In this paper, the discrete $ (q, h) $-fractional Bihari inequality is generalized. On the grounds of inequality, the finite-time stability and uniqueness theorem of solutions of $ (q, h) $-fractional difference equations with non-Lipschitz and nonlinear conditions is concluded. In addition, the validity of our conclusion is illustrated by a nonlinear example with a non-Lipschitz condition.
Citation: Mei Wang, Baogua Jia. Finite-time stability and uniqueness theorem of solutions of nabla fractional $ (q, h) $-difference equations with non-Lipschitz and nonlinear conditions[J]. AIMS Mathematics, 2024, 9(6): 15132-15148. doi: 10.3934/math.2024734
In this paper, the discrete $ (q, h) $-fractional Bihari inequality is generalized. On the grounds of inequality, the finite-time stability and uniqueness theorem of solutions of $ (q, h) $-fractional difference equations with non-Lipschitz and nonlinear conditions is concluded. In addition, the validity of our conclusion is illustrated by a nonlinear example with a non-Lipschitz condition.
[1] | Y. J. Gu, H. Wang, Y. G. Yu, Synchronization for fractional-order discrete-time neural networks with time delays, Appl. Math. Comput., 372 (2020), 124995. https://doi.org/10.1016/j.amc.2019.124995 doi: 10.1016/j.amc.2019.124995 |
[2] | C. J. Xu, W. Ou, Y. C. Pang, Q. Y. Cui, Hopf bifurcation control of a fractional-order delayed turbidostat model via a novel extended hybrid controller, Match-Commun. Math. Co., 91 (2024), 367–413. https://doi.org/10.46793/match.91-2.367X doi: 10.46793/match.91-2.367X |
[3] | W. Ou, C. J. Xu, Q. Y. Cui, Y. C. Pang, Z. X. Liu, J. W. Shen, Hopf bifurcation exploration and control technique in a predator-prey system incorporating delay, AIMS Mathematics, 9 (2024), 1622–1651. https://doi.org/10.3934/math.2024080 doi: 10.3934/math.2024080 |
[4] | W. G. Alharbi, A. F. Shater, A. Ebaid, C. Cattani, M. Areshi, M. M. Jalal, et al., Communicable disease model in view of fractional calculus, AIMS Mathematics, 8 (2023), 10033–10048. http://doi.org/10.3934/math.2023508 doi: 10.3934/math.2023508 |
[5] | M. C. Mackey, L. Glass, Oscillation and chaos in physiological control systems, Science, 197 (1977), 287–289. https://doi.org/10.1126/science.267326 doi: 10.1126/science.267326 |
[6] | Y. Z. Pei, S. P. Li, C. G. Li, Effect of delay on a predator-prey model with parasitic infection, Nonlinear Dyn., 63 (2011), 311–321. https://doi.org/10.1007/s11071-010-9805-4 doi: 10.1007/s11071-010-9805-4 |
[7] | A. Aral, V. Gupta, R. P. Agarwal, Applications of q-calculus in operator theory, New York: Springer, 2013. https://doi.org/10.1007/978-1-4614-6946-9 |
[8] | A. de Médicis, P. Leroux, Generalized Stirling numbers, convolution formulae and $p, q$-analogues, Can. J. Math., 47 (1995), 474–499. https://doi.org/10.4153/CJM-1995-027-x doi: 10.4153/CJM-1995-027-x |
[9] | V. P. Belavkin, Quantum stochastic calculus and quantum nonlinear filtering, J. Multivariate Anal., 42 (1992), 171–201. https://doi.org/10.1016/0047-259X(92)90042-E doi: 10.1016/0047-259X(92)90042-E |
[10] | R. J. Finkelstein, The $q$-coulomb problem, J. Math. Phys., 37 (1996), 2628–2636. http://doi.org/10.1063/1.531532 doi: 10.1063/1.531532 |
[11] | J. Čermák, L. Nechvátal, On $(q, h)$-analogue of fractional calculus, J. Nonlinear Math. Phy., 17 (2010), 51–68. http://doi.org/10.1142/S1402925110000593 doi: 10.1142/S1402925110000593 |
