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Abstract. We consider the follow-the-leader approximation of the Aw-Rascle-
Zhang (ARZ) model for traffic flow in a multi population formulation. We prove
rigorous convergence to weak solutions of the ARZ system in the many particle
limit in presence of vacuum. The result is based on uniform BV estimates
on the discrete particle velocity. We complement our result with numerical
simulations of the particle method compared with some exact solutions to the
Riemann problem of the ARZ system.

1. Introduction. The Aw, Rascle [4] and Zhang [21] (ARZ) model is a second
order system describing vehicular traffic. In its continuum formulation, it can be
written as the 2× 2 system of conservation laws in one space dimension

{

ρt + (ρ v)x = 0, t > 0, x ∈ R,

[ρ (v + p(ρ))]t + [ρ v (v + p(ρ))]x = 0, t > 0, x ∈ R.
(1)

The conserved variables ρ and [ρ (v+p(ρ))] describe respectively the density and
the generalized momentum of the system. v is the velocity. The quantity

w
.
= v + p(ρ)

is called Lagrangian marker. The function p in (1) is the pressure function and ac-
counts for drivers’ reactions to the state of traffic in front of them. While traffic flow
is one of the main motivating applications behind the system (1), we see a growing
interest nowadays on different contexts as crowd dynamics and bio-mathematics.
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The instability near the vacuum state makes the mathematical theory for (1) a
challenging topic. For this reason, as in [2, 1, 15], we study (1) in the Riemann
invariant coordinates (v, w) and use the following expressions for the density

ρ
.
= p−1(w − v).

It is well known since [3] and the earlier works [14, 18] (see also a related result
in [17]) that the discrete Lagrangian counterpart of (1) is provided by the second
order follow-the-leader system







ẋi = Vi ,

V̇i = p′
(

1

xi+1 − xi

)

Vi+1 − Vi

(xi+1 − xi)2
,

(2)

where xi(t) and Vi(t) are location of the tail and speed of the i-th vehicle at time
t. In terms of the discrete Lagrangian marker

wi
.
= Vi + p

(

1

xi+1 − xi

)

,

the system (2) reads in the simpler form






ẋi = wi − p

(

1

xi+1 − xi

)

,

ẇi = 0 .
(3)

The simpler form (3) highlights the fact that the follow-the-leader system (2) de-
scribes a particle system with many species. Hence (2) is a microscopic multi pop-

ulation model, in which the i-th vehicle has length [1/p−1(wi)] and maximal speed
wi, which are constant in time and depend on the initial datum of the Lagrangian
marker.

The goal of this paper is to approximate (under reasonable assumptions on p)
the 2× 2 system of nonlinear conservation laws (1) with the first order microscopic
model (3), that describes a multi population interacting many particle system. The
technique we adopt is a slight variation of that introduced in [9], which applies
to the approximation of first order LWR models [16, 19] by a (simpler) first order
version of the follow-the-leader system. Despite the second order nature of (1),
the strategy developed in [9] applies also in this case (see also [10, 11, 12] for other
applications of the techniques introduced in [9]). This reveals that the multi-species
nature of the ARZ model is quite relevant in the dynamics. Our rigorous results
only deal with the convergence toward a weak solution to (1). The problem of the
uniqueness of entropy solutions for (1) is quite a hard task, and we do not address
it here, see [2, 1]. Our main convergence result is stated in Theorem 3.2 below.

We also perform numerical simulations that suggest that the solution of the
microscopic model (3) converges to a solution of the macroscopic model (1) as the
number of particles goes to infinity. In particular, we will make the tests considered
in [8] to show that we do not have the spurious oscillations generated, for instance,
by the Godunov method near contact discontinuities. We will also make the test
considered in [3] to show that our algorithm is able to cope with the vacuum.

Our approach deeply differ from the one proposed in [3]. Indeed, there the
authors show how the ARZ model written in Lagrangian mass coordinates can be
viewed away from the vacuum as the limit of a time discretization of a second

order microscopic model as the number of vehicles increases, with a scaling in space
and time (a zoom) for which the density and the velocity remain fixed. On the
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contrary, we consider the ARZ model written in the Eulerian coordinates, so that
the vacuum is a state eventually achieved by the solutions, and we introduce the
underlying microscopic model without performing any time discretization.

We recall that the numerical transport-equilibrium scheme proposed in [8] is
based on both a (Glimm) random sampling strategy and the Godunov method. As
a consequence, this method is non-conservative. Moreover, it cannot be applied in
the presence of the vacuum state. On the contrary, our method is conservative and
is able to cope with the vacuum. Let us finally underline that the approximate
solutions constructed with both methods have sharp (without numerical diffusion)
contact discontinuities and show numerical convergence. We remark that the model
(1) can be formulated also with a relaxation term with a prescribed equilibrium
velocity, see [3]. We shall apply our approach to such an extended version of the
ARZ model in a future work.

The present paper is structured as follows. In Section 2 we recall the basic
properties of the discrete follow-the-leader model and of the continuum ARZ system.
In particular we prove a discrete maximum principle in Lemma 2.3 which was not
present in the literature to our knowledge. In Section 3 we construct the atomization
scheme and prove its convergence in the Theorem 3.2. In Section 4 we perform
numerical tests with simple Riemann problems, including cases with vacuum.

2. Preliminaries. In this section we recall basic facts about the ARZ model (1)
and the discrete follow-the-leader system (3).

