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Abstract. In this work we normalize a SEIR model that incorporates ex-
ponential natural birth and death, as well as disease-caused death. We use
optimal control to control by vaccination the spread of a generic infectious dis-
ease described by a normalized model with L1 cost. We discuss the pros and
cons of SEIR normalized models when compared with classical models when
optimal control with L1 costs are considered. Our discussion highlights the
role of the cost. Additionally, we partially validate our numerical solutions
for our optimal control problem with normalized models using the Maximum
Principle.

1. Introduction. Since the publication of the seminal paper [11] mathematical
compartmental models are widely used to describe infectious diseases dymanics in
large populations (see, for example [9], [4], [2] and [8]). It is well accepted that once
an infected individual comes into contact with an unaffected population, the dis-
ease will spread by contact with the infectious individuals. Compartmental models
divide the population into compartments characterizing the spread of the diseases
and letters are used to denote the number of individuals in each compartment.
Usually, the size of the population to be studied is N , S is the number of suscep-
tible individuals and the number of infectious individuals is I. The letter R is also
used to denote the number of those who recover from the disease or, as in [11],
those who are removed from the disease by death or by recovery. The nature of
the disease as well the reason why the models are studied may dictate the need
for different compartments to be included. For example, SEIR models are used for
diseases where infected individuals do not become immediately infectious; they are
considered to be exposed to the disease and placed in compartment E, being moved
to the I compartment only after some latent period of time.

The basic reproduction number, R0, measures the transmission potential of a
disease (see, for example, [10]). It is defined as “the expected number of secondary
cases produced by a single (typical) infection in a completely susceptible popula-
tion”. From the mathematical point of view, it is an important concept when dealing
with the dynamic systems defined by the compartmental models (SIR model, SEIR
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models, etc) because of its relevance to the stability of the equilibrium points. In-
deed, there is a vast literature devoted to the stability analysis of such models; in
this respect we refer the reader to [4] [2] and [8] (to name but a few!) and references
within. Recently one has witnessed an increasing interest on applications of optimal
control to such models (see [17], [13], [18], [1], [12], [6] and [16]). This comes as
no surprise since optimal control theory has been a successful tool in the design of
different control strategies for dynamic systems in general ([20]).

Many papers on optimal control applied to epidemiology propose L2 costs (see,
for example, [17] and [1]). One reason for this is that a closed form of the optimal
control may be obtained, a form that facilitates the numerical verification of the
solution (although, by itself, it does not guarantees that the solution is the optimal
one since it usually depends on the multipliers). On the other hand, it has been
argued that L1 costs are appropriated to biological systems while those with L2 costs
are not ([13]). This reasoning may explain the attention optimal control problems
with L1 costs have recently gained; see, for example, [13], [12] and [16].

In this paper we focus on optimal control problems to control, via vaccination,
the spread of a disease described by a SEIR model. We follow closely the approach
in [16]: we consider L1 costs, we solve the problems numerically applying the direct
method, we use known software packages, and we present numerical solutions that
satisfy necessary optimality conditions with high accuracy. Notably, and differing
from [16], we work with a normalized SEIR model.

The normalized SEIR model differs from the usual SEIR model since the variables
are fractions of the whole population instead of the number of individuals in each
compartment. The theoretical and numerical treatment involving the latter model
is usually done as if the variables are continuous and not integers; treating such
variables as integers would demand the use of integer programming what is known
to be very heavy computationally. When we turn to normalized models the variables
are, by nature, continuous. In the literature, normalized models are common when
the total population is assumed to remain constant during the time frame under
study. This is not our case; here we normalize a SEIR model that incorporates
exponential natural birth and death, as well as disease-caused death (similarly to
what is done in [14]). As far as optimal control is concerned, normalizing such model
brings out some new issues related to the choice of costs and the introduction of non
standard constraints, questions we discuss here when comparing optimal control for
normalized and not normalized SEIR models.

