Citation: Luis L. Bonilla, Vincenzo Capasso, Mariano Alvaro, Manuel Carretero, Filippo Terragni. On the mathematical modelling of tumor-induced angiogenesis[J]. Mathematical Biosciences and Engineering, 2017, 14(1): 45-66. doi: 10.3934/mbe.2017004
[1] | [ L. Ambrosio,V. Capasso,E. Villa, On the approximation of mean densities of random closed sets, Bernoulli, 15 (2009): 1222-1242. |
[2] | [ A. R. A. Anderson,M. A. J. Chaplain, Continuous and discrete mathematical models of tumour-induced angiogenesis, Bull. Math. Biol., 60 (1998): 857-900. |
[3] | [ C. Birdwell,A. Brasier,L. Taylor, Two-dimensional peptide mapping of fibronectin from bovine aortic endothelial cells and bovine plasma, Biochem. Biophys. Res. Commun., 97 (1980): 574-581. |
[4] | [ L. L. Bonilla,V. Capasso,M. Alvaro,M. Carretero, Hybrid modelling of tumor-induced angiogenesis, Physical Review E, 90 (2014): 062716. |
[5] | [ P. Bremaud, null, Point Processes and Queues. Martingale Dynamics, Springer-Verlag, New-York, 1981. |
[6] | [ M. Burger,V. Capasso,D. Morale, On an aggregation model with long and short range interactions, Nonlinear Anal. Real World Appl., 8 (2007): 939-958. |
[7] | [ M. Burger,V. Capasso,L. Pizzocchero, Mesoscale averaging of nucleation and growth models, Multiscale Modeling and Simulation, 5 (2006): 564-592. |
[8] | [ V. Capasso, Randomness and Geometric Structures in Biology in Pattern Formation in Morphogenesis. Problems and Mathematical Issues (eds. V. Capasso, M. Gromov, A. Harel-Bellan, N. Morozova and L. L. Pritchard), Springer, Heidelberg, 2013. |
[9] | [ V. Capasso,D. Bakstein, null, An Introduction to Continuous-time Stochastic Processes, 3 edition, Birkhäuser, Boston, 2015. |
[10] | [ V. Capasso,D. Morale, Stochastic modelling of tumour-induced angiogenesis, J. Math. Biol., 58 (2009): 219-233. |
[11] | [ V. Capasso,D. Morale,G. Facchetti, The Role of Stochasticity for a Model of Retinal Angiogenesis, IMA J. Appl. Math., 77 (2012): 729-747. |
[12] | [ V. Capasso,E. Villa, On the geometric densities of random closed sets, Stoch. Anal. Appl., 26 (2008): 784-808. |
[13] | [ P. F. Carmeliet, Angiogenesis in life, disease and medicine, Nature, 438 (2005): 932-936. |
[14] | [ P. Carmeliet,R. K. Jain, Molecular mechanisms and clinical applications of angiogenesis, Nature, 473 (2011): 298-307. |
[15] | [ P. Carmeliet,M. Tessier-Lavigne, Common mechanisms of nerve and blood vessel wiring, Nature, 436 (2005): 193-200. |
[16] | [ A. Carpio,G. Duro, Well posedness of a kinetic model for angiogenesis, Nonlinear Analysis; Real World Applications, 30 (2016): 184-212. |
[17] | [ N. Champagnat and S. Méléard, Invasion and adaptive evolution for individual-based spatially structured populations, J. Math. Biol., textbf55 (2007), 147-188. |
[18] | [ M. Chaplain,A. Stuart, A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor, IMA J. Math. Appl. Med. Biol., 10 (1993): 149-168. |
[19] | [ M. Corada,L. Zanetta,F. Orsenigo,F. Breviario,M. G. Lampugnani,S. Bernasconi,F. Liao,D. J. Hicklin,P. Bohlen,E. Dejana, A monoclonal antibody to vascular endothelialcadherin inhibits tumor angiogenesis without side effects on endothelial permeability, Blood, 100 (2002): 905-911. |
[20] | [ S. L. Cotter, V. Klika, L. Kimpton, S. Collins and A. E. P. Heazell, A stochastic model for early placental development J. R. Soc. Interface, 11 (2014), 20140149, Available from: http://rsif.royalsocietypublishing.org/content/11/97/20140149. |