2.1. The ARZ model. Consider the Cauchy problem for the ARZ model (1)


















ρt + (ρ v)x = 0, t > 0, x ∈ R,

(ρw)t + (ρ v w)x = 0, t > 0, x ∈ R,

v(0, x) = v̄(x), x ∈ R,

w(0, x) = w̄(x), x ∈ R,

(4)

where (v, w) is the unknown variable and (v̄, w̄) is the corresponding initial datum.
More precisely, (v, w) belongs to W

.
=
{

(v, w) ∈ R
2
+ : v ≤ w

}

and

ρ
.
= p−1(w − v) ∈ R+

is the corresponding density, where p ∈ C0(R+;R+) ∩C2(]0,+∞[ ;R+) satisfies

p(0+) = 0, p′(ρ) > 0 and 2 p′(ρ) + ρ p′′(ρ) > 0 for every ρ > 0. (5)

Example 2.1 (Examples of pressure functions). In [3] the authors consider

p(ρ)
.
=















vref
γ

[

ρ

ρm

]γ

, γ > 0 ,

vref log

[

ρ

ρm

]

, γ = 0 ,

where ρm > 0 is the maximal density and vref > 0 is a reference velocity. The above
choice reduces to the original one proposed in [4] when vref/(γ ρ

γ
m) = 1 and γ > 0.

We also recall that in [6] the authors consider

p(ρ)
.
=

(

1

ρ
−

1

ρm

)−γ

.
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By definition, we have that the vacuum state ρ = 0 corresponds to the half line
W0

.
=
{

(v, w)T ∈ W : v = w
}

and the non-vacuum states ρ > 0 to Wc
0

.
= W \W0.

As in [2, 1], we consider initial data (v̄, w̄) ∈ BV(R;W) such that

((v̄, w̄)(x−), (v̄, w̄)(x+)) ∈ G, x ∈ R, (6)

where (v̄, w̄)(x−) and (v̄, w̄)(x+) denote the traces of (v̄, w̄) along a Lipschitz curve
of jump (see [20] for a precise formulation of the regularity of BV functions) and

G
.
=























((vℓ, wℓ), (vr, wr)) ∈ W2 :

(vℓ, wℓ) ∈ W0

(vr, wr) ∈ W0

}

⇒ (vℓ, wℓ) = (vr, wr)

and
(vℓ, wℓ) ∈ Wc

0

(vr, wr) ∈ W0

}

⇒ (vr, wr) = (wℓ, wℓ)























.

The introduction of the condition (6) to select the physically reasonable initial data
of (4) in the Riemann invariant coordinates is motivated in [2, Remark 2.1]. We
emphasise that such condition is not needed in the proof of our main analytical
result. However, (6) is partly motivated by our numerical tests.

Following [2], we use the following definition for weak solutions of (1).

Definition 2.2 (Weak solutions). Let (v̄, w̄) ∈ L∞(R; W). We say that a function
(v, w) ∈ L∞(R+ × R; W) ∩ C0(R+; L

1

loc
(R; W)) is a weak solution of (4) if it

satisfies the initial condition (v(0, x), w(0, x)) = (v̄(x), w̄(x)) for a.e. x ∈ R and for
any test function φ ∈ C∞

c (]0,+∞[×R; R)
ˆ

R+

ˆ

R

p−1(v, w) (φt + v φx)

(

1
w

)

dxdt =

(

0
0

)

. (7)

For the existence of weak solutions to (4) away from the vacuum we refer to [13],
see [15] for the existence with vacuum, and [5] for the existence of entropy weak
solutions.

Let us briefly recall the main properties of the solutions to (4). If the initial
density ρ̄

.
= p−1(w̄ − v̄) has compact support, then the support of ρ has finite

speed of propagation. The maximum principle holds true in the Riemann invariant
coordinates (v, w), but not in the conserved variables (ρ, ρw) as a consequence of
hysteresis processes. Moreover, the total space occupied by the vehicles (if they
were packed “nose to tail”) is time independent:

´

R
ρ(t, x) dx = M

.
=
´

R
ρ̄(x) dx for

all t ≥ 0.
We remark that a simple byproduct of our result is an alternative proof of the

existence of weak solutions in the sense of Definition 2.2.

2.2. Follow-the-leader model. Multi population microscopic models of vehicular
traffic are typically based on the so called Follow-The-Leader (FTL) model.

Consider [N + 1] ordered particles localised on R. Denote by t 7→ xi(t) the
position of the i-th particle for i = 0, . . . , N . Then, according to the FTL model,
the evolution of the particles (which mimics the evolution of the position of [N +1]
vehicles along the road) is described inductively by the following Cauchy problem
for a system of ordinary differential equations















ẋN (t) = wN−1,

ẋi(t) = vi

(

1

xi+1(t)− xi(t)

)

, i = 0, . . . , N − 1,

xi(0) = x̄i, i = 0, . . . , N,

(8)
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where
vi(ρ)

.
= wi − p(ρ),

w0, . . . , wN are [N+1] strictly positive constants, p ∈ C2(R+;R+) satisfies (5), and
x̄0 < . . . < x̄N are the initial positions of the particles. The quantity wi = vi(0) is
the maximum possible velocity allowed for the i-th particle. Clearly, only the leading
particle xN reaches its maximal velocity wN , as the vacuum state is achieved only
ahead of xN .

The quantity Ri
.
= p−1(wi) > 0 is the maximum discrete density of the i-th

particle, so that R−1
i is the length of the i-th particle, vi(Ri) = 0 and we assume

that at time t = 0

x̄i+1 − x̄i ≥
1

Ri

, i = 0, . . . , N − 1. (9)

System (8) can be solved inductively starting from i = N . Indeed, we immedi-
ately deduce that

xN (t) = x̄N + wN−1 t.