Herein, we refer to the SEIR model, where the variables S, E, I and R denote
the number of individuals in each compartment, as the classical SEIR model as
opposed to the normalized SEIR model.

We emphasize that we do not concentrate on any particular disease. Rather, our
aim is to illustrate how previously proposed optimal control formulations can be
handled by this new model, when different scenarios are considered. Taking into
account that the set of parameters for the population in [16], based on [17], are
not to be found in today’s world, we use different population’s parameters closed
related to some European countries.

Like other models in epidemiology, SEIR models represent only a rough approxi-
mation of reality. However, they provide new insights into the spreading of diseases
and, when optimal control is applied, new insight on different vaccination policies.

This paper is organized in the following way. In Section 2 we introduce an
optimal control problem with L1 cost involving the classical SEIR model and its
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“normalized” counterpart. A brief description of our numerical methods as well as
the tables with the set of parameters used in our simulation are presented in Section
3. Numerical methods give a helping hand for the discussion on the pros and cons of
optimal control problems with classical and normalized models presented in Section
4. This discussion highlights the need for a criterious choice of cost. In Sections
5 and 6, we solve our optimal control problem numerically partially validating our
solution using the maximum principle and the computed multipliers. Conclusions
follow in the last section of this paper.

2. Optimal control problems for SEIR models with L1 cost. The SEIR
model is a compartmental model well accepted as modelling some infectious diseases.
At each instant t, S(t), E(t), I(t), and R(t) denote the number of individuals in the
susceptible, exposed, infectious and recovered compartments. The total population
is N(t) = S(t)+E(t)+I(t)+R(t). We assume that our population has exponential
natural birth rate b and death rate d and that that all newborns are susceptible to
the diseases. The disease transmission is described by the parameters f , denoting
the rate at which the exposed individuals become infectious, g, denoting the rate at
which infectious individuals recover, a, denoting the death rate due to the disease
and c, denoting the disease incidence coefficient of horizontal transmission (vertical
transmission is not considered). The rate of transmission of the disease is c I(t)

N(t) .
For simplicity the parameters a, b, c, d and f are assumed to be constants. For more
information about such model we refer the reader to [2], [10], [17] and references
within.

Optimal control techniques for SEIR models allow the study of different vaccines
policies; different policies are confronted in [17] and [1] where the minimizing cost
is L2, and in [16], covering the case of L1 cost. As in the aforementioned works
we assume that only susceptible people is vaccinated (implying that it is possible
to distinguish between exposed and susceptible individuals) and that the vaccine
is effective so that all vaccinated susceptible individuals become immune. Let u(t)
represent the percentage of the susceptible individuals being vaccinated per unit of
time. Taking all the above considerations into account we are led to the following
dynamical system (see [17]):

Ṡ(t) = bN(t)− dS(t)− cS(t)I(t)
N(t) − u(t)S(t), S(0) = S0, (1)

Ė(t) = c
S(t)I(t)
N(t) − (f + d)E(t), E(0) = E0, (2)

İ(t) = fE(t)− (g + a+ d)I(t), I(0) = I0, (3)
Ṅ(t) = (b− d)N(t)− aI(t), N(0) = N0, (4)

where S0, E0, I0 and N0 are nonnegative initial conditions.
For some ū ≥ 0, we impose the following control constraint to u:

0 ≤ u(t) ≤ ū a.e. t ∈ [0, T ], (5)

where T represents the period of time under consideration. The recovered popula-
tion is related to the total population by N(t) = S(t) + E(t) + I(t) +R(t). Hence,
R(t) = N(t)− S(t)− E(t)− I(t) which gives the differential equation

Ṙ(t) = gI(t)− dR(t) + u(t)S(t), R(0) = R0. (6)



114 MARIA DO ROSÁRIO DE PINHO AND FILIPA NUNES NOGUEIRA

Here, the aim of applying optimal control to SEIR models is to control the spreading
of the disease with some minimum financial cost. The cost should then be a weighted
sum of the society financial costs of having, at each time, I(t) infected individuals
and the cost of the vaccination effort what is mathematical translated as (7). This
leads to the L1 cost as in [16]:

JC(X,u) =
∫ T

0
(AI(t) +Bu(t)) dt, (7)

where X = (S,E, I,N) and A > 0, B > 0 are weight parameters related with
financial costs.

