A numerical approach is proposed for space fractional partial differential equations by the reproducing kernel approach. Some procedures are presented for improving the existing methods. The presented method is easy to accomplish. Approximate solutions and their partial derivatives are shown to converge to exact solutions, respectively. Experiments show that the presented technique is efficient, and that high-precision global approximate solutions can be obtained.
Citation: Boyu Liu, Wenyan Wang. An efficient numerical scheme in reproducing kernel space for space fractional partial differential equations[J]. AIMS Mathematics, 2024, 9(11): 33286-33300. doi: 10.3934/math.20241588
A numerical approach is proposed for space fractional partial differential equations by the reproducing kernel approach. Some procedures are presented for improving the existing methods. The presented method is easy to accomplish. Approximate solutions and their partial derivatives are shown to converge to exact solutions, respectively. Experiments show that the presented technique is efficient, and that high-precision global approximate solutions can be obtained.
[1] | T. Alodat, Q. T. L. Gia, I. H. Sloan, On approximation for time-fractional stochastic diffusion equations on the unit sphere, J. Comput. Appl. Math., 446 (2024), 115863. https://doi.org/10.1016/j.cam.2024.115863 doi: 10.1016/j.cam.2024.115863 |
[2] | N. Ullah, M. I. Asjad, J. Awrejcewicz, T. Muhammad, D. Baleanu, On soliton solutions of fractional-order nonlinear model appears in physical sciences, AIMS Mathematics, 7 (2022), 7421–7440. https://doi.org/10.3934/math.2022415 doi: 10.3934/math.2022415 |
[3] | K. Manikandan, N. Serikbayev, D. Aravinthan, K. Hosseini, Solitary wave solutions of the conformable space-time fractional coupled diffusion equation, Partial Differential Equations in Applied Mathematics, 9 (2024), 100630. https://doi.org/10.1016/j.padiff.2024.100630 doi: 10.1016/j.padiff.2024.100630 |
[4] | Shyamsunder, S. Bhatter, K. Jangid, S. D. Purohit, Fractionalized mathematical models for drug diffusion, Chaos Soliton. Fract., 165 (2022), 112810. https://doi.org/10.1016/j.chaos.2022.112810 doi: 10.1016/j.chaos.2022.112810 |
[5] | L. W. Sun, H. Qiu, C. H. Wu, J. Niu, B. X. Hu, A review of applications of fractional advection-dispersion equations for anomalous solute transport in surface and subsurface water, WIREs Water, 7 (2020), e1448. https://doi.org/10.1002/wat2.1448 doi: 10.1002/wat2.1448 |
[6] | A. P. Jayaraj, K. N. Gounder, J. Rajagopal, Optimizing signal smoothing using HERS algorithm and time fractional diffusion equation, Expert Syst. Appl., 238 (2024), 122250. https://doi.org/10.1016/j.eswa.2023.122250 doi: 10.1016/j.eswa.2023.122250 |
[7] | W. D. Xue, F. Q. Zhao, Haze image enhancement based on space fractional-order partial differential equation, Ninth International Conference on Digital Image Processing (ICDIP 2017), Hong Kong, China, 2017, 104202N. https://doi.org/10.1117/12.2281752 |
[8] | S. D. Oloniiju, S. P. Goqo, P. Sibanda, A pseudo-spectral method for time distributed order two-sided space fractional differential equations, Taiwanese J. Math., 25 (2021), 959–979. https://doi.org/10.11650/tjm/210501 doi: 10.11650/tjm/210501 |