Then, we can compute t 7→ xi(t) once we know t 7→ xi+1(t). In fact, according with
the system (8) the velocity of the i-th particle depends on its distance from the
(i+1)-th particle alone via the smooth velocity map vi. In order to ensure that the
(unique) solution to (8) exists globally in time, we need to prove that the distances
[xi+1(t)−xi(t)] never degenerate. This is proven in the next lemma, which extends
a similar one in [9] to our multi population system.

Lemma 2.3 (Discrete maximum principle). For all i = 0, . . . , N − 1, we have

1

Ri

≤ xi+1(t)− xi(t) ≤ x̄N − x̄0 + wN−1 t for all times t ≥ 0.

Proof. We first prove the lower bound. At time t = 0 the lower bound is satisfied
because of (9). We shall prove that

inf
t≥0

[

xi+1(t)− xi(t)
]

≥
1

Ri

, i = 0, . . . , N − 1, (∗)

by a recursive argument on i. The statement is true for i = N − 1. Indeed, since
ẋN−1(t) ≤ wN−1 = ẋN (t) we have that xN−1(t) < xN (t) for all t ≥ 0 and

xN (t)− xN−1(t) =

= x̄N − x̄N−1 +

ˆ t

0

[

wN−1 − vN−1

(

1

xN (s)− xN−1(s)

)]

ds

= x̄N − x̄N−1 +

ˆ t

0

p

(

1

xN (s)− xN−1(s)

)

ds ≥ x̄N − x̄N−1 ≥
1

RN−1
,

because p(ρ) > 0 for all ρ > 0. Assume now that

inf
t≥0

[

xi+2(t)− xi+1(t)
]

≥
1

Ri+1

and by contradiction that there exist t2 > t1 ≥ 0 such that

xi+1(t)− xi(t) >
1

Ri

for all t ∈ [0, t1[ ,

xi+1(t1)− xi(t1) =
1

Ri

,

0 < xi+1(t)− xi(t) <
1

Ri

for all t ∈ ]t1, t2] . (⋆)
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Since vi is strictly decreasing, for any t ∈ ]t1, t2] we have that ẋi(t) < vi(Ri) = 0 =
vi+1(Ri+1) ≤ ẋi+1(t). Consequently, for any t ∈ ]t1, t2]

xi(t) ≤ xi(t1), xi+1(t) ≥ xi+1(t1),

and therefore

xi+1(t)− xi(t) ≥ xi+1(t1)− xi(t1) =
1

Ri

,

which contradicts (⋆). Hence, (∗) is satisfied and the lower bound is proven.
Finally, the upper bound easily follows from the lower bound. Indeed, by the

first equation of (8) and the lower bound 1 ≤ [x1(t)−x0(t)]R0 just proved, we have
that xN (t) = x̄N + wN−1 t and x0(t) ≥ x̄0 + v0(R0) t = x̄0.

We emphasise that the above discrete maximum principle is a direct consequence
of the transport nature behind the FTL system (8), similarly to what happens in the
first order FTL system considered in [9]. Indeed, the global bound for the discrete
density is propagated from the last particle xN back to all the other particles, as
emphasised by the recursive argument in the proof of Lemma 2.3.

3. The atomization scheme and the strong convergence. We now introduce
our atomization scheme for the Cauchy problem (4). Let (v̄, w̄) ∈ BV(R;W) satisfy
(6) and such that ρ̄

.
= p−1(w̄− v̄) belongs to L1(R;R+) and is compactly supported.

Denote by x̄min < x̄max the extremal points of the convex hull of the compact
support of ρ̄, namely

⋂

[a,b]⊇supp(ρ̄)

[a, b] = [x̄min, x̄max] .

Fix n ∈ N sufficiently large. Let M
.
= ‖ρ̄‖

L1(R) > 0 and split the subgraph of ρ̄ in

Nn
.
= 2n regions of measure κn

.
= 2−nM as follows. Set

x̄n
0

.
= x̄min, (10a)

and recursively

x̄n
i

.
= sup

{

x ∈ R :

ˆ x

x̄n

i−1

ρ̄(x) dx < κn

}

, i = 1, . . . , Nn. (10b)

It is easily seen that x̄n
Nn

= x̄max, and x̄n
Nn−i = x̄n+m

Nn+m−2mi for all i = 0, . . . , Nn.

We approximate then the initial Lagrangian marker w̄ by taking

w̄n
i

.
= ess sup

[x̄n

i
,x̄n

i+1
]

(w̄), i = 0, . . . , Nn − 1. (11)

We have then that the assumption (9) is satisfied as follows,

κn =

ˆ x̄n

i+1

x̄n

i

ρ̄(x) dx ≤
(

x̄n
i+1 − x̄n

i

)

Rn
i , i = 0, . . . , Nn − 1,

with Rn
i

.
= p−1(w̄n

i ). We take the values x̄n
0 , . . . , x̄

n
Nn

as the initial positions of the
[Nn + 1] particles in the n–depending FTL model























ẋn
Nn

(t) = w̄n
Nn−1,

ẋn
i (t) = vni

(

κn

xn
i+1(t)− xn

i (t)

)

, i = 0, . . . , Nn − 1,

xn
i (0) = x̄n

i , i = 0, . . . , Nn,

(12)
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where

vni (ρ)
.
= w̄n

i − p(ρ), i = 0, . . . , Nn − 1. (13)

The existence of a global-in-time solution to (12) follows from Lemma 2.3 with vi(ρ)
replaced by vni (κn ρ). Moreover, from (12) we immediately deduce that

xn
Nn

(t) = x̄max + w̄n
Nn−1 t.

