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1. Introduction 

Fractional differential equations (FDEs) can describe various practical problems, but due to the 

non-locality of fractional operators, their numerical methods and theoretical analysis are in the early 

stage of development, which brings challenges to the acquisition of exact solutions. Therefore, the 

search for numerical solutions to these equations is difficult and urgent. FDEs have been widely 

applied in ecology, medicine, physics, hydrology, and other fields [1–6]. For example, space FDEs 

have been applied in image denoising and enhancement, and have important application value in 

medical images, transportation, remote sensing images, and other fields [7–9]. 

The theoretical study for FDEs has been developed rapidly [10–16]. Luchko [17] established the 

unique existence for solutions to time FDEs. Sakamoto and Yamamoto [18] proved the unique 

existence for solutions to space FDEs. Cheng et al. [19] studied the uniqueness for inverse problems 
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to FDEs. Li et al. [20] established the stability for FDEs with non-instantaneous integral pulses and 

multi-point boundary conditions. 

In terms of numerical methods, references are growing rapidly [21–25]. Qazza, Saadeh, and 

Salah [26] proposed a direct power series method for FDEs. Hashemi et al. [27] applied shifted 

Chebyshev polynomials to time-fractional diffusion-wave equations. Peykrayegan et al. [28] 

proposed the Jacobi-Gauss collocation approach to approximate fractional singular delay 

integro-differential problems. Turkyilmazoglu [29] applied the adomian decomposition method to 

FDEs. Shikrani et al. [30] used the hybrid B-spline collocation approach to solve the space FDEs. 

Jiang and Lin [31] used the reproducing kernel (RK) approach to approximate fractional 

advection-dispersion equations. 

The following space FDEs [30] are considered in this article: 

( )
( )

( )
( )

( )
( )    

, , ,
, , , ,    ( ) 0, 0, ,

u x t u x t u x t
c x t d x t f x t x,t D L T

t x x





  
= + +   

          (1.1) 

( ) ( ) ( ) ( ) ( ) ( )2 1,0 , , , 0, , [0, ], [0, ].u x x u L t t u t t t T x L  = = =               (1.2) 

Here, 0T   and 0L   are fixed, ( ), ,c x t ( ) ,x ( ), ,d x t ( )1 ,t ( ),f x t , and ( )2 t  are known 

functions that are smooth enough. The Riemann-Liouville derivative for 2 1   is shown in [9] by 

( )

( )

( )

( )

2

2

10

,, 1
.  

2

x u tu x t
d

x x









 
−


=

  − −
                         (1.3) 

We aim to establish a numerical scheme for space FDEs by the RK method. In addition, the 

advantages of this approach are as follows: 

1) The high-precision global approximate solution to the equation is obtained. 

2) The numerical calculation program is simple. 

3) Smaller errors can occur when larger step sizes are used. Therefore, high precision approximate 

solutions can be obtained in a very short time. 

RK functions in Hilbert Spaces and their related theories are widely used in digital image 

processing, neural network modeling, and numerical simulations [32–35]. In practical applications, 

the RK method is widely applied to solve various integral and differential equations because of its 

global nature and high precision [36–38]. Within the last ten years, more scholars have used the RK 

approach to solve various FDEs [39–42]. The literature proves that the RK approach has many 

advantages and deserves further study. 

In this paper, the approximate solution to Eqs (1.1) and (1.2) is given in RK space. Driven by [43], 

a procedure is presented for improving the existing approach, bypassing the Gram-Schmidt orthogonal 

(GSO) process proposed in [31], which has lower accuracy and slower operation speed under the same 

conditions. Subsequently, enlightened by [44], a simpler RK than [45] is applied, promoting greater 

acceleration of the calculation and further improvements in accuracy [43,46]. 

In order to solve Eqs (1.1) and (1.2) in the RK space, the conditions (1.2) need to be 

homogenized. For convenience, the solution to the new equations is expressed by ( , ),u x t  so, 

( )
( )

( )
( )

( )
( )

( ) ( )
, , ,

, , , , ,    ,
u x t u x t u x t

Lu x t c x t d x t F x t x t D
t x x





  
− − = 

  
,         (1.4) 
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( ) ( ) ( ),0 0,      , 0,      0, 0,u x u L t u t= = =
   

 0, ,t T
   

 0, ,x L             (1.5) 

where ( ) ( ): ,L W D W D→  ( )W D  and ( )W D  will be given in the following sections. 

2. RK space ( )W D  

In this section, RK space ( )W D  is constructed from [44] as a premier book about numerical 

approaches of RK spaces, which constructs a much simpler RK than [45]. 