[12] | J. Čermák, T. Kisela, L. Nechvátal, Discrete Mittag-Leffler functions in linear fractional difference equations, Abstr. Appl. Anal., 2011 (2011), 565067. http://doi.org/10.1155/2011/565067 doi: 10.1155/2011/565067 |
[13] | B. G. Jia, L. Erbe, A. Peterson, Monotonicity and convexity for nabla fractional $q$-differences, Dynam. Syst. Appl., 25 (2016), 47–60. |
[14] | B. G. Jia, S. Y. Chen, L. Erbe, A. Peterson, Liapunov functional and stability of linear nabla $(q, h)$-fractional difference equations, J. Differ. Equ. Appl., 23 (2017), 1974–1985. http://doi.org/10.1080/10236198.2017.1380634 doi: 10.1080/10236198.2017.1380634 |
[15] | M. Wang, F. F. Du, C. R. Chen, B. G. Jia, Asymptotic stability of $(q, h)$-fractional difference equations, Appl. Math. Comput., 349 (2019), 158–167. http://doi.org/10.1016/j.amc.2018.12.039 doi: 10.1016/j.amc.2018.12.039 |
[16] | C. J. Xu, Z. X. Liu, P. L. Li, J. L. Yan, L. Y. Yao, Bifurcation mechanism for fractional-order three-triangle multi-delayed neural networks, Neural Process. Lett., 55 (2023), 6125–6151. http://doi.org/10.1007/s11063-022-11130-y doi: 10.1007/s11063-022-11130-y |
[17] | K. H. Zhao, Solvability and GUH-stability of a nonlinear CF-fractional coupled Laplacian equations, AIMS Mathematics, 8 (2023), 13351–13367. http://doi.org/10.3934/math.2023676 doi: 10.3934/math.2023676 |
[18] | C. J. Xu, Y. C. Pang, Z. X. Liu, J. W. Shen, M. X. Liao, P. L. Li, Insights into COVID-19 stochastic modelling with effects of various transmission rates: simulations with real statistical data from UK, Australia, Spain, and India, Phys. Scr., 99 (2024), 025218. http://doi.org/10.1088/1402-4896/ad186c doi: 10.1088/1402-4896/ad186c |
[19] | C. J. Xu, Y. Y. Zhao, J. T. Lin, Y. C. Pang, Z. X. Liu, J. W. Shen, et al., Mathematical exploration on control of bifurcation for a plankton-oxygen dynamical model owning delay, J. Math. Chem., 2023 (2023), 1–31. http://doi.org/10.1007/s10910-023-01543-y doi: 10.1007/s10910-023-01543-y |
[20] | Q. Y. Cui, C. J. Xu, W. Ou, Y. C. Pang, Z. X. Liu, P. L. Li, et al., Bifurcation behavior and hybrid controller design of a 2d Lotka-Volterra commensal symbiosis system accompanying delay, Mathematics, 11 (2023), 4808. http://doi.org/10.3390/math11234808 doi: 10.3390/math11234808 |
[21] | M. Chinnamuniyandi, S. Chandran, C. J. Xu, Fractional order uncertain bam neural networks with mixed time delays: An existence and Quasi-uniform stability analysis, J. Intell. Fuzzy Syst., 46 (2024), 4291–4313. http://doi.org/10.3233/JIFS-234744 doi: 10.3233/JIFS-234744 |
[22] | P. L. Li, R. Gao, C. J. Xu, J. W. Shen, S. Ahmad, Y. Li, Exploring the impact of delay on hopf bifurcation of a type of bam neural network models concerning three nonidentical delays, Neural Process. Lett., 55 (2023), 11595–11635. http://doi.org/10.1007/s11063-023-11392-0 doi: 10.1007/s11063-023-11392-0 |
[23] | K. H. Zhao, Stability of a nonlinear Langevin system of ML-type fractional derivative affected by time-varying delays and differential feedback control, Fractal Fract., 6 (2022), 725. http://doi.org/10.3390/fractalfract6120725 doi: 10.3390/fractalfract6120725 |
