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Abstract: This study introduces an innovative framework for generalized Hermite-Frobenius-
Genocchi polynomials in two variables, parameterized by a single variable. The focus is on
providing a comprehensive characterization of these polynomials through various mathematical tools,
including generating functions, series expansions, and summation identities that uncover their essential
properties. The work extends to the derivation of recurrence relations, the investigation of shift
operators, and the formulation of multiple types of differential equations. In particular, the study
delves into integro-differential and partial differential equations, employing a factorization technique to
develop different forms and solutions. This multifaceted approach not only enhances our understanding
of these polynomials, but also lays the groundwork for their further exploration in diverse areas of
mathematical research.
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1. Introduction and preliminaries

Frobenius-Genocchi polynomials have garnered significant attention due to their versatile
applications in several key areas of mathematics, including combinatorial analysis, number theory,
and differential equations. These polynomials are not merely abstract constructs; they serve as
powerful tools in enumerating combinatorial structures, such as permutations, partitions, and other
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discrete objects. In combinatorial mathematics, their generating functions often simplify the complex
task of counting arrangements or configurations that follow specific rules. In number theory,
Frobenius-Genocchi polynomials assist in analyzing numerical sequences, particularly those related
to special number classes, like Genocchi and Bernoulli numbers. Their ability to represent and
generalize such sequences opens up new avenues for understanding the deeper properties of integers
and their relationships. Additionally, these polynomials contribute to discovering new identities and
relations between number-theoretic functions, further enriching the field. In the realm of differential
equations, Frobenius-Genocchi polynomials provide solutions to various classes of equations,
including both ordinary and partial differential equations. Their recurrence relations and generating
functions are often used to formulate and solve complex integro-differential and integro-partial
differential equations. This capability enables mathematicians and physicists to tackle problems in
mathematical physics, fluid dynamics, and other applied fields. Therefore, Frobenius-Genocchi
polynomials bridge the gap between pure and applied mathematics, offering critical insights that help
address a wide range of mathematical challenges. Their ability to unify different branches of
mathematics underscores their enduring relevance and utility.

Banu and Özarslan [29] conducted an in-depth study of the Frobenius-Genocchi polynomials,
denoted as PJn(ρ1|u), which adhere to a specific exponential generating function. Their research is
significant because it expands the theoretical understanding of these polynomials, which are a
generalization of classical Genocchi polynomials. The Frobenius-Genocchi polynomials play a
crucial role in various branches of mathematical analysis and number theory, including combinatorics,
special functions, and algebraic identities. By exploring the properties, recurrence relations, and
applications of PJn(ρ1|u), Banu and Özarslan have provided valuable insights that can be utilized in
solving complex mathematical problems. Their findings also have potential implications for related
fields such as mathematical physics and coding theory, where polynomial structures are often
employed to model and solve intricate problems. Moreover, the detailed examination of the
exponential generating function associated with these polynomials offers a deeper comprehension of
their behavior and interrelations with other mathematical entities. This work not only contributes to
the existing body of knowledge, but also paves the way for future research endeavors aimed at
uncovering further applications and generalizations of Frobenius-Genocchi polynomials. This
foundational work has allowed mathematicians to further explore the algebraic properties and
relationships within polynomial sequences, leading to advancements in mathematical research and
practical problem-solving. These polynomials possess the following generating relation:

(1 − u)τ
eτ − u

eρ1τ =

∞∑
n=0

PJn(ρ1|u)
τn

n!
, ∀ u ∈ C; u , 1. (1.1)

The Frobenius-Genocchi polynomials, particularly PJn(u) = PJn(0|u), known as the
Frobenius-Genocchi numbers, are significant for their broad applications in combinatorial
mathematics, number theory, and the resolution of differential equations. These numbers facilitate the
enumeration of combinatorial structures, the examination of numerical sequences, and the solution of
intricate differential equations, providing essential insights into diverse mathematical problems
possessing the generating relation:

∞∑
n=0

PJn(0|u)
τn

n!
=

(1 − u)τ
eτ − u

, ∀ u ∈ C; u , 1.
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The “Frobenius-Genocchi polynomials” possess the series representation:

n∑
k=0

(
n
k

)
PJk(u)ρn−k

1 = PJn(ρ1|u), n ≥ 0, PJ0(u) = 1.

The “classical Genocchi polynomials”Jn(ρ1) are analogues of the “Frobenius-Genocchi polynomials”.
The following generating relations define them:

2τ
eτ − 1

eρ1τ =

∞∑
n=0

Jn(ρ1)
τn

n!
.

For, Jn = Jn(0), they are called as the “classical Genocchi numbers”. These numerical values and
polynomial functions hold pivotal significance across various mathematical domains, encompassing
number theory, combinatorics, special functions, and analysis. Notably, the “Frobenius-Genocchi
polynomials yield the classical Genocchi polynomials” when u = −1 in Eq (1.1).