First, the RK spaces  1 0, ,W T   2 0,W L  and  3 0,W L  are introduced as follows. 

Definition 2.1.   1 0,W T   = is a real-valued function that is absolutely continuous in  0,T , 

( )0 0 = ,  2 0, .L T   Its inner product in  1 0,W T  is defined by 

( ) ( ) ( ) ( ) 

1 0
, 0 0 .

T

W
x x dx        = +                        (2.1) 

Definition 2.2.   2 0,W L   = is a real-valued function that is absolutely continuous in  0, L , 

( ) 0L = , ( )0 0 = ,  2 0,L L  . Its inner product in  2 0,W L  is defined as 

( ) ( ) ( ) ( ) 

2 0
, 0 0 .

L

W
x x dx        = +                        (2.2) 

Definition 2.3.   3 0,W L  = is a real-valued function that is absolutely continuous in  0, L , 

 2 0,L L  . Its inner product in  3 0,W L  is defined as: 

( ) ( ) ( ) ( ) 

3 0
, 0 0 .

L

W
x x dx      = +                         (2.3) 

The norms are defined by ,
k kW W

  =  for 1,2,3.k =  It is shown that  1 0,W T , 

 2 0,W L  and  3 0,W L  are all RK spaces, whose RKs 

( )

2 3

2 3

1 1
, ,

2 6
1 ,

1 1
, ,

2 6

t t t

K t

t t t t

   



  


+ − 

= 
 + − 


                          (2.4) 

( )

2 2 3 4 3 4 4

2

4 3 4 2 2 3 4

2

( ) (120 120 6 4 5 )
, ,

120
2 ,

( )( 120 120 5 6 4 )
, ,

120

L x Lx x L x Lx x Lx L x
x

L
K x

x L Lx L x Lx x L x Lx x
x

L

       



       



 − − + − + − + +


= 
− + − − + + − + 



   (2.5) 

1 , ,
3( , )

1 , ,

x
K x

x x

 




+ 
= 

+ 
                               (2.6) 

which are given by (9) and (11) in [31] and [47], respectively. 
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Definition 2.4. ( ) 
3

2
|W D

x t





=

 
 is a real-valued function that is absolutely continuous in D , 

( ),0 0,x = ( ), 0,L t = ( )0, 0,t = ( )
5

2

3 2
L D

x t




 
. Its norm and inner product in ( )W D  are 

respectively defined as 

( ) ( )
, ,

W D W D
  =                                 (2.7) 

( )

( ) ( ) ( ) ( )

( ) ( )
2

3 3

2 20

5 5

3 2 3 20 0
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,
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W D
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T L

x u x t u t
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x t u x t
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x t x t

 




   
= +

     

 
+

   



 

              (2.8) 

with reference to [38], ( )W D  is an RK space, and its RK is 

( ) ( ) ( ), , , 1 , 2 , .K x t K t K x   =
                            (2.9) 

Here, ( )1 ,K    and ( )2 ,K    are respectively shown by (2.4) and (2.5). 

Similarly, ( )W D  is an RK space, and its RK is 

( ) ( ) ( ), , , 3 , 3 , .K x t K t K x   =
                           (2.10) 

Here, ( )3 ,K    is given by (2.6). 

3. Numerical method 

The series form for the numerical solution of Eqs (1.4) and (1.5) and its implementation in the 

RK space ( )W D  are given in this section. 

In (1.4) and (1.5), ( ) ( ):L W D W D→  is a linear bounded operator because ( ),F x t ， ( ),c x t  

and ( ),d x t are smooth enough. A countable dense subset ( ) ,l l l
x t D


  is chosen. Put 

( )( , ) , , ,l l lx t K x x t t =  and ( , ) ( , ).l lx t L x t =  Here K  is the RK for ( ) ,W D  L
 is the adjoint 

operator for L . Define 

( ) ( ) ( )
( ) ( )

( )
( )

( )
( )

( )

( ) ( )

, , ,

, ,

, , , ,

, , , , , , , , ,
           , , ,    .

l l

l l

l x t

x t

x t L K x t

K x t K x t K x t
c d l

   





 

  

     
   

  

=

=

=

   
= − −      

  (3.1) 

Here, ( ), , ,K x t   is the RK in ( )W D , denoted by (2.9). 

Theorem 3.1. If D  is closed, then ( ) .l W D l  ，  
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Proof: By Definition 2.4, it is first shown that ( )3 2

5 2

lx t
L D   and that 2

3

lx t
  is absolutely 

continuous in D . 