Throughout this paper we refer to the optimal control problem of minimizing
J1(X,u) over all X ∈ W 1,1([0, T ] : R4) and all piecewise continuous functions
u : [0, T ] → R satisfying (1)-(6) and (5) as the classical and basic optimal control
problem:

(P )



Minimize
∫ T

0
(AI(t) +Bu(t)) dt

subject to

Ṡ(t) = bN(t)− dS(t)− cS(t)I(t)
N(t) − u(t)S(t), S(0) = S0,

Ė(t) = c
S(t)I(t)
N(t) − (f + d)E(t), E(0) = E0,

İ(t) = fE(t)− (g + a+ d)I(t), I(0) = I0,

Ṅ(t) = (b− d)N(t)− aI(t), N(0) = N0,

u(t) ∈ [0, ū] for a. e. t ∈ [0, T ], with ū ∈]0, 1].

Next, we associate (P ) with a normalized optimal control problem. Normalizing
models are obtained considering the percentage of the total population to be 1 at
each instant t. Then, defining

s(t) = S(t)
N(t) , e(t) = E(t)

N(t) , i(t) = I(t)
N(t) , r(t) = R(t)

N(t) , (8)

we have
s(t) + e(t) + i(t) + r(t) = 1 for all t. (9)

Notice that s(t) is the percentage of the population in compartment S(t), e(t) is
the percentage of the population in compartment E(t), i(t) is the percentage of the
population in compartment I(t) and r(t) be the percentage of the population in
compartment R(t). The normalized counterpart of (1)-(6) is then:

ṡ(t) =b− cs(t)i(t)− bs(t) + ai(t)s(t)− u(t)s(t), (10)
ė(t) =cs(t)i(t)− (f + b)e(t) + ai(t)e(t), (11)
i̇(t) =fe(t)− (g + a+ b)i(t) + ai2(t), (12)
ṙ(t) =gi(t)− rb(t) + ai(t)r(t) + u(t)s(t). (13)

Remarkably, the dead rate parameters do not appear in this model (a feature
we discuss in Remark 1 below). It is a simple matter to see that due to (9) we can
discard equation (13), allowing us to reduce the number of differential equations
from the normalized SEIR model (10)–(13).

Now we are faced with the choice of the cost for the normalized model. Taking
into account that the main aim is to control or to eliminate the disease from the
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population under study, different costs is may be considered, reflecting different
concerns.

The choice of the cost for (P ) is based on the need to define vaccine policies to
minimize some social and financial burden of the disease into the population. The
cost JC for (P ) captures two easily recognized social and financial costs that the
infectious disease imposes on a society; the burden of having people infected among
the population, translated in JC as AI(t), and the burden of vaccination to combat
the spreading of the diseases, translated in JC as Bu(t). Noteworthy, the weights
A and B can be easily changed to reflect different scenarios.

An almost straightforward translation of this reasoning to our normalized model

yields Jn(x, u) =
∫ T

0
(ρi(t) + u(t)) dt, where x = (s, e, i) is now the state variable

and ρ a parameter reflecting different weights on i and u. Numerically speaking,
this cost is clearly different to JC since its two terms are now both percentages
while JC has a weighted sum of two distinctive amounts. Not surprising, some
simple tuning of ρ may lead to similar results specially in situations where the total
population N does not vary much and, in particular, when the total population
remains constant. However, Jn demands that the cost of infected people should be
calculated in terms of the percentage of people infected instead of using the number
of infected people as in JC , something that depends on the economic practices.