From the perspective of applications, the special polynomials of two variables are crucial. By
using these polynomials, new families of special polynomials may be introduced, and valuable
identities can be derived very straightforwardly. Using features of an iterated isomorphism connected
to the Laguerre-type exponentials, Bretti et al. [7], for instance, established extended classes of the
Appell polynomials of two variables. Various writers have examined the two variable versions of the
Hermite, Laguerre, and truncated exponential polynomials, along with their generalizations
in [4, 8, 12–14, 18, 19].

In recent years, there has been a remarkable surge in the development and application of special
functions in mathematical physics, significantly broadening their scope and potential. These
innovations have provided a robust and versatile analytical framework capable of addressing a diverse
range of complex problems across the field of mathematical physics. As a result, these advancements
have found extensive use in numerous practical domains, influencing not only theoretical research, but
also real-world applications in various industries, see [1, 2, 6, 23–25].

The significance of generalized Hermite polynomials has been thoroughly examined in previous
studies, including those by Datolli et al. [15, 16]. These polynomials have emerged as indispensable
tools in solving fundamental challenges in areas such as quantum mechanics, where they are pivotal in
modeling wave functions and particle dynamics. Furthermore, they play a central role in the analysis
of optical beam propagation, facilitating the study of light interaction in nonlinear media. Additionally,
generalized Hermite polynomials are instrumental in solving a variety of problems related to partial
differential equations and have broad implications in the study of abstract group theory, providing
profound insights into symmetry and algebraic structures.

The “2-variable Hermite Kampé de Feriet polynomials (2VHKdFP)”, denoted as Pn(ρ1, ρ2) [4], can
be represented by the following generating function:

eρ1τ+ρ2τ
2
=

∞∑
n=0

Pn(ρ1, ρ2)
τn

n!
,

which, for ρ2 = 0, gives

eρ1τ =

∞∑
n=0

Pn(ρ1)
τn

n!
.
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Further, the “2-variable 1-parameter Hermite polynomials (2V1PHP)”, represented as Pn(ρ1, ρ2,C),
can be represented by the following generating function [29]:

Cρ1τ+ρ2τ
2
=

∞∑
n=0

PJn(ρ1, ρ2,C)
τn

n!
, C > 1. (1.2)

The benefits and rationale behind using Cρ1τ+ρ2τ
2

over eρ1τ+ρ2τ
2

is due to the flexibility with the Base C.
The introduction of the base C allows us to tailor the behavior of the function to better fit specific
applications. For instance, selecting C appropriately can help in achieving a desired growth rate or in
matching empirical data more accurately. Also, in many real-world scenarios, exponential growth
might be too rapid. By using a base C smaller than e, we can model phenomena with slower growth
more effectively. Conversely, a larger C can be used to model faster growth or decay. Further more,
depending on the value of C and the computational context, evaluating Cρ1τ+ρ2τ

2
might be more

efficient or numerically stable compared to eρ1τ+ρ2τ
2
. This is particularly relevant in high-performance

computing or large dataset analyses.
In their two-variable formulation, these polynomials have become indispensable across a wide range

of disciplines within both pure and applied mathematics and physics. Their versatility allows them to
be applied to complex problems in diverse fields as a foundational tool in various mathematical models
and physical theories.

For instance, in mathematical physics, these polynomials play a crucial role in solving Laplace’s
equation when expressed in parabolic coordinates. This equation, which is fundamental in studying
potential theory, electrostatics, and fluid dynamics, often requires special polynomials to simplify and
solve problems involving boundary conditions or specific geometries. Moreover, in quantum
mechanics, these polynomials are instrumental in addressing scenarios where wave functions or
quantum states need to be described in parabolic coordinates, particularly in systems with cylindrical
or parabolic symmetry. Their application extends to solving the Schrödinger equation in such
contexts, providing exact solutions that describe the behavior of quantum particles under specific
potential fields.

In probability theory, these polynomials are equally important. They are used to model distributions
and stochastic processes, particularly when the underlying processes have symmetries or constraints
that can be described using parabolic coordinates. This includes applications in financial mathematics,
where they help analyze random walks or diffusion processes.

One of the most notable features of these polynomials is their ability to provide specific solutions
to the heat equation or generalized heat problems for any integral value of n. The heat equation, which
describes the distribution of heat (or variation in temperature) in a given region over time, is a critical
partial differential equation in theoretical and applied contexts. The corresponding Gauss-Weierstrass
transforms, integral transforms used to smooth or regularize functions, facilitate these solutions by
linking the polynomials to the broader context of heat diffusion and propagation.

