It is the purpose of the present paper to obtain certain fixed point outcomes in the sense of $ C^* $-algebra valued metric spaces. Here, we present the definitions of the gauge function, the Bianchini-Grandolfi gauge function, $ \alpha $-admissibility, and $ (\alpha, \beta) $-admissible Geraghty contractive mapping in the sense of $ C^* $-algebra. Using these definitions, we define $ (\alpha, \beta) $-Bianchini-Grandolfi gauge contraction of type I and type II. Next, we prove our primary results that the function satisfying our contraction condition has to have a unique fixed point. We also explain our results using examples. Additionally, we discuss some consequent results that can be easily obtained from our primary outcomes. Finally, there is a useful application to integral calculus.
Citation: Moirangthem Pradeep Singh, Yumnam Rohen, Khairul Habib Alam, Junaid Ahmad, Walid Emam. On fixed point and an application of $ C^* $-algebra valued $ (\alpha, \beta) $-Bianchini-Grandolfi gauge contractions[J]. AIMS Mathematics, 2024, 9(6): 15172-15189. doi: 10.3934/math.2024736
It is the purpose of the present paper to obtain certain fixed point outcomes in the sense of $ C^* $-algebra valued metric spaces. Here, we present the definitions of the gauge function, the Bianchini-Grandolfi gauge function, $ \alpha $-admissibility, and $ (\alpha, \beta) $-admissible Geraghty contractive mapping in the sense of $ C^* $-algebra. Using these definitions, we define $ (\alpha, \beta) $-Bianchini-Grandolfi gauge contraction of type I and type II. Next, we prove our primary results that the function satisfying our contraction condition has to have a unique fixed point. We also explain our results using examples. Additionally, we discuss some consequent results that can be easily obtained from our primary outcomes. Finally, there is a useful application to integral calculus.
[1] | S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/FM-3-1-133-181 doi: 10.4064/FM-3-1-133-181 |
[2] | M. A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604–608. https://doi.org/10.1090/S0002-9939-1973-0334176-5 |
[3] | B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha$-$\psi$-contractive type mappings, Nonlinear Anal., 75 (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014 |
[4] | E. Karapinar, P. Kumam, P. Salimi, On $\alpha$-$\psi$-Meir-Keeler contractive mappings, Fixed Point Theory Appl., 2013 (2013), 94. https://doi.org/10.1186/1687-1812-2013-94 doi: 10.1186/1687-1812-2013-94 |
[5] | T. Stephen, Y. Rohen, Fixed points of generalized rational $(\alpha, \beta, Z)$-contraction mappings under simulation functions, J. Math. Comput. Sci., 24 (2022), 345–357. https://doi.org/10.22436/jmcs.024.04.07 doi: 10.22436/jmcs.024.04.07 |
[6] | W. Atiponrat, A. Khemphet, W. Chaiwino, T. Suebcharoen, P. Charoensawan, Common best proximity point theorems for generalized dominating with graphs and applications in differential equations, Mathematics, 12 (2024), 306. https://doi.org/10.3390/math12020306 doi: 10.3390/math12020306 |
[7] | T. Suebcharoen, W. Atiponrat, K. Chaichana, Fixed point theorems via auxiliary functions with applications to two-term fractional differential equations with nonlocal boundary conditions, AIMS Math., 8 (2023), 7394–7418. https://doi.org/10.3934/math.2023372 doi: 10.3934/math.2023372 |
[8] | Z. Ma, L. Jiang, H. Sun, $C^*$-algebra-valued metric spaces and related fixed point theorems, Fixed Point Theory Appl., 2014 (2014), 206. https://doi.org/10.1186/1687-1812-2014-206 doi: 10.1186/1687-1812-2014-206 |