We postpone this discussion of the introduction of different costs to future re-
search and we proceed now with the cost Jn above for our normalized model.
Putting all together we are led to the normalized basic optimal control problem:

(Pn)



Minimize
∫ T

0
(ρi(t) + u(t)) dt

subject to
ṡ(t) = b− cs(t)i(t)− bs(t) + ai(t)s(t)− u(t)s(t), s(0) = s0,

ė(t) = cs(t)i(t)− (f + b)e(t) + ai(t)e(t), e(0) = e0,

i̇(t) = fe(t)− (g + a+ b)i(t) + ai2(t), i(0) = i0,

u(t) ∈ [0, ū] for a. e. t ∈ [0, T ], with ū ∈]0, 1].

Note that the dynamics is of the form ẋ(t) = f(x(t)) + g(x(t))u, with x = (s, e, i)
and appropriate functions f(x) and g(x).

Remark 1. A word of caution regarding the way the system (10)–(13) is viewed.
We cannot interpret the dynamics between these new compartments in the same
way as with the classical model. Indeed, in equation (10) the term +ai(t)s(t) does
not mean that those who died of the disease become susceptible as if reborn in a
different compartment. Instead, this dynamical model can be better understood
using fluid analogies in the following way. Consider a system with four tanks with
the same amount of water circulating between them. At each instant t the total
amount of water in the system is constant but the level of water in each tank varies.
This analogy is presented in Figure 1 assuming that u(t) = 0. As mentioned before,
(Pn) does not depend on the parameter d. This happens because the normal dead
rate is equal for any compartment and thus it does not affect the distribution of
population into compartments. On the other hand, the birth rate works as if feeding
the susceptible compartment.
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Figure 1. Fluid Analogy of the Normalized SEIR compartmental model.

We will discuss pros and cons of (P ) and (Pn) using numerical solutions. Before
that, however, we need to briefly present some remarks on the numerical tools and
to describe the set of parameters used in our simulations.

3. Numerical methods and data for simulations. Optimal control problems
can be solved numerically by direct or indirect methods. Here, we opt to use
the direct method (for a description these two methods see, for example, [19]):
first the problem is discretized and the subsequent optimization problem is then
solved using software packages with large scale nonlinear continuous optimization
solvers. In this work all the simulations were made with the Applied Modelling
Programming Language (AMPL), developed by [7], and interfaced to the Interior-
Point optimization solver IPOPT, developed by [21]. Alternatively, the optimization
solver WORHP (see [3]) can also be interfaced with AMPL. We refer the reader
to [16] and references within for more information on software for optimal control
problems.

The application of the Maximum Principle to problems in the form of (P ) (the
control appearing linearly in the dynamics and the cost and with box control con-
straints) yields that the solution is a concatenation of bang-bang arcs and/or singu-
lar arcs. That is the case of (Pn) and (P ). When the optimal control is bang-bang,
sufficient second order optimality conditions (SSC) can be checked numerically; SSC
as described in [15] and [19] can be checked with high accuracy using the control
package NUDOCCCS. Alternatively they can also be tested with AMPL interfaced
with IPOPTS or with WORHP.

In all the computations we consider the time horizon to be 20 years: thus T = 20.
The parameters characterizing the population and the disease are in table 1. These

Table 1. Parameters for SEIR models

Parameter Description Value
b Natural birth rate 0.01
d Death rate 0.0099
c Incidence coefficient 1.1
f Exposed to infectious rate 0.5
g Recovery rate 0.1
a Disease induced death rate 0.2
T Number of years 20

parameters do not correspond to any specific population or diseases. In fact, f , a
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and g are equal to those in [17], while c is adapted from the corresponding values
in [17]. As for b and d, these are closely related to birth rates and death rate in
European countries. The disease parameters correspond to a devastating disease
as one can see either by calculating the reproduction number, which is higher than
1 (see [10]) or by solving the classical SEIR system ((1)-(6)) with u(t) = 0. In
the next section, and when convenient, we use different parameters but this will be
clearly stated. The values of the initial conditions follow those in [17]: for classical
SEIR models they are presented at table 2 together with the parameters A and B
of the objective functional. The initial conditions for the normalized problem (Pn)
are presented at table 3.

