The basic objective of this paper is to utilize the factorization technique method to derive several properties such as, shift operators, recurrence relation, differential, integro-differential, partial differential expressions for Gould-Hopper-Frobenius-Genocchi polynomials, which can be utilized to tackle some new issues in different areas of science and innovation.
Citation: Rabab Alyusof, Mdi Begum Jeelani. Some families of differential equations associated with the Gould-Hopper-Frobenius-Genocchi polynomials[J]. AIMS Mathematics, 2022, 7(3): 4851-4860. doi: 10.3934/math.2022270
The basic objective of this paper is to utilize the factorization technique method to derive several properties such as, shift operators, recurrence relation, differential, integro-differential, partial differential expressions for Gould-Hopper-Frobenius-Genocchi polynomials, which can be utilized to tackle some new issues in different areas of science and innovation.
[1] | S. Araci, M. Riyasat, S. A. Wani, S. Khan, Differential and integral equations for the 3-variable Hermite-Frobenius-Euler and Frobenius-Genocchi polynomials, Appl. Math. Inf. Sci., 11 (2017), 1335–1346. http://dx.doi.org/10.18576/amis/110510 doi: 10.18576/amis/110510 |
[2] | S. A. Wani, S. Khan, T. Nahid, Gould-Hopper based Frobenius-Genocchi polynomials and their generalized form, Afr. Mat., 31 (2020), 1397–1408. https://doi.org/10.1007/s13370-020-00804-2 doi: 10.1007/s13370-020-00804-2 |
[3] | S. Khan, M. Riyasat, S. A. Wani, On some classes of diffrential equations and associated integral equations for the Laguerre-Appell polynomials, Adv. Pure Appl. Math., 9 (2018), 185–194. https://doi.org/10.1515/apam-2017-0079 doi: 10.1515/apam-2017-0079 |
[4] | M. Riyasat, S. A. Wani, S. Khan, Differential and integral equations associated with some hybrid families of Legendre polynomials, Tbilisi Math. J., 11 (2018), 127–139. https://doi.org/10.32513/tbilisi/1524276035 doi: 10.32513/tbilisi/1524276035 |
[5] | S. Khan, S. A. Wani, A note on differential and integral equations for the Laguerre-Hermite polynomials, Proceedings of the Second International Conference on Computer and Communication Technologies, IC3T 2017, Adv. Intell. Syst. Comput., 381 (2016), 547–555. |
[6] | S. Khan, S. A. Wani, A note on differential and integral equations for the Legendre-Hermite polynomials, IJARSE, 7 (2018), 514–520. |
[7] | S. A. Wani, S. Khan, S. A. Naikoo, Differential and integral equations for the Laguerre-Gould-Hopper based Appell and related polynomials, Bol. Soc. Mat. Mex., 26 (2020), 617–646. https://doi.org/10.1007/s40590-019-00239-1 doi: 10.1007/s40590-019-00239-1 |
[8] | H. W. Gould, A. T. Hopper, Operational formulas connected with two generalizations of Hermite polynomials, Duke Math. J., 29 (1962), 51–63. https://doi.org/10.1215/S0012-7094-62-02907-1 doi: 10.1215/S0012-7094-62-02907-1 |
[9] | M. X. He, P. E. Ricci, Differential equation of Appell polynomials via the factorization method, J. Comput. Appl. Math., 139 (2002), 231–237. https://doi.org/10.1016/S0377-0427(01)00423-X doi: 10.1016/S0377-0427(01)00423-X |
[10] | L. Infeld, T. E. Hull, The factorization method, Rev. Mod. Phys., 23 (1951), 21–68. https://doi.org/10.1103/RevModPhys.23.21 doi: 10.1103/RevModPhys.23.21 |
[11] | M. A. Özarslan, B. Yılmaz, A set of finite order differential equations for the Appell polynomials, J. Comput. Appl. Math., 259 (2014), 108–116. https://doi.org/10.1016/j.cam.2013.08.006 doi: 10.1016/j.cam.2013.08.006 |
[12] | H. M. Srivastava, M. A. Özarslan, B. Yılmaz, Some families of differential equations associated with the Hermite-based Appell polynomials and other classes of Hermite-based polynomials, Filomat, 28 (2014), 695–708. |
[13] | B. Yılmaz, M. A. Özarslan, Differential equations for the extended 2D Bernoulli and Euler polynomials, Adv. Differ. Equ., 107 (2013), 107. https://doi.org/10.1186/1687-1847-2013-107 doi: 10.1186/1687-1847-2013-107 |
[14] | B. Yılmaz, M. A. Özarslan, Frobenius-Euler and Frobenius-Genocchi polynomials and their differential equations, New Trends Math. Sci., 3 (2015), 172–180. |