[9] | Z. Q. Ding, A. G. Xiao, M. Li, Weighted finite difference methods for a class of space fractional partial differential equations with variable coefficients, J. Comput. Appl. Math., 233 (2010), 1905–1914. https://doi.org/10.1016/j.cam.2009.09.027 doi: 10.1016/j.cam.2009.09.027 |
[10] | J. J. Liu, M. Yamamoto, A backward problem for the time-fractional diffusion equation, Appl. Anal., 89 (2010), 1769–1788. https://doi.org/10.1080/00036810903479731 doi: 10.1080/00036810903479731 |
[11] | X. Xu, J. Cheng, M. Yamamoto, Carleman estimate for a fractional diffusion equation with half order and application, Appl. Anal., 90 (2011), 1355–1371. https://doi.org/10.1080/00036811.2010.507199 doi: 10.1080/00036811.2010.507199 |
[12] | Y. Zhang, X. Xu, Inverse source problem for a fractional diffusion equation, Inverse Probl., 27 (2011), 035010. https://doi.org/10.1088/0266-5611/27/3/035010 doi: 10.1088/0266-5611/27/3/035010 |
[13] | H. G. Fan, J. H. Tang, K. B. Shi, Y. Zhao, Hybrid impulsive feedback control for drive–response synchronization of fractional-order multi-link memristive neural networks with multi-delays, Fractal Fract., 7 (2023), 495. https://doi.org/10.3390/fractalfract7070495 doi: 10.3390/fractalfract7070495 |
[14] | H. G. Fan, Y. Rao, K. B. Shi, H. Wen, Global synchronization of fractional-order multi-delay coupled neural networks with multi-link complicated structures via hybrid impulsive control, Mathematics, 11 (2023), 3051. https://doi.org/10.3390/math11143051 doi: 10.3390/math11143051 |
[15] | H. Y. Yuan, Q. X. Zhu, Some stabilities of stochastic differential equations with delay in the G-framework and Euler–Maruyama method, J. Comput. Appl. Math., 446 (2024), 115856. https://doi.org/10.1016/j.cam.2024.115856 doi: 10.1016/j.cam.2024.115856 |
[16] | H. Y. Yuan, Q. X. Zhu, Practical stability of the analytical and numerical solutions of stochastic delay differential equations driven by G-Brownian motion via some novel techniques, Chaos Soliton. Fract., 183 (2024), 114920. https://doi.org/10.1016/j.chaos.2024.114920 doi: 10.1016/j.chaos.2024.114920 |
[17] | Y. Luchko, Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation, Comput. Math. Appl., 59 (2010), 1766–1772. https://doi.org/10.1016/j.camwa.2009.08.015 doi: 10.1016/j.camwa.2009.08.015 |
[18] | K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011), 426–447. https://doi.org/10.1016/j.jmaa.2011.04.058 doi: 10.1016/j.jmaa.2011.04.058 |
[19] | J. Cheng, J. Nakagawa, M. Yamamoto, T. Yamazaki, Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation, Inverse Probl., 25 (2009), 115002. https://doi.org/10.1088/0266-5611/25/11/115002 doi: 10.1088/0266-5611/25/11/115002 |
[20] | G. D. Li, Y. Zhang, Y. J. Guan, W. J. Li, Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse, Math. Biosci. Eng, 20 (2023), 7020–7041. https://doi.org/10.3934/mbe.2023303 doi: 10.3934/mbe.2023303 |
[21] | J. Wen, Y. P. Wang, Y. X. Wang, Y. Q. Wang, The quasi-reversibility regularization method for backward problem of the multi-term time-space fractional diffusion equation, Commun. Nonlinear Sci., 131 (2024), 107848. https://doi.org/10.1016/j.cnsns.2024.107848 doi: 10.1016/j.cnsns.2024.107848 |