Table 2. Initial Conditions and cost parameters for problems with
classical SEIR model

Parameter Description Value
A weight parameter 1
B weight parameter 2
S0 Initial susceptible population 1000
E0 Initial exposed population 100
I0 Initial infected population 50
R0 Initial recovered population 15
N0 Initial population 1165

Table 3. Initial Conditions and cost parameters for problems with
classical SEIR model normalized model.

Parameter Description Value
s0 Percentage of initial susceptible population 0.858
e0 Percentage of initial exposed population 0.086
i0 Percentage of initial infected population 0.043

4. Comparison (P ) with (Pn). The problem (P ) is sensitive to the dimension of
the population. For example, the solution changes when we merely perturb the dead
rate parameter, d, or when the initial values S0, E0, I0 and R0 are multiplied by a
given positive constant. The first situation is illustrated in the left graph of figure
2, where the optimal control for a problem (P ) with d = 0.0099 is shown together
with the optimal control for a problems with d = 0.0005; although the profile of
the optimal control is the same, the switching times do change. Sensitivity of (P )
to different initial values is illustrated in the right graph of figure 2. For a smaller
population the optimal control is of the bang-singular-bang type whereas, for a
larger population it is bang-bang. In both cases, the percentages of susceptible,
exposed and infected initial individuals is the same. Clearly, the cost is in the core
of sensitivity of (P ) with respect to the size of the initial population and also with
respect to different death rates.

Although the two problem (P ) and (Pn) are different, we can get (Pn) to produce
approximately the same solutions of (P ) as mentioned above. To do so, we need to



118 MARIA DO ROSÁRIO DE PINHO AND FILIPA NUNES NOGUEIRA

0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

Time [years]

 

 

Control for d = 0.0005
Control for d = 0.0099

0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

Time [years]

 

 

Control for a population where the order of magnitude of its size is 1000
Control for a population where the order of magnitude of its size is 100 000

Figure 2. Optimal control for (P ): parameters in tables 1 and 2.
Left: Optimal control different dead rates: in red for d = 0.0099 and in
blue for d = 0.0005.Right: Optimal control with different initial values.
In red for S0, E0, I0 and R0 as in the table 2, in blue for initial conditions
S0 × 100, E0 × 100, I0 × 100 and R0 × 100 .

choose the parameter ρ in Jn to be ρ = A× π
B

, where A and B are the weights of
I(t) and u(t) and π is an average of the total population during T . An example is
shown in 3. Observe that if the total population remains almost constant, we can
choose π = N0.
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Figure 3. Optimal control for (Pn) with ρ = 500 in blue. Optimal
control calculated for (P ) in blue. The parameters are described in
Tables 1, 3, and 2.

Clearly, the reason why (P ) and the (Pn), with parameters associated to (P ),
differ resides on the cost. As mentioned before, the cost of Jn, introduced in sec-
tion 2 as an adaptation of JC , requires a fresh approach. Indeed, (Pn) demands
that the “financial” cost be expressed in terms of percentages and not numbers of
individuals.

When considering problem (Pn), we are mainly concerned on how the total pop-
ulation is distributed into compartments. Because of the nature of the percentages
we use, both the total number of the population as well as the dead rate are simply
not there. The problem (Pn) may be useful to simulate the same disease acting on
different sized populations but with similar birth rates. Observe also, that if needed,
when solving (Pn) numerically we can keep track of the changes of the total the
population by adding the differential equation Ṅ(t) = (b−d)N(t)−ai(t)N(t) to our
code. This does not cause any change on the optimal control since the solution does
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not depend on N . While (Pn) has the advantage of covering different populations
in one go, it does not always subsumes or replaces (P ). For example, the situation
when one seeks vaccination policies when the total number of vaccines available are
bounded (as in [17]) is tailored for the classical model (P ). Mixed constraints like
those introduced in [1], i.e., of the form

u(t)S(t) ≤ V0, (14)
can be mathematically translated to normalized models but they loose their mean-
ing. However, this drawback may be overcome by considering u(t) ∈ [0, ū], for a
suitable contant ū < 1. This technique was also used in [16], for (P ), as numerical
simulations shows that the results obtained by using this strategy are similar to the
solutions obtained by using the restriction described in (14).