Consider the sequence of polynomials {Pn(ρ1)}∞n=0, where each Pn(ρ1) represents a polynomial. It
can be observed that the degree of Pn(ρ1) is n, for all n ∈ N0 := {0, 1, 2, . . . }. The differential operators
Ψ−n and Ψ+n meeting the criteria

Ψ−n {Pn(ρ1)} = Pn−1(ρ1), (1.3)

Ψ+n {Pn(ρ1)} = Pn+1(ρ1) (1.4)
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are referred to as the multiplicative and derivative operators, respectively. A sequence of polynomials
{Pn(ρ1)}∞n=0 is classified as quasi-monomial if, and only if, it satisfies the conditions given by Eqs (1.3)
and (1.4). This particular differential equation can be derived by identifying the corresponding
derivative and multiplicative operators for a specific family of polynomials, as outlined below:

(Ψ−n+1Ψ
+
n ){Pn(ρ1)} = Pn(ρ1).

This process is known as the factorization technique. The core of this approach lies in
determining the multiplicative operator Ψ+n and the derivative operator Ψ−n , as outlined in
references [3, 5, 9, 10, 17, 22, 26, 27]. Another perspective on this method is provided by the
monomiality principle. When applied to multivariable special functions, the factorization technique
introduces new analytical tools for solving a wide range of partial differential equations commonly
encountered in practical applications.

Differential equations are integral to various fields such as physics, engineering, and both pure
and applied mathematics. Many problems in scientific and technical disciplines are often modeled
by differential equations, typically solved using specialized functions. Over the past three decades,
there has been a resurgence of interest in differential equation theory, driven by advances in nonlinear
analysis, dynamical systems, and their practical applications in science and engineering.

Numerous studies have systematically explored and analyzed hybrid families of special
polynomials using various generating function approaches and analytical methods [11, 20, 21, 28].
Key features of these multi-variable hybrid special polynomials include ”recurrence relations, explicit
formulas, functional and differential equations, summation formulas, symmetric and convolution
identities, and determinant techniques,” all of which contribute to their significance. These
polynomials are valuable tools in diverse fields, such as number theory, combinatorics, classical and
numerical analysis, theoretical physics, and approximation theory. The unique properties of hybrid
special polynomials make them particularly useful for addressing new challenges across various
scientific disciplines.

In this work, we introduce a novel technique for analyzing generalized
Hermite-Frobenius-Genocchi polynomials, which offers distinct advantages over traditional methods.
This approach provides a more efficient framework for deriving recurrence relations, differential
equations, and summation identities, allowing for easier manipulation and application in various
mathematical contexts. Compared to previous studies, our technique simplifies the formulation of
complex relationships and enhances computational tractability. A thorough review of the existing
literature reveals that while significant progress has been made in the study of special polynomials,
many approaches are limited by computational complexity or lack of generalizability. Our technique
addresses these limitations by offering a versatile and scalable method for dealing with two-variable
polynomials. Furthermore, it extends the scope of previous research by introducing factorization
methods and providing insights into the broader algebraic structures. This paper fills a gap in the
current literature and opens up new possibilities for future research in both theoretical and applied
mathematics. The article is structured as follows:

Section 2 introduces the generalized Hermite-Frobenius-Genocchi polynomials with one
parameter and two variables (1P2VGHFGP), presenting their series representations, generating
functions, and operational formalism. Section 3 applies the factorization method to derive various
differential equations, including traditional, integro-differential, and partial differential equations,
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highlighting the polynomials’ versatility in solving complex problems. Section 4 provides summation
formulae derived from the polynomials’ series representations, offering insights into their summing
behavior and practical applications. The final section summarizes the findings and discusses potential
future research directions, focusing on the further exploration of these polynomials and their broader
applications in mathematical and scientific fields.

2. 1-parameter 2-variable generalized Hermite-Frobenius-Genocchi polynomials

This section presents a novel hybrid family of polynomials, referred to as the “1-parameter
2-variable generalized Hermite-Frobenius-Genocchi polynomials” (1P2VGHFGP). This family is
defined through a combination of key mathematical concepts, offering a unique structure for further
exploration. In this regard, we derive and establish several significant properties of these polynomials,
highlighting their importance and utility in various mathematical contexts. To facilitate the
understanding and application of these polynomials, we proceed to derive their generating function. A
pivotal result is introduced in the following, which serves as the foundation for deriving the
generating function of the 1P2VGHFGP.

