-negative initial datum. Then, f remains non-negative for all 0 ≤ t ≤ T .

Proof. If f is a non-negative intial datum, then f(x) ≥ 0 for all x ∈ R. Given a
x ∈ R such that f i(x) > 0 for all indexes then the solution components along the
characteristics remain non-negative for a certain time interval. If, on the contrary,
f i(x) = 0 for i ∈ L ⊆ {1, . . . , n}, then, for these indexes,

Ji(f(x)) = Γi(f(x)) ≥ 0,
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and thus along characteristics they are non-decreasing functions, while remaining
components remains non-negative for a certain time interval, always along charac-
teristics. If f is a solution of (1) we can write it as in (10). If we have a point
(τ , ξ) ∈ [0, T ] × R such that fi(τ , ξ) = 0, for i ∈ L ⊆ {1, . . . , n}, then the integral
in r.h.s. of (10bigs) is greater than or equal to zero, and fi has to remain greater
than or equal to zero in an interval (t, t∗).

The previous proposition, together with the conservation of the total number of
vehicles, ensures that:

‖f(t)‖1 =

n∑
i=1

∫
R
|fi(t, x)|dx =

n∑
i=1

∫
R
fi(t, x)dx = N0. (23)

In Theorem 3.4 we established existence and uniqueness of local in-time solutions
to (1). Putting:

Tf := sup (T > 0 |∃u ∈ C([0, T ], X) solution of (1)) ,

then, stitching together the solutions, we obtain the existence of a unique maximal
mild solution u ∈ C([0, Tf ), X). Our next goal is to prove that for system (1) with
positive initial data we actually have Tf = +∞.

Lemma 3.6. Let f ∈ C([0, Tf ), X) the unique mild solution of (1). If Tf < +∞
then:

lim
t→Tf

‖f(t)‖X = +∞

Proof. First of all we observe that the length T of the existence time interval [0, T ]
given by Theorem 3.4 is only related to the norm δ of initial data. Let Tf < ∞
and {tn} a sequence of instants such that tn < Tf and tn → Tf . Assume that

C := supn ‖u(tn)‖X <∞. Then, from Theorem 3.4 there exists a TC > 0 such that
we have a unique solution f ∈ C([0, TC ], X) to (1) for all initial data with ‖f‖ ≤ C.
Now we fix an index n ∈ N such that tn + TC > Tf and consider the solution

f ∈ C([0, tn], X) to (1) as well as the solution fn ∈ C([0, TC ], X) corresponding to
the initial value f(tn). Pasting together these latter we obtain a solution defined
in [0, tn + TC ], contradicting the property of Tf . Then we necessarily have that

‖f(t)‖X →∞ when t→ Tf .

Thanks to the previous Lemma we have only to verify that:

lim
t→Tf

‖u(t)‖X < +∞.

Moreover, since (23) says that the norm ‖ · ‖1 is constant in time, we restrict our
considerations to find a bound for the norm ‖ · ‖∞, reminding that η and Bihk are
both bounded functions. We have:

|fi(t, x)| = fi(t, x) = f i(γi(0, t, x)) +

∫ t

0

Ji(f(τ, γi(τ, t, x)))dτ

≤ f i(γi(0, t, x)) +

∫ t

0

Γi(f(τ, γi(τ, t, x)))dτ

≤ ‖f i‖L∞ +

n∑
h,k=1

Cη

∫ t

0

fh(τ, γi(τ, t, x))

∫
Dγi(τ,t,x)

fk(τ, y)dydτ
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≤ ‖f i‖L∞ +

n∑
h=1

Cη

∫ t

0

fh(τ, γi(τ, t, x))

∫
R

n∑
k=1

fk(τ, y)dydτ

≤ ‖f‖∞ + Cη

∫ t

0

N(τ)

n∑
h=1

fh(τ, γi(τ, t, x))dτ

≤ ‖f‖∞ + CηN0

∫ t

0

n∑
h=1

‖fh(τ)‖L∞dτ

≤ ‖f‖∞ + nCηN0

∫ t

0

‖f(τ)‖∞dτ,

and thus:

‖f(t)‖∞ ≤ ‖f‖∞ + nCηN0

∫ t

0

‖f(τ)‖∞dτ.

Using the Gronwall’s lemma we find:

‖f(t)‖∞ ≤ ‖f‖∞ exp (nCηN0t) ,

which gives us the bound for ‖f‖∞. This ends the proof of following theorem.