5. Solution of (Pn). We now focus on the Maximum Principle for the problem
(Pn). The Hamiltonian given by

H(x, p, u) = pf(x) + pg(x)u− λ(ρi+ u),
for appropriated f and g, x = (s, e, i) and where p(t) = (ps(t), pe(t), pi(t)) ∈ R3

denotes the adjoint variable. Let (x∗, u∗) ∈ W 1,∞ × L∞ be an optimal solution to
(Pn). Then the maximum principle [5] asserts the existence of a scalar λ ≥ 0 and
an absolutely continuous function p such that the following conditions are satisfied
almost everywhere:

(i) max{|p(t)| : t ∈ [0, T ]}+ λ > 0 (nontriviality condition)

(ii) ṗ(t) = −Hx[t] = 〈p(t), fx[t] + gx[t]u∗(t)〉 − λ(0, 0, ρ) (adjoint condition),

(iii) H(x∗(t), p(t), u∗(t)) = max
u
{H(x∗(t), p(t), u(t)) : 0 ≤ u ≤ ū} (maximization

of the Hamiltonian),
(iv) p(T ) = 0 (transversality condition).

Since (Pn) does not have final time constraints on the states, it is well known that
the above conditions hold with λ = 1. Set φ(t) = Hu[t] = 〈p(t), g[t]〉 − 1. This is
called the switching function and it is of help to deduce a characterization of the
optimal control u∗ from (i)–(iv) which we proceed to do next.

It is a simple matter to see that condition (iii) is equivalent to
φ(t)u∗(t) = max

u
{φ(t)u(t) : 0 ≤ u ≤ ū}. (15)

It follows that u∗ is bang-bang in an interval I ⊂ [0, T ], if the switching function φ
has a finite number of isolated zeros at which the control switches between 0 and
ū. If φ is zero on an interval, then u∗ is singular, i.e.,

u∗(t) =

 ū , if φ(t) > 0,
0 , if φ(t) < 0,

singular , if φ(t) = 0.
(16)

In terms of the data of (Pn) the adjoint condition (ii) reads
−ṗs(t) = (ai(t)− ci(t)− b− u(t))ps(t) + ci(t)pe(t), (17)

−ṗe(t) = (ai(t)− b− f)pe(t) + fpi(t), (18)

−ṗi(t) = (as(t)− cs(t))ps(t) + (cs(t) + ae(t))pe(t) +
(2ai(t)− a− b− g)pi(t)− ρ. (19)
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Also, we have
φ(t) = −1− ps(t)s(t). (20)

Since our computations show that a singular arc appear, let us assume that φ(t) = 0
for t in an interval I ⊂ [0, T ] and check if we can obtain formulas for the singular
controls. We work in the region1

R :=
{

(s, e, i) ∈ R3 : s ≥ 0, e ≥ 0, i ≥ 0
}

and so we deduce that

φ(t) = 0 implies that ps(t) = − 1
s(t) < 0.