[24] | M. Wang, B. G. Jia, C. R. Chen, X. J. Zhu, F. F. Du, Discrete fractional Bihari inequality and uniqueness theorem of solutions of nabla fractional difference equations with non-lipschitz nonlinearities, Appl. Math. Comput., 376 (2020), 125118. http://doi.org/10.1016/j.amc.2020.125118 doi: 10.1016/j.amc.2020.125118 |
[25] | M. P. Lazarević, D. L. Debeljković, Z. L. Nenadić, S. A. Milinković, Finite-time stability of delayed systems, IMA J. Math. Control I., 17 (2000), 101–109. http://doi.org/10.1093/imamci/17.2.101 doi: 10.1093/imamci/17.2.101 |
[26] | M. P. Lazarević, D. L. Debeljković, Finite time stability analysis of linear autonomous fractional order systems with delayed state, Asian J. Control, 7 (2005), 440–447. http://doi.org/10.1111/j.1934-6093.2005.tb00407.x doi: 10.1111/j.1934-6093.2005.tb00407.x |
[27] | M. P. Lazarević, A. M. Spasić, Finite-time stability analysis of fractional order time-delay systems: Gronwall's approach, Math. Comput. Model., 49 (2009), 475–481. https://doi.org/10.1016/j.mcm.2008.09.011 doi: 10.1016/j.mcm.2008.09.011 |
[28] | Y. Yang, G. P. Chen, Finite-time stability of fractional order impulsive switched systems, Int. J. Robust Nonlin., 25 (2015), 2207–2222. https://doi.org/10.1002/rnc.3202 doi: 10.1002/rnc.3202 |
[29] | R. Rakkiyappan, G. Velmurugan, J. D. Cao, Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with time delays, Nonlinear Dyn., 78 (2014), 2823–2836. https://doi.org/10.1007/s11071-014-1628-2 doi: 10.1007/s11071-014-1628-2 |
[30] | G. C. Wu, D. Baleanu, S. D. Zeng, Finite-time stability of discrete fractional delay systems: Gronwall inequality and stability criterion, Commun. Nonlinear Sci., 57 (2018), 299–308. https://doi.org/10.1016/j.cnsns.2017.09.001 doi: 10.1016/j.cnsns.2017.09.001 |
[31] | F. F. Du, B. G. Jia, Finite-time stability of a class of nonlinear fractional delay difference systems, Appl. Math. Lett., 98 (2019), 233–239. https://doi.org/10.1016/j.aml.2019.06.017 doi: 10.1016/j.aml.2019.06.017 |
[32] | F. F. Du, J. G. Lu, New criterion for finite-time stability of fractional delay systems, Appl. Math. Lett., 104 (2020), 106248. https://doi.org/10.1016/j.aml.2020.106248 doi: 10.1016/j.aml.2020.106248 |
[33] | F. F. Du, B. G. Jia, Finite-time stability of nonlinear fractional order systems withn a constant delay, Journal of Nonlinear Modeling and Analysis, 2 (2020), 1–13. http://doi.org/10.12150/jnma.2020.1 doi: 10.12150/jnma.2020.1 |
[34] | A. Ganesh, S. Deepa, D. Baleanu, S. S. Santra, O. Moaaz, V. Govindan, et al., Hyers-Ulam-Mittag-Leffler stability of fractional differentialn equations with two caputo derivative using fractional fourier transform, AIMS Mathematics, 7 (2022), 1791–1810. http://doi.org/10.3934/math.2022103 doi: 10.3934/math.2022103 |
[35] | M. M. Li, J. R. Wang, Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equation, Appl. Math. Comput., 324 (2018), 254–265. http://doi.org/10.1016/j.amc.2017.11.063 doi: 10.1016/j.amc.2017.11.063 |
[36] | G. Deekshitulu, J. J. Mohan, Fractional difference inequalities of Bihari type, Communications in Applied Analysis, 14 (2010), 343–354. |
[37] | M. R. S. Rahmat, M. S. M. Noorani, Caputo type fractional difference operator and its application on discrete time scales, Adv. Differ. Equ., 2015 (2015), 160. https://doi.org/10.1186/s13662-015-0496-5 doi: 10.1186/s13662-015-0496-5 |
[38] | C. Goodrich, A. C. Peterson, Discrete fractional calculus, Cham: Springer, 2015. http://doi.org/10.1007/978-3-319-25562-0 |