Finally, since vni is decreasing, and its argument κn/[x
n
i+1(t) − xn

i (t)] is always
bounded above by Rn

i , we have

xn
0 (t) ≥ x̄min + v0(R

n
0 ) t = x̄min.

By introducing in (12) the new variable

yni (t)
.
=

κn

xn
i+1(t)− xn

i (t)
, i = 0, . . . , Nn − 1, (14)

we obtain


























ẏnNn−1 = −
(ynNn−1)

2

κn

p(ynNn−1),

ẏni = −
(yni )

2

κn

[

vni+1(y
n
i+1)− vni (y

n
i )
]

, i = 0, . . . , Nn − 2,

yni (0) = ȳni
.
=

κn

x̄n
i+1 − x̄n

i

, i = 0, . . . , Nn − 1.

(15)

Observe that κn/
[

x̄max − x̄min + w̄n
Nn−1 t

]

≤ yni (t) ≤ Rn
i for all t ≥ 0 in view of

Lemma 2.3. The quantity yni can be seen as a discrete version of the density ρ in
Lagrangian coordinates, and (15) is the discrete Lagrangian version of the Cauchy
problem (4).

Define the piecewise constant (with respect to x) Lagrangian marker

Wn(t, x)
.
=











w̄n
0 if x ∈ ]−∞, xn

0 (t)[ ,

w̄n
i if x ∈

[

xn
i (t), x

n
i+1(t)

[

, i = 0, . . . , Nn − 1,

w̄n
Nn−1 if x ∈

[

xn
Nn

(t),+∞
[

,

(16)

and the piecewise constant (with respect to x) velocity

V n(t, x)
.
=











w̄n
0 if x ∈ ]−∞, xn

0 (t)[ ,

vni (y
n
i (t)) if x ∈

[

xn
i (t), x

n
i+1(t)

[

, i = 0, . . . , Nn − 1,

w̄n
Nn−1 if x ∈

[

xn
Nn

(t),+∞
[

.

(17)

Proposition 1 (Definition of w). Let Wn be defined as in (16). Then there exists

a function w ∈ L∞
loc

(R+ × R) such that

(Wn)n∈N converges to w in L1

loc
(R+ × R) ,

and for any t, s ≥ 0

TV [w(t)] ≤ TV [w̄] , (18a)

‖w(t)‖
L∞(R) ≤ ‖w̄‖

L∞(R) , (18b)
ˆ

R

|w(t, x) − w(s, x)| dx ≤ TV [w̄] ‖w̄‖
L∞(R) |t− s| . (18c)
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Proof. Directly from the definition (16) of Wn follows that for any t ≥ 0

TV [Wn(t)] ≤ TV [w̄] and ‖Wn(t)‖
L∞(R) ≤ ‖w̄‖

L∞(R) .

Moreover, since the speed of propagation of the particles is bounded by ‖w̄‖
L∞(R),

by the above uniform bound for the total variation we have that
ˆ

R

|Wn(t, x)−Wn(s, x)| dx ≤ TV [w̄] ‖w̄‖
L∞(R) |t− s| .

Hence, by applying Helly’s theorem in the form [7, Theorem 2.4], up to a subse-
quence, (Wn)n∈N converges in L1

loc
(R+ × R) to a function w which is right contin-

uous with respect to x and satisfies (18).
Finally, observe that by the definition in (11) of w̄n

i , for any n ∈ N we have

ess inf
[x̄min,x̄max]

(w̄) ≤ Wn+1(t, x) ≤ Wn(t, x) ≤ ess sup
[x̄min,x̄max]

(w̄) for all (t, x) ∈ R+ × R.

Therefore the whole sequence (Wn)n∈N converges to w and a.e. on R+ × R.

Proposition 2 (Definition of v). Let V n be defined as in (17). Then there exists

a function v ∈ L∞
loc

(R+ × R), such that

(V n)n∈N converges up to a subsequence to v in L1

loc(R+ × R),

and for any t, s ≥ 0

TV [v(t)] ≤ Cv
.
= 2 ‖w̄‖

L∞(R) +TV[w̄] + Lip(p)TV[ρ̄], (19a)

‖v(t)‖
L∞(R) ≤ ‖w̄‖

L∞(R) , (19b)
ˆ

R

|v(t, x)− v(s, x)| dx ≤ Cv ‖w̄‖
L∞(R) |t− s| . (19c)

Proof. For notational simplicity, we shall omit the dependence on t whenever not
necessary. By construction, see (9), (14) and (17), we have that

TV [V n(0)] =

= |w̄n
0 − vn0 (ȳn0 )|+

Nn−2
∑

i=0

∣

∣vni (ȳ
n
i )− vni+1(ȳ

n
i+1)

∣

∣+
∣

∣vnNn−1

(

ȳnNn−1

)

− w̄n
Nn−1

∣

∣

≤ p (ȳn0 ) +

Nn−2
∑

i=0

∣

∣w̄n
i − w̄n

i+1

∣

∣+ Lip(p)

Nn−2
∑

i=0

∣

∣ȳni − ȳni+1

∣

∣+ p
(

ȳnNn−1

)

≤ p (Rn
0 ) + TV[w̄] + Lip(p)

Nn−2
∑

i=0

∣

∣

∣

∣

∣

 x̄n

i+1

x̄n

i

ρ̄(y) dy −

 x̄n

i+2

x̄n

i+1

ρ̄(y) dy

∣

∣

∣

∣

∣

+ p
(

Rn
N−1

)

≤ 2 ‖w̄‖
L∞(R) +TV[w̄] + Lip(p)TV[ρ̄].