In the interior of the singular interval we have dφ

dt
= 0 and d2φ

dt
= 0. Now

dφ

dt
= cs(t)i(t)pe(t)− bps(t) = 0

implies that that pe = −b
cs2(t)i(t) ≤ 0. Since

d2φ

dt
= aci(t)2pe(t)s(t)− aci(t)pe(t)s(t)− bci(t)pe(t)s(t)

+ cfe(t)pe(t)s(t)− cgi(t)pe(t)s(t)− c2i(t)2pe(t)s(t)− ci(t)pe(t)s(t)u(t)

+ 2bci(t)pe(t) + cfi(t)pe(t)s(t)− cfi(t)s(t)pi(t) + abi(t)ps(t)

− bci(t)ps(t)− b2ps(t)− bps(t)u(t), (21)

depends on the control variable u, we say that the singular control (if it exists) is
of order one. Moreover, since ps(t) ≤ 0 and pe(t) ≤ 0, we have

d

du

(
d2φ

dt

)
= −ci(t)pe(t)s(t)− bps(t) > 0.

Thus the strict Generalized Legendre- Clebsch Condition (GLC) holds and we can

solve d2φ

dt
= 0 with respect to the control variable to get

using(x, p) = c(−c+ a)s(t)i(t)2pe(t)
ci(t)pe(t)s(t) + bps(t) + cefs(t)pe(t)− b2ps(t)

ci(t)pe(t)s(t) + bps(t)

+((((−a− b+ f − g)s(t) + 2b)pe(t)− fs(t)pi(t)− bps(t))c+ abps(t))i(t)
ci(t)pe(t)s(t) + bps(t)

(22)

It is important to observe that the above expression for singular controls depends
on the multipliers. Since we do not establish that the multipliers are unique, we
can only expect to use (22) to validate numerical findings but not to prove to
optimality. In fact, to prove optimality of computed solution we need to check
numerically sufficient conditions. Unfortunately, there are no numerically verifiable
sufficient conditions for problems with singular arcs.

1Since the initial condition belong to the interior of R and ū ∈]0, 1], this statement is easily
verified numerically.
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6. Numerical solutions for (Pn). We now present and discuss the results of our
simulations for (Pn). Recall that we use the data in table 1 and 3. We treat three
different cases:
• Case 1: ū = 1 and ρ = 500,
• Case 2: ū = 1 and ρ = 10,
• Case 3: ū = 0.2 and ρ = 500.

In the first two cases the computed optimal control exhibits a bang-singular-bang
structure while in the last one the optimal control is bang-bang. For all the three
cases we present graphs with the computed controls and trajectories. As in [16] and
to keep the exposition short, we do not present the graphs of the multipliers but
we give their computed initial values, and we also present the final states, the costs
and the switching times
Case 1. Taking ū to be 1 depicts the situation when all the susceptible population
can be vaccinated. The results of the simulations are shown in figures 4 and 5. In
Fig. 4 we show that the numeric optimal control and switching function, φ, satisfy
(16) while the computed singular control (22) coincides with the computed optimal
control u∗. The optimal trajectories are presented in Fig. 5.

0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [years]

 

 

u
u singular
φ

Figure 4. Case 1: Computed optimal control u∗ plotted together with
the singular control computed according to (22) and with the switching
function φ. During the first five years φ(t) > 1 and during the last eight
years φ(t) < 0.
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Figure 5. Case 1: optimal trajectories (including r).
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Numerical results for Case 1: J = 327.15, t1 = 6.4, t2 = 12.07,
s(T ) = 0.095341, e(T ) = 0.00051104, i(T ) = 0.0020380,
ps(0) = −126.5, pe(0) = −2253, pi(0) = −3219.

Case 2. The results of the simulations are shown in figures 6 and 7. In figure 6
the optimal control, u∗, and the switching function, φ, are presented. As expected,
u∗ = 1 and u∗ = 0 when, respectively, φ(t) > 0 and φ < 0. The optimal trajectories
for the state are presented in figure 7.
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Figure 6. Case 2: Computed optimal control u∗ plotted together with
the scaled switching function φ. During the last seventeen years φ(t) < 0.
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Figure 7. Case 2: optimal trajectories.

Numerical results for case 2: J = 10.181, t1 = 2.71,
s(T ) = 0.16598, e(T ) = 0.0033060, i(T ) = 0.0079433,
ps(0) = −377.0, pe(0) = −5137, pi(0) = −7081.