Theorem 3.7 (Global existence and uniqueness). Let η and Bihk be functions veri-

fying (6), (8), (9) and let f ∈ X a positive initial data. Then, there exists a unique
mild solution f ∈ C([0,+∞), X) to (1).

We conclude discussion about well-posedness of Cauchy problem (1), with the
following theorem which gives countinuous dependence on initial data.

Theorem 3.8. Let f, g ∈ C([0, T ), X) be two solution of (1) related to two different
initial data, respectively f, g ∈ X, then for all b ∈ [0, T ) there exists L ≥ 0 such
that

‖f(t)− g(t)‖X ≤ eLt‖f − g‖X ,
for all t ∈ [0, b].

Proof. Fixed b ∈ [0, T ), then there exists a δ > 0 such that Bδ(0) contains the whole
trjectories of solutions, i.e.

f(t) ∈ Bδ(0), g(t) ∈ Bδ(0), for all t ∈ [0, b],

Reminding that J is locally Lipschitz, let L ≥ 0 be the Lipschitz constant of J
related to Bδ(0),

‖f(t)− g(t)‖X ≤ ‖f − g|‖X +

∫ t

0

‖J(f(τ))− J(g(τ))‖Xdτ

≤ ‖f − g|‖X + L

∫ t

0

‖f(τ)− g(τ)‖Xdτ,

using Gronwall’s inqueality we conclude the proof.

4. Discussion and concluding remarks. To the best of our knowledge the most
general result so far available concerning the well-posedness of (1) is in [3], where
the Authors study the initial value problem:{

∂tfi(t, x) + vi∂xfi(t, x) = χ(ρ(t, x) ≤ ρc)Ji(f)(t, x),

fi(0, x) = f i(x),
i = 1, . . . , n. (24)
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Here the interaction terms Ji, that have the same structure as in (3), differ from
those defined in (4), (5) by the presence, under the integral sign in Γi and Λi, of a non
negative function w(x, y), with

∫
Dx

w(x, x + y)dy = 1, that weigh the interactions

over the visibility zone Dx in front of the vehicle in x and whose addition is not
relevant in respect to the well-posedness issue. Crucial in the results of [3] is the
presence in the r.h.s. of (24) of the function χ, defined as:

χ(ρ ≤ ρc) =

{
1 if ρ ≤ ρc,
0 if ρ > ρc,

(25)

where ρc is a prescribed critical density. The Authors of [3] justify the introduction
of the cut-off function (25) by observing that the vehicles are obliged to stop when
the traffic density reaches a critical value, due to overcrowding, as is largely shown
in the experimental fundamental diagrams speed-density. On the other hand, it is
apparent that when ρ > ρc in (24) all the vehicles in each velocity class continue
to move at their own speed, i.e., each component fi(t, x) of the distribution func-
tion is transported along the corresponding characteristic, leading to the unrealistic
situation in which at high density the vehicles stop to interact.

The aim of this section is to show, by a numerical example, that situations can
occur in which the assumption that the interactions freeze at high density seems
to be restrictive. In the sequel we furnish a toy model in which, given an arbitrary
ρc > 0, we are able to find Bihk and η satisfying (8) and (9) (that ensures global
well-posedness), an interaction interval Dx = [x, x+ ∆] with ∆ > 0 and initial data
f , with:

‖f‖∞ ≤ ρc, ρ(x) =

n∑
i=1

f i(x) ≤ ρc, ∀x ∈ R,

for which there exist t∗ > 0 and x∗ ∈ R such that ρ(t∗, x∗) > ρc. In this way we
show that the assumption made in [3] that ρ does not exceed ρc is not coherent
with the general form of the initial value problem (1). We consider a two velocities
system, that is, we assume that every vehicle belongs to one of the two possible
velocity classes f1, corresponding to v1 = 0, and f2 that corresponds to v2 = 1.
The transition probability densities for this case model are assumed to be:

B1
hk =

(
1 1
1 0

)
, B2

hk =

(
0 0
0 1

)
, h, k = 1, 2.

and η(ρ) = 1. Hence the first line of (1) become:
∂tf1(t, x) = f2(t, x)

∫
Dx

f1(t, y)dy,

∂tf2(t, x) + ∂xf2(t, x) = −f2(t, x)

∫
Dx

f1(t, y)dy.

