This study introduces an innovative framework for generalized Hermite-Frobenius-Genocchi polynomials in two variables, parameterized by a single variable. The focus is on providing a comprehensive characterization of these polynomials through various mathematical tools, including generating functions, series expansions, and summation identities that uncover their essential properties. The work extends to the derivation of recurrence relations, the investigation of shift operators, and the formulation of multiple types of differential equations. In particular, the study delves into integro-differential and partial differential equations, employing a factorization technique to develop different forms and solutions. This multifaceted approach not only enhances our understanding of these polynomials, but also lays the groundwork for their further exploration in diverse areas of mathematical research.
Citation: Awatif Muflih Alqahtani, Shahid Ahmad Wani, William Ramírez. Exploring differential equations and fundamental properties of Generalized Hermite-Frobenius-Genocchi polynomials[J]. AIMS Mathematics, 2025, 10(2): 2668-2683. doi: 10.3934/math.2025125
This study introduces an innovative framework for generalized Hermite-Frobenius-Genocchi polynomials in two variables, parameterized by a single variable. The focus is on providing a comprehensive characterization of these polynomials through various mathematical tools, including generating functions, series expansions, and summation identities that uncover their essential properties. The work extends to the derivation of recurrence relations, the investigation of shift operators, and the formulation of multiple types of differential equations. In particular, the study delves into integro-differential and partial differential equations, employing a factorization technique to develop different forms and solutions. This multifaceted approach not only enhances our understanding of these polynomials, but also lays the groundwork for their further exploration in diverse areas of mathematical research.
[1] |
N. Alam, W. A. Khan, C. Kızılateş, S. S. Obeidat, C. S. Ryoo, N. S. Diab, Some explicit properties of Frobenius-Euler-Genocchi polynomials with applications in computer modeling, Symmetry, 15 (2023), 1358. https://doi.org/10.3390/sym15071358 doi: 10.3390/sym15071358
![]() |
[2] |
M. S. Alatawi, W. A. Khan, C. Kızılateş, C. S. Ryoo, Some properties of generalized Apostol-Type Frobenius-Euler-Fibonacci polynomials, Mathematics, 12 (2024), 800. https://doi.org/10.3390/math12060800 doi: 10.3390/math12060800
![]() |
[3] |
B. S. T. Alkahtani, I. Alazman, S. A. Wani, Some families of differential equations associated with multivariate Hermite polynomials, Fractal Fract., 7 (2023), 390. https://doi.org/10.3390/fractalfract7050390 doi: 10.3390/fractalfract7050390
![]() |
[4] | P. Appell, J. Kamp${\acute {\rm{e}}}$ de F${\acute{e}}$riet, Fonctions Hyperg${\acute{\rm{e}}}$om${\acute{\rm{e}}}$triques et Hypersph${\acute{\rm{e}}}$riques: Polyn${\hat{\rm{o}}}$mes d' Hermite, Paris: Gauthier-Villars, 1926. |
[5] |
S. Araci, M. Riyasat, S. A. Wani, S. Khan, Differential and integral equations for the 3-variable Hermite-Frobenius-Genocchi and Frobenius-Genocchi polynomials, App. Math. Inf. Sci., 11 (2017), 1335–1346. http://dx.doi.org/10.18576/amis/110510 doi: 10.18576/amis/110510
![]() |
[6] |
D. Bedoya, C. Cesarano, W. Ramírez, L. Castilla, A new class of degenerate biparametric Apostol-type polynomials, Dolomites Res. Notes Approx., 16 (2023), 10–19. https://doi.org/10.14658/PUPJ-DRNA-2023-1-2 doi: 10.14658/PUPJ-DRNA-2023-1-2
![]() |
[7] |
G. Bretti, C. Cesarano, P. E. Ricci, Laguerre-type exponentials and generalized Appell polynomials, Comput. Math. Appl., 48 (2004), 833–839. https://doi.org/10.1016/j.camwa.2003.09.031 doi: 10.1016/j.camwa.2003.09.031
![]() |
[8] |
L. Carlitz, Eulerian numbers and polynomials, Math. Mag., 32 (1959), 247–260. https://doi.org/10.2307/3029225 doi: 10.2307/3029225
![]() |
[9] |
C. Cesarano, Y. Quintana, W. Ramírez. Degenerate versions of hypergeometric Bernoulli-Euler polynomials, Lobachevskii J. Math., 45 (2024), 3509–3521. https://doi.org/10.1134/S1995080224604235 doi: 10.1134/S1995080224604235
![]() |
[10] |
C. Cesarano, Y. Quintana, W. Ramírez, A survey on orthogonal polynomials from a monomiality principle point of view, Encyclopedia, 4 (2024), 1355–1366. https://doi.org/10.3390/encyclopedia4030088 doi: 10.3390/encyclopedia4030088