[9] | K. H. Alam, Y. Rohen, A. Tomar, On fixed point and its application to the spread of infectious diseases model in $M^b_v$-metric space, Math. Methods Appl. Sci., 47 (2024), 6489–6503. https://doi.org/10.1002/mma.9933 doi: 10.1002/mma.9933 |
[10] | H. H. Alsulami, R. P. Agarwal, E. Karapınar, F. Khojasteh, A short note on $C^*$-valued contraction mappings, J. Inequal. Appl., 2016 (2016), 50. https://doi.org/10.1186/s13660-016-0992-5 doi: 10.1186/s13660-016-0992-5 |
[11] | M. P. Singh, Y. Rohen, N. Saleem, K. H. Alam, K. A. Singh, A. Razzaque, On fixed point equations involving Geraghty type contractions with solution to integral equation, Mathematics, 11 (2023), 4882. https://doi.org/10.3390/math11244882 doi: 10.3390/math11244882 |
[12] | J. Brzdek, E. Karapinar, A. Petruşel, A fixed point theorem and the Ulam stability in generalized dq-metric spaces, J. Math. Anal. Appl., 467 (2018), 501–520. https://doi.org/10.1016/j.jmaa.2018.07.022 doi: 10.1016/j.jmaa.2018.07.022 |
[13] | S. M. A. A. Bakr, H. K. Hussein, Some results on coupled coincidence points in vector quasi cone metric spaces over Banach algebras with satisfactory cones, J. Math. Comput. Sci., 31 (2023), 305–317. https://doi.org/10.22436/jmcs.031.03.06 doi: 10.22436/jmcs.031.03.06 |
[14] | R. M. Bianchini, M. Grandolfi, Transformazioni di tipo contracttivo generalizzato in uno spazio metrico, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend., 45 (1968), 212–216. |
[15] | V. Ptak, The rate of convergence of Newton's process, Numer. Math., 25 (1975), 279–285. https://doi.org/10.1007/BF01399416 doi: 10.1007/BF01399416 |
[16] | P. D. Proinov, A generalization of the Banach contraction principle with high order of convergence of successive approximations, Nonlinear Anal., 67 (2007), 2361–2369. https://doi.org/10.1016/j.na.2006.09.008 doi: 10.1016/j.na.2006.09.008 |
[17] | S. H. Cho, J. S. Bae, E. Karapinar, Fixed point theorems for $\alpha$-Geraghty contraction type maps in metric spaces, Fixed Point Theory Appl., 2013 (2013), 329. https://doi.org/10.1186/1687-1812-2013-329 doi: 10.1186/1687-1812-2013-329 |
[18] | S. Chandok, Some fixed point theorems for $(\alpha, \beta)$-admissible Geraghty type contractive mappings and related results, Math. Sci., 9 (2015), 127–135. https://doi.org/10.1007/s40096-015-0159-4 doi: 10.1007/s40096-015-0159-4 |
[19] | K. H. Alam, Y. Rohen, N. Saleem, Fixed points of $(\alpha, \beta, F^*)$ and $(\alpha, \beta, F^{**})$-weak Geraghty contractions with an application, Symmetry, 15 (2023), 243. https://doi.org/10.3390/sym15010243 doi: 10.3390/sym15010243 |
[20] | D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94 |
[21] | D. Singh, V. Chauhan, P. Kumam, V. Joshi, P. Thounthong, Applications of fixed point results for cyclic Boyd-Wong type generalized $F$-$\psi$-contractions to dynamic programming, J. Math. Comput. Sci., 17 (2017), 200–215. https://doi.org/10.22436/JMCS.017.02.02 doi: 10.22436/JMCS.017.02.02 |
[22] | B. Khomdram, N. Priyobarta, Y. Rohen, T. Indubala, Remarks on $(\alpha, \beta)$-admissible mappings and fixed points under $\mathscr{Z}$-contraction mappings, J. Math., 2021 (2021), 6697739. https://doi.org/10.1155/2021/6697739 doi: 10.1155/2021/6697739 |
[23] | G. J. Murphy, $C^*$-algebras and operator theory, Academic Press, 1990. |
[24] | Q. H. Xu, T. E. D. Bieke, Z. Q. Chen, Introduction to operator algebras and noncommutative $L_p$ spaces, Science Press, 2010. |