(26)

We solve numerically the Cauchy problem for (26) relative to initial data f1(x),
f2(x) having compact support and such that if y ∈ supp(f1) and x ∈ supp(f2)
then x ≤ y. Specifically, we choose the initial data as in Figure 1. A group of
vehicles, corresponding to the component f1(x) of the initial distribution function
f is at rest ahead of a group f2(x) of vehicles that is moving with velocity v = 1.
The prescribed value of the “critical” density ρc is 5. In Table 1 we analyze the role
of the size ∆ of the interaction domain Dx. The maximum ρt∗ of the equilibrium
density increases as ∆ decreases, and is reached at a time t∗ that increases with
increasing ∆.
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Figure 1. Initial data corresponding to ρc = 5. The class f1 of velocity

v1 = 0 is on the right in red color, the class f2 of velocity v2 = 1 is represented

by the bimodal distribution on the left in blue color.

∆ t∗ ρt∗

1.05 4.5425 5.1890
1.00 4.5885 5.2214
0.95 4.6365 5.2660
0.90 4.6855 5.3269
0.85 4.7365 5.4092
0.80 4.7925 5.5192
0.75 4.8555 5.6652
0.70 4.9255 5.8575
0.65 5.0025 6.1090
0.60 5.4595 6.4658

∆ t∗ ρt∗

0.55 5.4985 6.9726
0.50 5.5406 7.5731
0.45 5.5786 8.3056
0.40 5.6106 9.2196
0.35 5.6346 10.3606
0.30 5.6536 11.7122
0.25 5.6706 13.0508
0.20 5.6846 13.7962
0.15 5.6926 13.3582

Table 1. Maximum ρt∗ of the density reached at time t∗ as function of the

size ∆ of the interaction domain Dx. Observe that in any case ρt∗ is greater
that ρc.

In Figure 2, the final configurations for different values of ∆ are plotted for the
same initial data as in Figure 1. Again, we stress that, if we take ∆ small eough,
the critical density is passed.

In summary, the well-posedness results of Section. 3 complete those of [3], fur-
nishing global existence and uniqueness of solutions to (1) in its general form, i.e.,
in any traffic condition. Along the lines of what the Authors of [3] point out in
their concluding remarks, in the present paper we succeeded in overcoming the con-
straint assumption that the r.h.s. of (1) disappears when the density is higher than
a prescribed value ρc.

Finally, we point out the generalization of the proof method used in this paper
toward the qualitative analysis of models based on the so-called kinetic theory of ac-
tive particles (KTAP) [6], a more general framework though leading to mathematical
structures similar to those here considered, as a challenging research perspective, in
view of the ability of KTAP to design models for a wider class of complex systems.
However, it is worth to advise that such a goal is far from being a trivial adaptation,
due to additional difficulties such as stronger nonlinearity and nonlinear additiv-
ity of interactions [10], all aspects related to the inherent complexity of the above
mentioned phenomena.



42 DAVIDE BELLANDI

−10 −5 0 5 10
0

2

4

6

8

10

12

14

16

18

20

−10 −5 0 5 10
0

2

4

6

8

10

12

14

16

18

20

−10 −5 0 5 10
0

2

4

6

8

10

12

14

16

18

20

−10 −5 0 5 10
0

2

4

6

8

10

12

14

16

18

20

Figure 2. Final distribution functions corresponding to ∆ =

0.5, 0.4, 0.35, 0.25, and initial data as in Figure 1.

REFERENCES

[1] G. Ajmone Marsan, N. Bellomo and A. Tosin, Complex Systems and Society: Modeling and

Simulation, Springer, 2013.
[2] L. Arlotti, E. De Angelis, L. Fermo, M. Lachowicz and N. Bellomo, On a class of integro-

differential equations modeling complex systems with nonlinear interactions, Appl.Math. Lett.

25 (2012), 490–495.
[3] N. Bellomo and A. Bellouquid, Global solution to the Cauchy problem for discrete velocity

models of vehicular traffic, J. Differ. Equations, 252 (2012), 1350–1368.

[4] N. Bellomo, V. Coscia and M. Delitala, On the mathematical theory of vehicular traffic fow I
- Fluid dynamic and kinetic modeling, Math. Mod. Meth. Appl. Sci., 12 (2002), 1801–1843.
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[10] A. Benfenati and V. Coscia, Nonlinear microscale interactions in the kinetic theory of active

particles, Appl. Math. Lett., 26 (2013), 979–983.
[11] V. Coscia, M. Delitala and P. Frasca, On the mathematical theory of vehicular traffic flow II:

Discrete velocity kinetic models, Int. J. Non-Linear Mech., 42 (2007), 411–421.