![]() |
[11] | C. Cesarano, G. M. Cennamo, L. Placidi, Humbert polynomials and functions in terms of Hermite polynomials towards applications to wave propagation, WSEAS Trans. Math., 13 (2014), 595–602. |
[12] | G. Dattoli, Hermite-Bessel and Laguerre-Bessel functions: a by-product of the monomiality principle, Advanced Special functions and applications, In: Proceedings of the Melfi School on Advanced Topics in Mathematics and Physics, 147–164, 2000. |
[13] |
G. Dattoli, C. Cesarano, D. Sacchetti, A note on truncated polynomials, Appl. Math. Comput., 134 (2003), 595–605. https://doi.org/10.1016/S0096-3003(01)00310-1 doi: 10.1016/S0096-3003(01)00310-1
![]() |
[14] |
G. Dattoli, S. Lorenzutta, A. M. Mancho, A. Torre, Generalized polynomials and associated operational identities, J. Comput. Appl. Math., 108 (1999), 209–218. https://doi.org/10.1016/S0377-0427(99)00111-9 doi: 10.1016/S0377-0427(99)00111-9
![]() |
[15] |
G. Dattoli, C. Chiccoli, S. Lorenzutta, G. Maino, A. Torre, Generalized Bessel functions and generalized Hermite polynomials, J. Math. Anal. Appl., 178 (1993), 509–516. https://doi.org/10.1006/jmaa.1993.1321 doi: 10.1006/jmaa.1993.1321
![]() |
[16] |
G. Dattoli, S. Lorenzutta, G. Maino, A. Torre, C. Cesarano, Generalized Hermite polynomials and super-Gaussian forms, J. Math. Anal. Appl., 203 (1996), 597–609. https://doi.org/10.1006/jmaa.1996.0399 doi: 10.1006/jmaa.1996.0399
![]() |
[17] |
M. X. He, P. E. Ricci, Differential equation of Appell polynomials via the factorization method, J. Comput. Appl. Math., 139 (2002), 231–237. https://doi.org/10.1016/S0377-0427(01)00423-X doi: 10.1016/S0377-0427(01)00423-X
![]() |
[18] |
J. Hernández, D. Peralta, Y. Quintana, A look at generalized degenerate Bernoulli and Euler matrices, Mathematics, 11 (2023), 2731. https://doi.org/10.3390/math11122731 doi: 10.3390/math11122731
![]() |
[19] |
J. Hernández, Y. Quintana, F. J. Ramírez, A note on generalized degenerate $q$-Bernoulli and $q$-Euler matrices, Dolomites Res. Notes Approx., 17 (2024), 63–71. https://doi.org/10.14658/PUPJ-DRNA-2024-1-7 doi: 10.14658/PUPJ-DRNA-2024-1-7
![]() |
[20] |
S. Khan, N. Raza, General-Appell polynomials within the context of monomiality principle, Int. J. Anal., 2013. https://doi.org/10.1155/2013/328032 doi: 10.1155/2013/328032
![]() |
[21] | S. Khan, G. Yasmin, R. Khan, N. A. M. Hassan, Hermite polynomials: properties and applications, J. Math. Anal. Appl., 351 (2009), 756–764. |
[22] |
L. Infeld, T. E. Hull, The factorization method, Rev. Mod. Phys., 23 (1951), 21–68. https://doi.org/10.1103/RevModPhys.23.21 doi: 10.1103/RevModPhys.23.21
![]() |
[23] |
Y. Quintana, W. Ramírez, A degenerate version of hypergeometric Bernoulli polynomials: announcement of results, Commun. Appl. Ind. Math., 15 (2024), 36–43. https://doi.org/10.2478/caim-2024-0011 doi: 10.2478/caim-2024-0011
![]() |
[24] | W. Ramírez, M. Ortega, D. Bedoya, A. Urieles, New parametric Apostol-type Frobenius-Euler polynomials and their matrix approach, Kragujev. J. Math., 49 (2025), 411–429. |
[25] |
W. Ramírez, C. Kızılateş, C. Cesarano, D. Bedoya, C. S. Ryoo, On certain properties of three parametric kinds of Apostol-type unified Bernoulli-Euler polynomials, AIMS Math., 10 (2025), 137–158. https://doi.org/10.3934/math.2025008 doi: 10.3934/math.2025008
![]() |
[26] |
S. A. Wani, S. Khan, Certain properties and applications of the 2D Sheffer and related polynomials, Bol. Soc. Mat. Mex., 26 (2020), 947–971. https://doi.org/10.1007/s40590-020-00280-5 doi: 10.1007/s40590-020-00280-5
![]() |
[27] |
S. A. Wani, S. Khan, Properties and applications of the Gould-Hopper-Frobenius-Genocchi polynomials, Tbilisi Math. J., 12 (2019), 93–104 https://doi.org/10.32513/tbilisi/1553565629 doi: 10.32513/tbilisi/1553565629
![]() |
[28] |
H. M. Srivastava, M. A. $\ddot{O}$zarslan, B. Yilmaz, Some families of differential equations associated with the Hermite polynomials and other classes of Hermite-based polynomials, Filomat, 28 (2014), 695–708. https://doi.org/10.2298/FIL1404695S doi: 10.2298/FIL1404695S
![]() |
[29] |
B. Yilmaz, M. A. $\ddot{O}$zarslan, Differential equations for the extended 2D Bernoulli and Euler polynomials, Adv. Differ. Equ., 2013 (2013), 107. https://doi.org/10.1186/1687-1847-2013-107 doi: 10.1186/1687-1847-2013-107
![]() |