[22] | Y. B. Jiang, H. Chen, T. Sun, C. B. Huang, Efficient L1-ADI finite difference method for the two-dimensional nonlinear time-fractional diffusion equation, Appl. Math. Comput., 471 (2024), 128609. https://doi.org/10.1016/j.amc.2024.128609 doi: 10.1016/j.amc.2024.128609 |
[23] | S. Arshad, I. Saleem, A. Akgül, J. F. Huang, Y. F. Tang, S. M. Eldin, A novel numerical method for solving the Caputo-Fabrizio fractional differential equation, AIMS Mathematics, 8 (2023), 9535–9556. https://doi.org/10.3934/math.2023481 doi: 10.3934/math.2023481 |
[24] | I. Talib, M. N. Alam, D. Baleanu, D. Zaidi, A. Marriyam, A new integral operational matrix with applications to multi-order fractional differential equations, AIMS Mathematics, 6 (2021), 8742–8771. https://doi.org/10.3934/math.2021508 doi: 10.3934/math.2021508 |
[25] | M. H. Heydari, S. Zhagharian, M. Razzaghi, Jacobi polynomials for the numerical solution of multi-dimensional stochastic multi-order time fractional diffusion-wave equations, Comput. Math. Appl., 152 (2023), 91–101. https://doi.org/10.1016/j.camwa.2023.10.010 doi: 10.1016/j.camwa.2023.10.010 |
[26] | A. Qazza, R. Saadeh, E. Salah, Solving fractional partial differential equations via a new scheme, AIMS Mathematics, 8 (2023), 5318–5337. https://doi.org/10.3934/math.2023267 doi: 10.3934/math.2023267 |
[27] | M. S. Hashemi, M. Mirzazadeh, M. Bayram, S. M. E. Din, Numerical approximation of the Cauchy non-homogeneous time-fractional diffusion-wave equation with Caputo derivative using shifted Chebyshev polynomials, Alex. Eng. J., 81 (2023), 118–129. https://doi.org/10.1016/j.aej.2023.09.010 doi: 10.1016/j.aej.2023.09.010 |
[28] | N. Peykrayegan, M. Ghovatmand, M. H. N. Skandari, D. Baleanu, An approximate approach for fractional singular delay integro-differential equations, AIMS Mathematics, 7 (2022), 9156–9171. https://doi.org/10.3934/math.2022507 doi: 10.3934/math.2022507 |
[29] | M. Turkyilmazoglu, An efficient computational method for differential equations of fractional type, CMES-Comp. Model. Eng., 133 (2022), 47–65. https://doi.org/10.32604/cmes.2022.020781 doi: 10.32604/cmes.2022.020781 |
[30] | R. Shikrani, M. S. Hashmi, N. Khan, A. Ghaffar, K. S. Nisar, J. Singh, et al., An efficient numerical approach for space fractional partial differential equations, Alex. Eng. J., 59 (2020), 2911–2919. https://doi.org/10.1016/j.aej.2020.02.036 doi: 10.1016/j.aej.2020.02.036 |
[31] | W. Jiang, Y. Z. Lin, Approximate solution of the fractional advection–dispersion equation, Comput. Phys. Commun., 181 (2010), 557–561. https://doi.org/10.1016/j.cpc.2009.11.004 doi: 10.1016/j.cpc.2009.11.004 |
[32] | B. Chen, S. Coppieters, Meshfree digital image correlation using reproducing kernel particle method and its degenerate derivations, Measurement, 226 (2024), 114112. https://doi.org/10.1016/j.measurement.2023.114112 doi: 10.1016/j.measurement.2023.114112 |
[33] | M. G. Cui, Z. Chen, The exact solution of nonlinear age-structured population model, Nonlinear Anal.-Real, 8 (2007), 1096–1112. https://doi.org/10.1016/j.nonrwa.2006.06.004 doi: 10.1016/j.nonrwa.2006.06.004 |
[34] | A. Akgül, Reproducing kernel Hilbert space method based on reproducing kernel functions for investigating boundary layer flow of a Powell-Eyring non-Newtonian fluid, J. Taibah Univ. Sci., 13 (2019), 858–863. https://doi.org/10.1080/16583655.2019.1651988 doi: 10.1080/16583655.2019.1651988 |