Moreover

d

dt
TV [V n(t)] =

=
d

dt

[

|w̄n
0 − vn0 (y

n
0 )|+

Nn−2
∑

i=0

∣

∣vni (y
n
i )− vni+1(y

n
i+1)

∣

∣ +
∣

∣vnNn−1(y
n
Nn−1)− w̄n

Nn−1

∣

∣

]

=
d

dt

[

p(yn0 ) +

Nn−2
∑

i=0

∣

∣vni (y
n
i )− vni+1(y

n
i+1)

∣

∣+ p(ynNn−1)

]
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= p′(yn0 ) ẏ
n
0 +

Nn−2
∑

i=0

sgn
[

vni (y
n
i )− vni+1(y

n
i+1)

] [

p′(yni+1) ẏ
n
i+1 − p′(yni ) ẏ

n
i

]

+ p′(ynNn−1) ẏ
n
Nn−1

= p′(yn0 ) ẏ
n
0 +

Nn−1
∑

i=1

sgn
[

vni−1(y
n
i−1)− vni (y

n
i )
]

p′(yni ) ẏ
n
i

−

Nn−2
∑

i=0

sgn
[

vni (y
n
i )− vni+1(y

n
i+1)

]

p′(yni ) ẏ
n
i + p′(ynNn−1) ẏ

n
Nn−1

=
[

1− sgn [vn0 (y
n
0 )− vn1 (y

n
1 )]
]

p′(yn0 ) ẏ
n
0

+
[

1 + sgn
[

vnNn−2(y
n
Nn−2)− vnNn−1(y

n
Nn−1)

]

]

p′(ynNn−1) ẏ
n
Nn−1

+

Nn−2
∑

i=1

[

sgn
[

vni−1(y
n
i−1)− vni (y

n
i )
]

− sgn
[

vni (y
n
i )− vni+1(y

n
i+1)

]

]

p′(yni ) ẏ
n
i .

We claim that the latter right hand side above is not positive. Indeed (15) implies
that the following quantities are not positive

[

1− sgn [vn0 (y
n
0 )− vn1 (y

n
1 )]
]

p′(yn0 ) ẏ
n
0 =

=−
[

1− sgn [vn0 (y
n
0 )− vn1 (y

n
1 )]
]

p′(yn0 )
(yn0 )

2

κn

[vn1 (y
n
1 )− vn0 (y

n
0 )] ,

[

1 + sgn
[

vnNn−2(y
n
Nn−2)− vnNn−1(y

n
Nn−1)

]

]

p′(ynNn−1) ẏ
n
Nn−1 =

=−
[

1 + sgn
[

vnNn−2(y
n
Nn−2)− vnNn−1(y

n
Nn−1)

]

]

p′(ynNn−1)
(ynNn−1)

2

κ
p(ynNn−1),

[

sgn
[

vni−1(y
n
i−1)− vni (y

n
i )
]

− sgn
[

vni (y
n
i )− vni+1(y

n
i+1)

]

]

p′(yni ) ẏ
n
i =

=−
[

sgn
[

vni−1(y
n
i−1)− vni (y

n
i )
]

− sgn
[

vni (y
n
i )− vni+1(y

n
i+1)

]

]

× p′(yni )
(yni )

2

κn

[

vni+1(y
n
i+1)− vni (y

n
i )
]

.

Therefore, TV [V n(t)] ≤ TV [V n(0)] ≤ Cv
.
= 2 ‖w̄‖

L∞(R) + TV[w̄] + Lip(p)TV[ρ̄]

for all t ≥ 0. The estimate ‖V n(t)‖
L∞(R) ≤ ‖w̄‖

L∞(R) is obvious. Moreover, since

the speed of propagation of the particles is bounded by ‖w̄‖
L∞(R), by the above

uniform bound for the total variation we have that
ˆ

R

|V n(t, x)− V n(s, x)| dx ≤ Cv ‖w̄‖
L∞(R) |t− s| .

Hence, by applying Helly’s theorem in the form [7, Theorem 2.4], up to a subse-
quence, (V n)n∈N converges in L1

loc
(R+ × R) to a function v which is right contin-

uous with respect to x and satisfies (19).

We are now ready to prove our main result. Let us define some technical ma-
chinery. We introduce the piecewise constant density

ρn(t, x)
.
= p−1(Wn(t, x)− V n(t, x)) =

Nn−1
∑

i=1

yni (t)χ[xn

i
(t),xn

i+1
(t)[(x).
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We set

MM
.
=
{

µ Radon measure on R with compact support : µ ≥ 0, µ(R) = M
}

.

It is easily seen that ρn(t) ∈ MM for all t ≥ 0. Now, for a µ ∈ MM we consider its
generalised inverse distribution function

Xµ(z)
.
= inf

{

x ∈ R : µ(]−∞, x]) > z
}

, z ∈ [0,M ],

and define the rescaled 1-Wasserstein distance between µ1, µ2 ∈ MM as

d1(µ1, µ2)
.
= ‖Xµ1

−Xµ2
‖L1([0,M ]).

Lemma 3.1 (Compactness of ρn and V n). The sequences (ρn)n∈N and (V n)n∈N

are relatively compact in L1

loc
(R+ × R).