Theorem 2.1. For the “1-parameter 2-variable generalized Hermite-Frobenius-Genocchi
polynomials” PJn(ρ1, ρ2;C|u), the following generating relation is demonstrated:

(1 − u)τ
eτ − u

Cρ1τ+ρ2τ
2
=

∞∑
n=0

PJn(ρ1, ρ2;C|u)
τn

n!
, C > 1, (2.1)

or, equivalently,
(1 − u)τ
eτ − u

e(ln(ρ1τ+ρ2τ
2)C) =

∞∑
n=0

PJn(ρ1, ρ2;C|u)
τn

n!
, C > 1. (2.2)

Proof. Substituting the exponents of τ, i.e. ρ0
1, ρ

1
1, ρ

2
1, · · · , ρ

n
1, in the expansion of eρ1τ by the

polynomials PJ0(ρ1, ρ2;C|u), PJ2(ρ1, ρ2;C|u), · · · , PJn(ρ1, ρ2;C|u) in the left hand part and ρ1 by
PJ1(ρ1, ρ2;C|u) in right-hand part of the expression (1.1), further adding up the expressions in the
left-hand part of the resultant expression, we have

(1 − u)τ
eτ − u

∞∑
n=0

Pn(ρ1, ρ2;C|u)
τn

n!
=

∞∑
n=0

PJn(P1(ρ1, ρ2;C|u))
τn

n!
,

which indicates the resulting 1P2VGHFGP on the r.h.s., that is,
PJn(ρ1, ρ2;C|u) := PJn{P1(ρ1, ρ2;C|u)}, leading to (2.1).

Further, the generating function (2.2) is obtained by simplifying the l.h.s. of Eq (2.1). □

Remark 2.1. For ρ2 = 0, the “1-parameter 2-variable generalized Hermite-Frobenius-Genocchi
polynomials” PJn(ρ1, ρ2;C|u) reduces to the generalized 1-parameter Frobenius-Genocchi
polynomials PJn(ρ1C), possessing generating relation:

(1 − u)τ
eτ − u

Cρ1τ =

∞∑
n=0

PJn(ρ1;C|u)
τn

n!
, C > 1,
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or, equivalently,
(1 − u)τ
eτ − u

e(ρ1τ) lnC =

∞∑
n=0

PJn(ρ1;C|u)
τn

n!
, C > 1.

Remark 2.2. For ρ2 = 0 = ρ1, the “1-parameter 2-variable generalized Hermite-Frobenius-Genocchi
polynomials” PJn(ρ1, ρ2;C|u) reduces to the Frobenius-Genocchi numbers PJn, possessing the
generating relation:

(1 − u)τ
eτ − u

=

∞∑
n=0

PJn(ρ1;C|u)
τn

n!
.

The following theorem gives the series definition for the 1P2VGHFGP PJn(ρ1, ρ2;C|u):
Operational techniques for special polynomials encompass a diverse array of algebraic and

analytical approaches that enable their effective manipulation and application across various
mathematical and practical domains. Central to these techniques are generating functions, which
consolidate entire polynomial sequences into a single, compact function. This representation not only
simplifies the derivation of relationships and identities among the polynomials, but also facilitates
their deeper analysis.

Another cornerstone is the use of differential operators, which serve as powerful tools for
expressing recurrence relations, performing transformations, and streamlining the resolution of
complex differential equations. By leveraging these operators, one can gain insights into the structural
properties and dynamic behavior of the polynomials.

Furthermore, integral transforms, including the Laplace and Fourier transforms, significantly extend
the scope of special polynomials, enabling their application in practical contexts such as quantum
mechanics, signal processing, and control theory. These transforms provide a bridge between abstract
polynomial theory and real-world problem-solving, enhancing both their versatility and utility.

Altogether, these operational techniques not only simplify intricate mathematical computations,
but also underscore the critical role of special polynomials in advancing both pure and applied
mathematics. Their efficiency and adaptability make them indispensable in tackling theoretical
challenges and modeling complex systems across scientific disciplines.

Differentiating (2.1) or (2.2) w.r.t. ρ1 successively, we find

∂

∂ρ1

(
(1 − u)τ
eτ − u

Cρ1τ+ρ2τ
2

)
= (lnC)τ

(
(1 − u)τ
eτ − u

Cρ1τ+ρ2τ
2

)
,

which can be further expressed as

∂

∂ρ1

( ∞∑
n=0

PJn(ρ1, ρ2;C|u)
τn

n!

)
= (lnC)

( ∞∑
n=0

PJn(ρ1, ρ2;C|u)
τn+1

n!

)
.

Then, replacing n→ n − 1 in r.h.s. of the preceding expression and then comparing the coefficients of
the same exponents on both sides of the resultant expression, we find

∂

∂ρ1
PJn(ρ1, ρ2;C|u) = n lnCPJn−1(ρ1, ρ2;C|u). (2.3)
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Continuing in similar fashion, we have

∂2

∂ρ2
1
PJn(ρ1, ρ2;C|u) = n(n − 1)(lnC)2

PJn−2(ρ1, ρ2;C|u),

∂3

∂ρ3
1
PJn(ρ1, ρ2;C|u) = n(n − 1)(n − 2)(lnC)3

PJn−3(ρ1, ρ2;C|u),

...
...