[21] | [ R. F. Gariano,T. W. Gardner, Retinal angiogenesis in development and disease, Nature, 438 (2004): 960-966. |
[22] | [ J. Folkman, Tumour angiogenesis, Adv. Cancer Res., 19 (1974): 331-358. |
[23] | [ J. W. Gibbs, Elementary Principles of Statistical Mechanics Yale Bicentennial Publications, Scribner and Sons, New York, 1902. |
[24] | [ H. A. Harrington,M. Maier,L. Naidoo,N. Whitaker,P. G. Kevrekidis, A hybrid model for tumor-induced angiogenesis in the cornea in the presence of inhibitors, Mathematical and Computer Modelling, 46 (2007): 513-524. |
[25] | [ R. K. Jain,P. F. Carmeliet, Vessels of death or life, Sci. Am., 285 (2001): 38-45. |
[26] | [ S. Karlin,H. M. Taylor, null, A Second Course in Stochastic Processes, Academic Press, New York, 1981. |
[27] | [ N. V. Mantzaris,S. Webb,H. G. Othmer, Mathematical modeling of tumor-induced angiogenesis, J. Math. Biol., 49 (2004): 111-187. |
[28] | [ D. Morale,V. Capasso,K. Ölschlaeger, An interacting particle system modelling aggregation behavior: From individuals to populations, J. Math. Biol., 50 (2005): 49-66. |
[29] | [ K. Oelschläger, On the derivation of reaction-diffusion equations as limit dynamics of systems of moderately interacting stochastic processes, Probab. Theor. Relat. Fields, 82 (1989): 565-586. |
[30] | [ M. J. Plank,B. D. Sleeman, Lattice and non-lattice models of tumour angiogenesis, Bull. Math. Biol., 66 (2004): 1785-1819. |
[31] | [ M. Hubbard,P. F. Jones,B. D. Sleeman, The foundations of a unified approach to mathematical modelling of angiogenesis, Int. J. Adv. Eng. Sci. and Appl. Math., 1 (2009): 43-52. |
[32] | [ P. E. Protter, null, Stochastic Integration and Differential Equations, Second Edition, Springer-Verlag, Heidelberg, 2004. |
[33] | [ G. G. Roussas, null, A Course in Mathematical Statistics, 2 edition, Academic Press, San Diego, CA, 1997. |
[34] | [ M. Scianna,L. Munaron,L. Preziosi, A multiscale hybrid approach for vasculogenesis and related potential blocking therapies, Prog. Biophys. Mol. Biol., 106 (2011): 450-462. |
[35] | [ A. Stéphanou,S. R. McDougall,A. R. A. Anderson,M. A. J. Chaplain, Mathematical modelling of the influence of blood rheological properties upon adaptative tumour-induced angiogenesis, Math. Comput. Modelling, 44 (2006): 96-123. |
[36] | [ C. L. Stokes,D. A. Lauffenburger, Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis, J. Theor. Biol., 152 (1991): 377-403. |
[37] | [ S. Sun,M. F. Wheeler,M. Obeyesekere,C. W. Patrick Jr., A deterministic model of growth factor-induced angiogenesis, Bull. Math. Biol., 67 (2005): 313-337. |
[38] | [ S. Sun,M. F. Wheeler,M. Obeyesekere,C. W. Patrick Jr., A multiscale angiogenesis modeling using mixed finite element methods, Multiscale Model. Simul., 4 (2005): 1137-1167. |
[39] | [ K. R. Swanson,R. C. Rockne,J. Claridge,M. A. Chaplain,E. C. Alvord Jr,A. R. A. Anderson, Quantifying the role of angiogenesis in malignant progression of gliomas: In silico modeling integrates imaging and histology, Cancer Res., 71 (2011): 7366-7375. |
[40] | [ A. S. Sznitman, Topics in propagation of chaos, in École d'Été de Probabilités de Saint-Flour XIX-1989 , Lecture Notes in Math., Springer, Berlin, 1464 (1991), 165-251. |
[41] | [ F. Terragni,M. Carretero,V. Capasso,L. L. Bonilla, Stochastic model of tumor-induced angiogenesis: Ensemble averages and deterministic equations, Physical Review E, 93 (2016): 022413. |
[42] | [ S. Tong,F. Yuan, Numerical simulations of angiogenesis in the cornea, Microvascular Research, 61 (2001): 14-27. |