When we go from case 1 to case 2, the optimal control goes from singular to
bang-bang. This is because when we decrease the value of ρ, the weight of the
control in the cost increases.
Case 3. While keeping ρ = 500, we now consider that only 20% of the susceptible
people are eligible to be vaccinated, i.e., ū = 0.2. Results of the simulations are
illustrated in figures 8 and 9. In Fig. 8 the optimal vaccinate rate, u∗, and the
switching function, φ, are presented. As expected, u∗(t) = ū = 0.2 and u∗ = 0
when, respectively, φ > 0 and φ < 0. The trajectories for the state are presented in
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Fig. 9. The profile of the optimal control is bang-bang. The control becomes equal
to zero at instant t1 = 16.67.
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Figure 8. Case 3: Computed optimal control u∗ plotted together with
the scaled switching function φ. During the first sixteen years φ(t) > 0
and during the last three years φ(t) < 0.
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Figure 9. Case 3: Optimal trajectories.

Numerical results for case 3: J = 806.12, t1 = 16.67,
s(T ) = 0.071623, e(T ) = 0.0031999, i(T ) = 0.015275,
ps(0) = −1025, pe(0) = −4692, pi(0) = −6872.

6.1. Approximation for optimal control. If the control is bang-bang as in case
2 and 3 second order sufficient conditions may be checked numerically as described
in [15] and [16]. Here we refrain from engaging in such discussion to keep the
exposition short. Here we compute numerically the switching times using the so
called induced optimization problem as in [15]. Recall that the switching times are
the points ts1 at which the optimal control changes from one bound to another.

Implementing the induced optimization problem with AMPL for case 2, with
ρ = 10 and ū = 1 and denoting by ts1 and Js the computed switching time and
cost, we get ts1 = t1 = 2.71 and Js = 10.183 which in contrast with J = 10.181 is
a good approximation.

For case 3, with ρ = 500 and ū = 0.2, we have ts1 = 16.63 < t1 = 16− 67 while
we get get a match for the cost Js = J = 806.12.
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We now turn to case 1 where the computed control u∗ is of the form of Bang-
Singular-Bang. As discussed in [16], singular controls may be hard to implemented
in practice. To remedy this, [16] proposes to approximate the singular control by
a constant value ũ. Here we do as in [16] to calculate the switching times defining
the singular interval ts1 and ts2, the value 0 ≤ ũ ≤ 1 and the corresponing cost for
case 1 where ρ = 500 and ū = 1. Using the arc parametrization method described
in [15], now implemented in AMPL code, we obtain ts1 = 7, ts2 = 11.5, ũ = 0.55
with cost Js = 326.12 a value very close to the previous J = 327.15. Figure 10 a
comparison between u∗ and uapr is shown.
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Figure 10. Optimal vaccinated rate, u∗, in red. Approximate control
uapr, in blue dash. ρ = 500 and u ∈ [0, 1].

7. Conclusion. We studied the optimal control of an epidemiological normalized
SEIR model using a L1-type objectives. We extracted information about the opti-
mal solution from the Maximum Principle. In particular, we determined a closed
form for the singular controls. Numerical NP solvers were applied to the discretized
problem enabling us to compute optimal control solutions that match the neces-
sary conditions, in particular, the switching conditions and forms for the singular
controls.

Moreover, we confronted this problem with the one previously studied in [16]
where the so called classical SEIR model is used. The normalized model may cover
in one single problem populations of different size and it is defined with what may be
seen as a more realistic cost. Because of the use of normalized model, the solution
of (Pn) is dictated by the distribution of the population into the three different
compartments and the disease characteristics. On the other hand, the normalized
model has the disadvantage of not allowing the analysis of certain real situations
that cannot be translated by percentages, such as when there is a limited stock
of vaccine at a non-constant population. Our discussion of these two problems
highlights their differences and the need for a criterion choice of cost, a challenging
and relevant subject in optimal control for biomathematics problems.
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