[12] V. Coscia, L. Fermo and N. Bellomo, On the mathematical theory of living systems II: The
interplay between mathematics and system biology, Comput. Math. Appl., 62 (2011), 3902–

3911.

http://www.ams.org/mathscinet-getitem?mr=MR3087552&return=pdf
http://dx.doi.org/10.1007/978-1-4614-7242-1
http://dx.doi.org/10.1007/978-1-4614-7242-1
http://www.ams.org/mathscinet-getitem?mr=MR2856020&return=pdf
http://dx.doi.org/10.1016/j.aml.2011.09.043
http://dx.doi.org/10.1016/j.aml.2011.09.043
http://www.ams.org/mathscinet-getitem?mr=MR2853541&return=pdf
http://dx.doi.org/10.1016/j.jde.2011.09.005
http://dx.doi.org/10.1016/j.jde.2011.09.005
http://www.ams.org/mathscinet-getitem?mr=MR1946724&return=pdf
http://dx.doi.org/10.1142/S0218202502002343
http://dx.doi.org/10.1142/S0218202502002343
http://www.ams.org/mathscinet-getitem?mr=MR2834083&return=pdf
http://dx.doi.org/10.1137/090746677
http://dx.doi.org/10.1137/090746677
http://www.ams.org/mathscinet-getitem?mr=MR3078677&return=pdf
http://dx.doi.org/10.1142/S021820251350053X
http://dx.doi.org/10.1142/S021820251350053X
http://www.ams.org/mathscinet-getitem?mr=MR2974179&return=pdf
http://dx.doi.org/10.1142/S0218202512300049
http://dx.doi.org/10.1142/S0218202512300049
http://www.ams.org/mathscinet-getitem?mr=MR2974183&return=pdf
http://dx.doi.org/10.1142/S0218202511400033
http://dx.doi.org/10.1142/S0218202511400033
http://www.ams.org/mathscinet-getitem?mr=MR2248839&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3078979&return=pdf
http://dx.doi.org/10.1016/j.aml.2013.04.007
http://dx.doi.org/10.1016/j.aml.2013.04.007
http://www.ams.org/mathscinet-getitem?mr=MR2318398&return=pdf
http://dx.doi.org/10.1016/j.ijnonlinmec.2006.02.008
http://dx.doi.org/10.1016/j.ijnonlinmec.2006.02.008
http://www.ams.org/mathscinet-getitem?mr=MR2852109&return=pdf
http://dx.doi.org/10.1016/j.camwa.2011.09.043
http://dx.doi.org/10.1016/j.camwa.2011.09.043


ON THE INITIAL VALUE PROBLEM 43

[13] M. Delitala and A. Tosin, Mathematical modeling of vehicular traffic: A discrete kinetic
theory approach, Math. Mod. Meth. Appl. Sci., 17 (2007), 901–932.

[14] L. Arlotti, N. Bellomo, E. De Angelis and M. Lachowicz, Generalized Kinetic Models in

Applied Sciences, World Scientific, New Jersey, 2003.
[15] J. Banasiak and M. Lachowicz Methods of Small Parameter in Mathematical Biology,

Birkhauser, 2014.
[16] S. Kaniel and M. Shinbrot, The Boltzmann equation. I. Uniqueness and local existence, Math.

Phys., 58 (1978), 65–84.

[17] B. S. Kerner, The Physics of Traffic, Empirical Freeway Pattern Features, Engineering Ap-
plications and Theory, Springer, 2004.

[18] P. Lax, Hyperbolic Partial Differential Equations, Courant Lecture Notes, 2006.

Received October 22, 2015; Accepted January 12, 2016.

E-mail address: davide.bellandi@unife.it

http://www.ams.org/mathscinet-getitem?mr=MR2334547&return=pdf
http://dx.doi.org/10.1142/S0218202507002157
http://dx.doi.org/10.1142/S0218202507002157
http://www.ams.org/mathscinet-getitem?mr=MR2009385&return=pdf
http://dx.doi.org/10.1142/5359
http://dx.doi.org/10.1142/5359
http://www.ams.org/mathscinet-getitem?mr=MR3306891&return=pdf
http://dx.doi.org/10.1007/978-3-319-05140-6
http://www.ams.org/mathscinet-getitem?mr=MR0475532&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2273657&return=pdf
http://dx.doi.org/10.1090/cln/014
mailto:davide.bellandi@unife.it

	1. Introduction
	2. Statement of the problem
	3. Global existence and uniqueness of solutions
	4. Discussion and concluding remarks
	REFERENCES