Proof. We have a uniform (w.r.t. n and t) bound for the total variation of V n(t)
as obtained in Proposition 2. The uniform bound for the total variation of Wn(t)
obtained in the proof of Proposition 1 then implies that p(ρn(t)) has uniformly
bounded total variation, and the assumptions on p listed in (5) then imply that
TV[ρn(t)] is uniformly bounded. Now, one can prove that there exists a constant
C > 0 such that

d1(ρ
n(t), ρn(s)) ≤ C |t− s| .

The above estimate can be proven in the same way as in the proof of [9, Proposi-
tion 8], with few unessential changes that are left to the reader. Consequently, [9,
Theorem 5] implies the assertion for ρn. The assertion for V n then follows by the
continuity of p and by dominated convergence.

Theorem 3.2 (Convergence to weak solutions). Let (v̄, w̄) ∈ BV(R ; W) be such

that ρ̄
.
= p−1(w̄ − v̄) is compactly supported and belongs to L1(R;R+). Fix n ∈ N

sufficiently large and let Nn
.
= 2n, κn

.
= 2−nM , with M

.
= ‖ρ̄‖

L1(R). Let x̄n
0 <

. . . < x̄n
Nn

be the atomization constructed in (10). Let xn
0 (t), . . . , x

n
Nn

(t) be the

solution to the multi population follow-the-leader system (12) with initial datum

x̄n
0 , . . . , x̄

n
Nn

. Let w̄n
0 , . . . , w̄

n
Nn−1 be given by (11). Set Wn and V n as in (16) and

(17) respectively, where vni and yni are defined by (13) and (14) respectively. Then,

up to a subsequence, (V n,Wn)n∈N converges in L1

loc
(R+ ×R;W) as n → +∞ to a

weak solution of the Aw, Rascle and Zhang system (4) with initial datum (v̄, w̄).

Proof. Due to the result in Lemma 3.1, the sequence

ρn
.
= p−1(Wn − V n)

converges (up to a subsequence) a.e. and in L1

loc
(R+ × R) to ρ

.
= p−1(w − v) ∈

L1 (R+ × R).
Now, let φ ∈ C∞

c (]0,+∞[×R). We compute
ˆ

R+

ˆ

R

ρn(t, x) [φt(t, x) + V n(t, x)φx(t, x)]

(

1
Wn(t, x)

)

dxdt (20)

=

Nn−1
∑

i=0

ˆ

R+

yni (t)

ˆ xn

i+1(t)

xn

i
(t)

[φt(t, x) + vni (y
n
i (t))φx(t, x)]

(

1
w̄n

i

)

dxdt

=

Nn−1
∑

i=0

ˆ

R+

yni (t)

[

d

dt

(

ˆ xn

i+1(t)

xn

i
(t)

φ(t, x) dx

)

− vni+1(y
n
i+1(t))φ(t, x

n
i+1(t))
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+ vni (y
n
i (t))φ(t, x

n
i (t)) + vni (y

n
i (t))

[

φ(t, xn
i+1(t))− φ(t, xn

i (t))
]

]

(

1
w̄n

i

)

dxdt

=

Nn−1
∑

i=0

ˆ

R+

yni (t)
2

κn

[

vni+1(y
n
i+1(t))− vni (y

n
i (t))

]

[

ˆ xn

i+1(t)

xn

i
(t)

φ(t, x) dx

]

(

1
w̄n

i

)

dxdt

−

Nn−1
∑

i=0

ˆ

R+

yni (t)
[

vni+1(y
n
i+1(t)) − vni (y

n
i (t))

]

φ(t, xn
i+1(t))

(

1
w̄n

i

)

dxdt

=

Nn−1
∑

i=0

ˆ

R+

yni (t)
2

κn

[

vni+1(y
n
i+1(t))− vni (y

n
i (t))

]

×

×

[

ˆ xn

i+1(t)

xn

i
(t)

[

φ(t, x) − φ(t, xn
i+1(t))

]

dx

]

(

1
w̄n

i

)

dt.

Therefore, by observing that
∣

∣

∣

∣

∣

ˆ xn

i+1(t)

xn

i
(t)

[

φ(t, x)− φ(t, xn
i+1(t))

]

dx

∣

∣

∣

∣

∣

≤
Lip[φ]

2

[

xn
i (t)− xn

i+1(t)
]2

=
Lip[φ]

2

κ2
n

yni (t)
2
,

and by recalling the uniform bound TV [V n(t)] ≤ Cv obtained in the proof of
Proposition 2, we easily get the estimate

∥

∥

∥

∥

∥

ˆ

R+

ˆ

R

ρn(t, x) [φt(t, x) + V n(t, x)φx(t, x)]

(

1
Wn(t, x)

)

dxdt

∥

∥

∥

∥

∥

≤ κn

Lip[φ]

2
Cv T

[

1 + ‖w̄‖
L∞(R)

]

,

where T > 0 is such that supp(φ) ⊂ [0, T ]× R. Clearly, the right hand side above
tends to zero as n → +∞. Finally, up to a subsequence, the double integral in (20)
converges to

ˆ

R+

ˆ

R

ρ(t, x) [φt(t, x) + v(t, x)φx(t, x)]

(

1
w(t, x)

)

dxdt

and this concludes the proof.