∂m

∂ρm
1
PJn(ρ1, ρ2;C|u) = n(n − 1) · · · (n − m + 1)(lnC)m

PJn−m(ρ1, ρ2;C|u).

Further, differentiating (2.1) or (2.2) w.r.t. ρ2 successively, we find

∂

∂ρ2

(
(1 − u)τ
eτ − u

Cρ1τ+ρ2τ
2

)
= (lnC)τ2

(
(1 − u)τ
eτ − u

Cρ1τ+ρ2τ
2

)
,

which can be further expressed as

∂

∂ρ2

( ∞∑
n=0

PJn(ρ1, ρ2;C|u)
τn

n!

)
= (lnC)

( ∞∑
n=0

PJn(ρ1, ρ2;C|u)
τn+2

n!

)
,

Then, replacing n→ n−2, on the r.h.s. of the preceding expression, and then comparing the coefficients
of the same exponents on both sides of the resultant expression, we find

∂

∂ρ2
PJn(ρ1, ρ2;C|u) = n(n − 1) lnCPJn−2(ρ1, ρ2;C|u). (2.4)

Thus, the expressions (2.3) and (2.4) satisfy the relation:

∂

∂ρ2
PJn(ρ1, ρ2;C|u) =

1
lnC

∂2

∂ρ2
1
PJn(ρ1, ρ2;C|u) (2.5)

which, in consideration of the initial condition:

PJn(ρ1, 0;C|u) = PJn(ρ1;C|u) (2.6)

provides the operational representation for PJn(ρ1, ρ2;C|u) via the result.

Theorem 2.2. For the 1P2VGHFGP PJn(ρ1, ρ2;C|u), the following operational representation is
given:

PJn(ρ1, ρ2;C|u) = exp
( ρ2

lnC
∂2

∂ρ2
1

){
PJn(ρ1;C|u)

}
. (2.7)

Proof. In view of the expressions (2.5) and (2.6), the assertion (2.7) is established. □
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3. Recurrence relations, shift operators, and families of differential equations

Recurrence relations are pivotal in deriving families of differential equations as they systematically
link solutions of different orders, enabling the reduction of complex problems to simpler ones. They
facilitate the derivation and simplification of differential equations by expressing higher-order
solutions in terms of lower-order ones, thus making the problem more manageable. Moreover, they
offer analytical insights into the structure and properties of solutions, such as orthogonality and
asymptotic behavior, and provide computational efficiency by enabling algorithms for practical
applications. Overall, recurrence relations not only unify the approach to solving differential
equations, but also enhance our ability to apply these solutions in various scientific and
engineering fields.

Theorem 3.1. The 1P2VGHFGP PJn(ρ1, ρ2;C|u) adhere, to the following recurrence relation:

PJn+1(ρ1, ρ2;C|u) = (ρ1(lnC) − n+1
2(1−u) ) PJn(ρ1, ρ2;C|u) + 2nρ2(lnC)PJn−1(ρ1, ρ2;C|u)

− 1
(1−u)

n+1∑
k=2

(
n+1

k

)
PJn−k+1(ρ1, ρ2;C|u)Gk(u),

(3.1)

where the expression:

Gk(u) := −
k∑

i=0

1
2i

(
k
i

)
Gk−i

(
1
2
|u
)
, G0 = −1, G1 =

1
2

is expressed using the numerical coefficients Gn(u), which are connected to the Frobenius-Genocchi
polynomials PJk(ρ1|u) and

PJ−k(ρ1, ρ2;C|u) := 0, k = 1, 2.

Proof. After incorporating τ and differentiating both sides of the generating function (2.1), we obtain:

∂

∂τ

{
(1 − u)τ
eτ − u

Cρ1τ+ρ2τ
2

}
=
∂

∂τ

{ ∞∑
n=0

PJn(ρ1, ρ2;C|u)
τn

n!

}
which can be simplified as{

ρ1 ln(C) + 2ρ2 ln(C)τ
} ∞∑

n=0
PJn(ρ1, ρ2;C|u)

τn

n!
−

1
(1 − u)

∞∑
n=0

∞∑
k=0

PJn(ρ1, ρ2;C|u)

× Gk(u)
τn+k

n! k!
=

∞∑
n=0

n PJn(ρ1, ρ2;C|u)
τn−1

n!
.