[35] | W. Themistoclakis, M. V. Barel, A new kernel method for the uniform approximation in reproducing kernel Hilbert spaces, Appl. Math. Lett., 153 (2024), 109052. https://doi.org/10.1016/j.aml.2024.109052 doi: 10.1016/j.aml.2024.109052 |
[36] | J. Zhang, J. J. Hou, J. Niu, R. F. Xie, X. F. Dai, A high order approach for nonlinear Volterra-Hammerstein integral equations, AIMS Mathematics, 7 (2022), 1460–1469. https://doi.org/10.3934/math.2022086 doi: 10.3934/math.2022086 |
[37] | H. Du, G. L. Zhao, C. Y. Zhao, Reproducing kernel method for solving Fredholm integro-differential equations with weakly singularity, J. Comput. Appl. Math., 255 (2014), 122–132. https://doi.org/10.1016/j.cam.2013.04.006 doi: 10.1016/j.cam.2013.04.006 |
[38] | A. Alvandi, M. Paripour, The combined reproducing kernel method and Taylor series for handling nonlinear Volterra integro-differential equations with derivative type kernel, Appl. Math. Comput., 355 (2019), 151–160. https://doi.org/10.1016/j.amc.2019.02.023 doi: 10.1016/j.amc.2019.02.023 |
[39] | N. Attia, A. Akgül, D. Seba, A. Nour, M. B. Riaz, Reproducing kernel Hilbert space method for solving fractal fractional differential equations, Results Phys., 35 (2022), 105225. https://doi.org/10.1016/j.rinp.2022.105225 doi: 10.1016/j.rinp.2022.105225 |
[40] | Z. Y. Li, M. C. Wang, Y. L. Wang, Solving a class of variable order nonlinear fractional integral differential equations by using reproducing kernel function, AIMS Mathematics, 7 (2022), 12935–12951. https://doi.org/10.3934/math.2022716 doi: 10.3934/math.2022716 |
[41] | X. Y. Li, B. Y. Wu, Reproducing kernel functions-based meshless method for variable order fractional advection-diffusion-reaction equations, Alex. Eng. J., 59 (2020), 3181–3186. https://doi.org/10.1016/j.aej.2020.07.034 doi: 10.1016/j.aej.2020.07.034 |
[42] | O. Saldlr, M. G. Sakar, F. Erdogan, Numerical solution of time-fractional Kawahara equation using reproducing kernel method with error estimate, Comp. Appl. Math., 38 (2019), 198. https://doi.org/10.1007/s40314-019-0979-1 doi: 10.1007/s40314-019-0979-1 |
[43] | W. Y. Wang, B. Han, M. Yamamoto, Inverse heat problem of determining time-dependent source parameter in reproducing kernel space, Nonlinear Anal.-Real, 14 (2013), 875–887. https://doi.org/10.1016/j.nonrwa.2012.08.009 doi: 10.1016/j.nonrwa.2012.08.009 |
[44] | M. G. Cui, Y. Z. Lin, Nonlinear numerical analysis in reproducing kernel space, New York: Nova Science Publishers, 2009. |
[45] | M. G. Cui, F. Z. Geng, A computational method for solving one-dimensional variable-coeffificient Burgers equation, Appl. Math. Comput., 188 (2007), 1389–1401. https://doi.org/10.1016/j.amc.2006.11.005 doi: 10.1016/j.amc.2006.11.005 |
[46] | W. Y. Wang, M. Yamamoto, B. Han, Two-dimensional parabolic inverse source problem with final overdetermination in reproducing kernel space, Chin. Ann. Math. Ser. B, 35 (2014), 469–482. https://doi.org/10.1007/s11401-014-0831-2 doi: 10.1007/s11401-014-0831-2 |
[47] | W. Y. Wang, M. G. Cui, B. Han, A new method for solving a class of singular two-point boundary value problems, Appl. Math. Comput., 206 (2008), 721–727. https://doi.org/10.1016/j.amc.2008.09.019 doi: 10.1016/j.amc.2008.09.019 |