4. Numerical experiments. In order to test the proposed atomization algorithm,
we consider four Riemann problems leading to four solutions of interest. The first
three coincide with those done in [8, Section 4] and are used to check the ability of
the scheme to deal with contact discontinuities. The last one is the example given in
[3, Section 5] and is used to check the ability of the scheme to deal with the vacuum.
In each case, the method is first evaluated by means of a qualitative comparison of
the approximate solution ρ∆, v∆, w∆ with the exact solution ρ, v, w. Two initial
mesh sizes are automatically determined by the total number of particles N and
the two density values of the Riemann data. The qualitative results corresponding
to N = 500 and final time t = 0.2 for the Test 1, Test 2 and Test 3 and t = 1 for
Test 4 are presented on Figure 1 and Figure 2.

Then, for several values of N , a quantitative evaluation through the L1-norm (of
the difference between the exact and approximate densities solutions) is made, they
are given on Table 1.
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Test 1
p(ρ) = 1.4427 log(ρ),
ρℓ = 0.9, vℓ = 1,
ρr = 0.1, vr = 1,

Test 2
p(ρ) = 1.4427 log(ρ),
ρℓ = 0.1, vℓ = 1.8,
ρr = 0.2, vr = 1.6,

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Density

FTL approximation
exact solution

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
0
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0.1

0.15

0.2

0.25
Density

FTL approximation
exact solution

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2
Velocity

FTL approximation
exact solution

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
1.4

1.5

1.6

1.7

1.8

1.9

2
Velocity

FTL approximation
exact solution

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1
Lagrangian marker

FTL approximation
exact solution

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

-1.6

-1.4

-1.2

-1

-0.8

-0.6

Lagrangian marker

FTL approximation
exact solution

Figure 1. Left column for Test 1 and right column for Test 2.
Initial conditions are specified in the tables on the top using N =
200 particles.
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Test 3
p(ρ) = 1.4427 log(ρ),
ρℓ = 0.5, vℓ = 1.2,
ρr = 0.1, vr = 1.6,

Test 4
p(ρ) = 6ρ,

ρℓ = 0.05, vℓ = 0.05,
ρr = 0.05, vr = 0.5,

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

Density

FTL approximation
exact solution
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FTL approximation
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exact solution

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
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-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2
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FTL approximation
exact solution

-0.5 0 0.5 1 1.5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Lagrangian marker

FTL approximation
exact solution

Figure 2. Left column for Test 3 and right column for Test 4.
Initial conditions are specified in the tables on the top using N =
200 particles.
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N Test 1 Test 2 Test 3 Test 4

100 8.9e− 03 4.1e− 03 4.7e− 03 2.1e− 03
500 1.8e− 03 1.1e− 03 1.8e− 03 4.7e− 04
1000 4.7e− 04 5.7e− 04 1.2e− 03 2.5e− 04
2000 4.5e− 04 3.4e− 04 8.2e− 04 1.3e− 04

Table 1. Different numbers of particles and corresponding dis-
crete L1-errors for densities.

REFERENCES

[1] B. Andreianov, C. Donadello, U. Razafison, J. Y. Rolland and M. D.
Rosini, Solutions of the Aw-Rascle-Zhang system with point con-
straints, Networks and Heterogeneous Media, 11 (2016), 29–47, URL
http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=12228.

[2] B. Andreianov, C. Donadello and M. D. Rosini, A second-order model
for vehicular traffics with local point constraints on the flow, Mathemat-
ical Models and Methods in Applied Sciences, 26 (2016), 751–802, URL
http://www.worldscientific.com/doi/abs/10.1142/S0218202516500172.

[3] A. Aw, A. Klar, T. Materne and M. Rascle, Derivation of continuum traffic flow models from
microscopic Follow-the-Leader models, SIAM Journal on Applied Mathematics, 63 (2002),
259–278, URL http://dx.doi.org/10.1137/S0036139900380955.

[4] A. Aw and M. Rascle, Resurrection of “second order” models of traf-
fic flow, SIAM Journal on Applied Mathematics, 60 (2000), 916–938, URL
http://dx.doi.org/10.1137/S0036139997332099.

[5] P. Bagnerini and M. Rascle, A multi-class homogenized hyperbolic model of traffic flow, SIAM
Journal of Mathematical Analysis, 35 (2003), 949–973.

[6] F. Berthelin, P. Degond, M. Delitala and M. Rascle, A model for the formation and evolution
of traffic jams, Archive for Rational Mechanics and Analysis, 187 (2008), 185–220, URL
http://dx.doi.org/10.1007/s00205-007-0061-9.

[7] A. Bressan, Hyperbolic Systems of Conservation Laws: The One-dimensional Cauchy Prob-
lem, vol. 20, Oxford university press, 2000.

[8] C. Chalons and P. Goatin, Transport-equilibrium schemes for computing contact dis-
continuities in traffic flow modeling, Commun. Math. Sci., 5 (2007), 533–551, URL
http://projecteuclid.org/euclid.cms/1188405667.

[9] M. Di Francesco and M. Rosini, Rigorous derivation of nonlinear scalar conservation laws
from Follow-the-Leader type models via many particle limit, Archive for Rational Mechanics
and Analysis, 217 (2015), 831–871, URL http://dx.doi.org/10.1007/s00205-015-0843-4.

[10] M. Di Francesco, S. Fagioli and M. D. Rosini, Deterministic particle approximation of scalar
conservation laws, preprint, arXiv:1605.05883.

[11] M. Di Francesco, S. Fagioli, M. D. Rosini and G. Russo, Deterministic particle approximation
of the Hughes model in one space dimension, preprint, arXiv:1602.06153.