Furthermore, the previous expression can be rewritten using the Cauchy product formula as:
∞∑

n=0

[(
ρ1 ln(C) −

n + 1
2(1 − u)

)
PJn(ρ1, ρ2;C|u) + 2nρ2 ln(C)PJn−1(ρ1, ρ2;C|u)

−
1

(1 − u)

n+1∑
k=2

(
n + 1

k

)
PJn−k+1(ρ1, ρ2;C|u)Gk(u)

]
τn

n!
=

∞∑
n=0

PJn+1(ρ1, ρ2;C|u)
τn

n!
.

Statement (3.1) is derived by equating the coefficients of corresponding powers of τ on both sides of
the given equation. □
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Theorem 3.2. The 1P2VGHFGP PJn(ρ1, ρ2;C|u) adhere, to the following shift operators:

ρ1L
−
n :=

1
n(lnC)

Dρ1 , (3.2)

ρ2L
−
n :=

1
n

D−1
ρ1

Dρ2 , (3.3)

ρ1L
+
n := (ρ1 lnC −

n + 1
2(1 − u)

) + 2ρ2Dρ1 + 3ρ3(lnC)−1D2
ρ1
−

n + 1
1 − u

n+1∑
k=2

(lnC)−kDk−1
ρ1

Gk(u)
k!

(3.4)

and

ρ2L
+
n := (ρ1 lnC −

n + 1
2(1 − u)

) + 2ρ2D−1
ρ1

Dρ2 + 3ρ3(lnC)−1D−2
ρ1

D2
ρ2
−

n + 1
1 − u

n+1∑
k=2

(lnC)−kD−(k−1)
ρ1

Dk−1
ρ2

Gk(u)
k!
,

(3.5)
respectively, where

Dρ1 :=
∂

∂ρ1

, Dρ2 :=
∂

∂ρ2

; D−1
ρ1

:=

ρ1∫
0

g(τ)dτ.

Proof. By reorganizing the terms according to their powers and differentiating both sides of Eq (2.1)
with respect to ρ1, we equate the coefficients of the corresponding powers of τ from both sides of the
resulting expression, as shown below:

Dρ1{PJn(ρ1, ρ2;C|u)} = n(lnC)PJn−1(ρ1, ρ2;C|u).

As a consequence, the operator defined by Eq (3.2) fulfills the requirements of the equation

ρ1L
−
n {PJn(ρ1, ρ2;C|u)} = PJn−1(ρ1, ρ2;C|u).

Subsequently, differentiating both sides of Eq (2.1) with respect to ρ2, rearranging the powers, and
then calculating the coefficients of the identical powers of τ on both sides of the resulting equation
gives:

Dρ2{PJn(ρ1, ρ2;C|u)} = (lnC)n(n − 1)PJn−2(ρ1, ρ2;C|u),

which can be further stated as

Dρ2{PJn(ρ1, ρ2;C|u)} = n(lnC)Dρ1PJn−1(ρ1, ρ2;C|u).

Thus, it follows that
1
n

Dρ2 D−1
ρ1
{PJn(ρ1, ρ2;C|u)} = PJn−1(ρ1, ρ2;C|u).

Thus, the operator given by Eq (3.3) satisfies the above equation.
The raising operator given by (3.4) can be determined using the following relation:

PJn−k(ρ1, ρ2;C|u) =
(
ρ1L

−
n−k+1 ρ1L

−
n−k+2 · · · ρ1L

−
n−1 ρ1L

−
n

)
{PJn(ρ1, ρ2;C|u)}. (3.6)
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By combining Eq (3.2) with Eq (3.6), we obtain:

PJn−k(ρ1, ρ2;C|u) =
(

1
(n − k + 1)(lnC)

Dρ1 · · ·
1

(n − 1)(lnC)
Dρ1

1
n(lnC)

Dρ1

)
{PJn(ρ1, ρ2;C|u)}

which can be further casted as

PJn−k(ρ1, ρ2;C|u) =
(n − k)!

n!
(lnC)−kDk

ρ1
{PJn(ρ1, ρ2;C|u)}. (3.7)

Further, we have

PJn−1(ρ1, ρ2;C|u) =
1
n

(lnC)−1Dρ1{PJn(ρ1, ρ2;C|u)}.

Thus, inserting expressions (3.6) and (3.7) into Eq (3.1), we find

PJn+1(ρ1, ρ2;C|u) =
((
ρ1 lnC −

n + 1
2(1 − u)

)
+ 2ρ2D−1

ρ1
Dρ2

−
n + 1
1 − u

n+1∑
k=2

(lnC)−kDk−1
ρ1

Gk(u)
k!

 {PJn(ρ1, ρ2;C|u)}.

Thus, we derive the expression (3.4) for the raising operator ρ1L
+
n .

Next, we use the following relation to determine the raising operator given by (3.5):

PJn−k(ρ1, ρ2;C|u) =
(
ρ2L

−
n−k+1 ρ2L

−
n−k+2 · · · ρ2L

−
n−1 ρ2L

−
n

)
{PJn(ρ1, ρ2;C|u)}. (3.8)

By applying Eq (3.3) to Eq (3.8) and simplifying, we obtain:

PJn−k(ρ1, ρ2;C|u) =
(n − k)!

n!
(lnC)−kD−k

ρ1
Dk
ρ2
{PJn(ρ1, ρ2;C|u)}. (3.9)

Further, we find

PJn−1(ρ1, ρ2;C|u) =
1
n

(lnC)−1D−1
ρ1

Dρ2{PJn(ρ1, ρ2;C|u)}. (3.10)

By substituting Eqs (3.9) and (3.10) into Eq (3.1), we find:

PJn+1(ρ1, ρ2;C|u) =
((
ρ1 lnC − n+1

2(1−u)

)
+ 2ρ2D−1

ρ1
Dρ2

−n+1
1−u

∑n+1
k=2(lnC)−kD−(k−1)

ρ1 Dk−1
ρ2

Gk(u)
k!

)
{PJn(ρ1, ρ2;C|u)},

Thus, we obtain the expression (3.5) for the raising operator ρ2L
+
n . □

Next, we derive the “differential, integro-differential, and partial differential equations” for the
generalized one-parameter Hermite-Frobenius-Genocchi polynomials PJn(ρ1, ρ2;C|u). To achieve
this, we consider the following results.

Theorem 3.3. The generalized one-parameter Hermite-Frobenius-Genocchi polynomials
PJn(ρ1, ρ2;C|u) satisfy the following differential equation:(ρ1 − (lnC)−1 n + 1

2(1 − u)

)
Dρ1 + 2ρ2(lnC)−1D2

ρ1
−

n + 1
1 − u

n+1∑
k=2

(lnC)−k−1Dk
ρ1

Gk(u)
k!
− n


× PJn(ρ1, ρ2;C|u) = 0. (3.11)
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Proof. By utilizing expressions (3.2) and (3.4) for the shift operators ρ1L
−
n and ρ1L

+
n in the factorization

equation ρ1L
−
n+1 ρ1L

+
n {PJn(ρ1, ρ2;C|u)} = PJn(ρ1, ρ2;C|u), we arrive at expression (3.11). □

Theorem 3.4. The generalized one-parameter Hermite-Frobenius-Genocchi polynomials
PJn(ρ1, ρ2;C|u) satisfy the following integro-differential equation:(ρ1 − (lnC)−1 n + 1

2(1 − u)

)
Dρ2 + 2ρ2(lnC)−1D−1

ρ1
D2
ρ2
−

n + 1
1 − u

n+1∑
k=2

(lnC)−k−1

× D−(k−1)
ρ1

Dk
ρ2

Gk(u)
k!
− (n + 1)Dρ1

)
PJn(ρ1, ρ2;C|u) = 0. (3.12)

Proof. By utilizing expressions (3.3) and (3.5) for the shift operators L−n and L+n in the factorization
equation

L−n+1 L
+
n {PJn(ρ1, ρ2;C|u)} = PJn(ρ1, ρ2;C|u),

we derive expressions (3.12). □

Theorem 3.5. The generalized one-parameter Hermite-Frobenius-Genocchi polynomials, denoted as
PJn(ρ1, ρ2;C|u), satisfy the following partial differential equation:((
ρ1 −

(lnC)−1(n + 1)
2(1 − u)

)
D2n
ρ1

Dρ2 + 2nD2n−1
ρ1

Dρ2 + 2ρ2(lnC)−1D2n−1
ρ1

D2
ρ2
+ 2(lnC)−1D2n−1

ρ1
Dρ2 + 3ρ3(lnC)−2

× D2n−2
ρ1

D3
ρ2
−

n + 1
1 − u

n+1∑
k=2

(lnC)−k−1D2n−k+1
ρ1

D2n+k
ρ2

Gk(u)
k!
− (n + 1)D2n+1

ρ1

)
PJn(ρ1, ρ2;C|u) = 0. (3.13)

Proof. By differentiating expressions (3.12) concerning Dρ1 a total of 2n times, we obtain the partial
differential equations (3.13). □

4. Summation formulae

Summation formulas hold a pivotal place in mathematics, underpinning numerous applications
across diverse fields such as probability theory, combinatorics, and algebra. These formulas facilitate
key computations, including the determination of expected values in probabilistic models, efficient
methods for polynomial interpolation, and streamlined approaches to solving combinatorial counting
problems.

In number theory, summation formulas are instrumental in the exploration and analysis of arithmetic
functions, while in applied mathematics, they find practical utility in areas like signal processing,
optimization, and numerical analysis. By providing systematic techniques for evaluating sequences
and series, summation formulas become indispensable tools for addressing complex challenges in both
theoretical and applied contexts.