[12] M. Di Francesco, S. Fagioli, M. D. Rosini and G. Russo, Follow-the-leader approximations of
macroscopic models for vehicular and pedestrian flows, preprint.

[13] R. E. Ferreira and C. I. Kondo, Glimm method and wave-front tracking for the Aw-Rascle
traffic flow model, Far East J. Math. Sci., 43 (2010), 203–223.

[14] D. C. Gazis, R. Herman and R. W. Rothery, Nonlinear Follow-the-Leader models of traffic
flow, Operations Res., 9 (1961), 545–567.

[15] M. Godvik and H. Hanche-Olsen, Existence of solutions for the Aw-Rascle traffic flow
model with vacuum, Journal of Hyperbolic Differential Equations, 5 (2008), 45–63, URL
http://www.worldscientific.com/doi/abs/10.1142/S0219891608001428.

[16] M. Lighthill and G. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded
roads, in Royal Society of London. Series A, Mathematical and Physical Sciences, 229 (1955),
317–345.

http://www.ams.org/mathscinet-getitem?mr=MR3461733&return=pdf
http://dx.doi.org/10.3934/nhm.2016.11.29
http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=12228
http://www.ams.org/mathscinet-getitem?mr=MR3460622&return=pdf
http://dx.doi.org/10.1142/S0218202516500172
http://www.worldscientific.com/doi/abs/10.1142/S0218202516500172
http://www.ams.org/mathscinet-getitem?mr=MR1952895&return=pdf
http://dx.doi.org/10.1137/S0036139900380955
http://dx.doi.org/10.1137/S0036139900380955
http://www.ams.org/mathscinet-getitem?mr=MR1750085&return=pdf
http://dx.doi.org/10.1137/S0036139997332099
http://dx.doi.org/10.1137/S0036139997332099
http://www.ams.org/mathscinet-getitem?mr=MR2049028&return=pdf
http://dx.doi.org/10.1137/S0036141002411490
http://www.ams.org/mathscinet-getitem?mr=MR2366138&return=pdf
http://dx.doi.org/10.1007/s00205-007-0061-9
http://dx.doi.org/10.1007/s00205-007-0061-9
http://www.ams.org/mathscinet-getitem?mr=MR1816648&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2352330&return=pdf
http://dx.doi.org/10.4310/CMS.2007.v5.n3.a2
http://projecteuclid.org/euclid.cms/1188405667
http://www.ams.org/mathscinet-getitem?mr=MR3356989&return=pdf
http://dx.doi.org/10.1007/s00205-015-0843-4
http://dx.doi.org/10.1007/s00205-015-0843-4
http://arxiv.org/pdf/1605.05883
http://arxiv.org/pdf/1602.06153
http://www.ams.org/mathscinet-getitem?mr=MR2759592&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0129013&return=pdf
http://dx.doi.org/10.1287/opre.9.4.545
http://www.ams.org/mathscinet-getitem?mr=MR2405850&return=pdf
http://dx.doi.org/10.1142/S0219891608001428
http://www.worldscientific.com/doi/abs/10.1142/S0219891608001428
http://www.ams.org/mathscinet-getitem?mr=MR0072606&return=pdf
http://dx.doi.org/10.1098/rspa.1955.0089


MANY PARTICLE APPROXIMATION OF THE AW-RASCLE-ZHANG MODEL 141

[17] S. Moutari and M. Rascle, A hybrid lagrangian model based on the Aw-Rascle traf-
fic flow model, SIAM Journal on Applied Mathematics, 68 (2007), 413–436, URL
http://dx.doi.org/10.1137/060678415.

[18] I. Prigogine and R. Herman, Kinetic theory of vehicular traffic, IEEE Transactions on Sys-
tems, Man, and Cybernetics, 2 (1972), p295.

[19] P. I. Richards, Shock waves on the highway, Operations Research, 4 (1956), 42–51.
[20] A. I. Vol’pert, The spaces BV and quasilinear equations, (Russian) Mat. Sb. (N.S.), 73

(1967), 255–302, URL http://stacks.iop.org/0025-5734/2/i=2/a=A06.
[21] H. Zhang, A non-equilibrium traffic model devoid of gas-like behavior,

Transportation Research Part B: Methodological , 36 (2002), 275–290, URL
http://www.sciencedirect.com/science/article/pii/S0191261500000503.

Received October 23, 2015; Accepted April 15, 2016.

E-mail address: marco.difrancesco@univaq.it

E-mail address: simone.fagioli@univaq.it

E-mail address: mrosini@umcs.lublin.pl

http://www.ams.org/mathscinet-getitem?mr=MR2366992&return=pdf
http://dx.doi.org/10.1137/060678415
http://dx.doi.org/10.1137/060678415
http://dx.doi.org/10.1109/TSMC.1972.4309114
http://www.ams.org/mathscinet-getitem?mr=MR0075522&return=pdf
http://dx.doi.org/10.1287/opre.4.1.42
http://www.ams.org/mathscinet-getitem?mr=MR0216338&return=pdf
http://stacks.iop.org/0025-5734/2/i=2/a=A06
http://dx.doi.org/10.1016/S0191-2615(00)00050-3
http://www.sciencedirect.com/science/article/pii/S0191261500000503
mailto:marco.difrancesco@univaq.it
mailto:simone.fagioli@univaq.it
mailto:mrosini@umcs.lublin.pl

	1. Introduction
	2. Preliminaries
	2.1. The ARZ model
	2.2. Follow-the-leader model

	3. The atomization scheme and the strong convergence
	4. Numerical experiments
	REFERENCES