The summation formulas associated with the generalized 1-parameter
Hermite-Frobenius-Genocchi polynomials, denoted as PJn(ρ1, ρ2;C | u), extend these capabilities by
offering robust solutions to intricate problems across various mathematical disciplines. The explicit
expressions for these summation formulas are as follows.
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Theorem 4.1. For the generalized 1-parameter Hermite-Frobenius-Genocchi polynomials
PJn(ρ1, ρ2;C|u), the following summation formula holds true:

PJn(ρ1 + υ, ρ2;C|u) =
n∑

k=0

(
n
k

)
PJn−k(ρ1, ρ2;C|u)Jk(υ;C|u). (4.1)

Proof. By substituting ρ1 → ρ1 + υ in expression (2.1), it follows that

1 − u
eτ − u

C(ρ1+υ)τ+ρ2τ
2
=

∞∑
n=0

PJn(ρ1 + υ, ρ2;C|u)
τn

n!
, C > 1.

Inserting the expansion of Cυτ and expression (2.1) in the left hand part of the preceding expression,
we find

∞∑
n=0

PJn(ρ1, ρ2;C|u)
τn

n!

∞∑
k=0

Jk(υ;C|u)
τk

k!
=

∞∑
n=0

PJn(ρ1 + υ, ρ2;C|u)
τn

n!
, C > 1.

Applying the Cauchy-product rule to the left-hand side results in the following expression:

∞∑
n=0

PJn(ρ1 + υ, ρ2;C|u)
τn

n!
=

∞∑
n=0

n∑
k=0

(
n
k

)
PJn−k(ρ1, ρ2;C) Jk(υ;C|u)

τn

n!
.

The assertion in (4.1) is derived by equating the coefficients of corresponding powers of τ on both sides
of the given expression. □

Theorem 4.2. For the generalized 1-parameter Hermite-Frobenius-Genocchi polynomials
PJn(ρ1, ρ2;C|u), the following summation formula holds true:

PJn(ρ1 + υ, ρ2 + ν;C) =
n∑

k=0

(
n
k

)
PJn−k(ρ1, ρ2;C) Rk(υ, ν;C). (4.2)

Proof. By substituting ρ1 → ρ1 + υ and ρ2 → ρ2 + ν in expression (2.1), it follows that

1 − u
eτ − u

C(ρ1+υ)τ+(ρ2+ν)τ2 =

∞∑
n=0

PJn(ρ1 + υ, ρ2 + ν;C)
τn

n!
, C > 1.

Inserting expressions (1.2) and (2.1) in the left hand part of preceeding expression, we find

∞∑
n=0

PJn(ρ1, ρ2;C|u)
τn

n!

∞∑
k=0

Rk(υ, ν;C)
τk

k!
=

∞∑
n=0

PJn(ρ1 + υ, ρ2 + ν;C)
τn

n!
, C > 1.

Applying the Cauchy-product rule to the left-hand side results in the following expression:

∞∑
n=0

PJn(ρ1 + υ, ρ2 + ν;C)
τn

n!
=

∞∑
n=0

n∑
k=0

(
n
k

)
PJn−k(ρ1, ρ2;C|u) Rk(υ, ν;C)

τn

n!
.

The assertion in (4.2) is derived by equating the coefficients of corresponding powers of τ on both sides
of the given expression. □
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5. Conclusions

This paper introduces a novel framework for constructing generalized one-parameter
Hermite-Frobenius-Genocchi polynomials, offering a fresh perspective on their mathematical
structure and potential applications. We delve into the core properties of these polynomials, unveiling
their richness through generating functions, series expansions, and determinant representations. By
employing an innovative factorization technique, we derive key mathematical tools, such as
recurrence relations, shift operators, and a spectrum of differential equations, including ordinary,
partial, and integro-differential forms.

Future research directions could explore extending this framework to encompass polynomials
involving multiple variables, thereby addressing the inherent complexities and uncovering new
structural and analytical properties. A detailed study of additional characteristics, such as
orthogonality relations, asymptotic behaviors, and the distribution of zeros, would provide deeper
insights into their theoretical foundation. Moreover, designing efficient computational algorithms
tailored for practical applications in fields like numerical analysis, physics, and engineering could
bridge the gap between theory and practice.

Investigating the utility of these polynomials in solving higher-order and more intricate differential
equations-particularly in the modeling of complex real-world phenomena-may yield profound
advancements. Furthermore, interdisciplinary applications in areas such as finance, biology, and data
science could open new avenues for exploration. Enhanced graphical visualization and numerical
analysis of these polynomials might lead to novel theoretical developments and foster a broader
understanding of their utility across diverse domains.
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