From (2.9) and (3.1), 

( ) ( ) ( ) ( ) ( ) ( )

( )
( )

( )

( )

( )

2

2

10

, 2 , 1 , , 1 , 2 ,

2 ,1 ,
               , .

2

l l

l

l l l l lt x

x
l

l l

l

x t K x x K t c x t K t t K x

K xK t t
d x t d

x

  





  




 

= =

−

=  − 


−

 − −


             (3.2) 

Then, 

( ) ( ) ( ) ( ) ( ) ( )

( )
( )

( )

( )

( )

3 2 3 2 2 3

2 32

5 3 3 2 4

52

10

, 2 , 1 , , 1 , 2 ,

2 ,1 ,
                      , .

2

l l

l

l l l l lx t x t t xt x

xl xt
l l

l

x t K x x K t c x t K t t K x

K xK t t
d x t d

x

  





  




 

= =

−

 =   −  


−

 − −


    (3.3) 

In view of the Definitions 2.1 and 2.2 and expressions (2.4) and (2.5) of ( )1 ,K t   and 

( )2 ,K x  , there are normal numbers 1N , 2N , and 3N  such that 

( ) ( )3 2

3 3

12 , 1 , ,
l

lx t t
K x x K t N

 


=
                                

 
( ) ( ) ( )2 3

2 4

2, 1 , 2 , ,
l

l l lt x x
c x t K t t K x N

 


=
                             

( ) ( ) ( )

( )

2 2 3

2 5

3

, 1 , 2 ,
,

2

l l lt x
d x t K t t K x

N






 


 −
                      (3.4) 

for ( , )x t D  and [0, ].T   Thus, 

( ) ( )3 2

15

1 2 3
0

4
1 2

,

                  ,
2

lx

l lx t
x t N N N x d

N
N N


  



−
  + + −

 + +
−


                     (3.5) 

where 4N
 
is a normal number. Thus, ( )3 2

5 2 .lx t
L D   Since D  is closed, 2

3

lx t
  is absolutely 

continuous in D . 

Then, it is proved that ( , )l x t  satisfies (1.5). Note that ( )  11 , 0,K t W T 
 
with respect to 

[0, ],T  ( )  22 , 0,K x W L   with respect to [0, ],L   and ( )2

2 2 , 0,K L


 =  ( )2

2 2 0, 0,K


 =  

( )1 0, 0,K  =  ( )2 , 0,K L  =  ( )2 0, 0,K  =  ( )1 0, 0.K  =
 

By (3.2), ( ),0 0l x = , ( )0, 0l t = , ( ), 0,l L t =  l . 

Therefore, ( )l W D l  ，  by Definition 2.4. 
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The proof methods for the following theorems are similar to those of [43,46]. 

Theorem 3.2. Assume the uniqueness of Eqs (1.4) and (1.5). Then in ( ),W D  system  l l



 is 

complete. 

Proof: By Theorem 3.1, ( ) .l W D l  ，  For each ( )u W D , set 
( )

, 0, ,l W D
u l =   which 

means that 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( )( )
( ) ( )

( )
( ) ( )

, ,
, , ( ) , ,( )

, ( ) , ,
, ,

, , , , ( , ) , , , , ( , )

, , , , ( , ) ( , ) ( , ) 0.

l l
l l

l l
l l

x t W D x tW D

l lW D x t
x t

L K x t u x t L K x t u x t

L K x t u x t Lu Lu x t

   
   

   
 

   

   

= =

=
=

=

= = = =

      

(3.6) 

In ,D  ( , ) 0Lu x t =  because ( ) ,l l l
x t


 is dense. Because of the uniqueness for Eqs (1.4) and 

(1.5), ( , ) 0.u x t   

The orthonormal system  l l



 in ( )W D  can be obtained by the GSO process of   ,l l




 

( ) ( )
1

, , ,    0,    .
l

l lj j ll

j

x t x t l   
=

=  
                          (3.7) 

Theorem 3.3. In ( ),W D  the unique solution for Eqs (1.4) and (1.5) is represented by 

( ) ( ) ( )
1 1

, , , .
l

lj j j l

l j

u x t F x t x t 


= =

=
                            (3.8) 

Proof: In ( ),W D  ( ),u x t  is expanded to a Fourier series by the orthonormal basis ( ),l x t : 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( )
( ) ( )

( )

( ) ( ) ( )
( ) ( )

( )
1

1 1 ( )

, , ,
( )1 1

,
( ) , ,1 1

, ( ) , ,1

, , , , ,

, , , ,

, , , , , ,

, , , , , ,

, , , , ,

j j

j j

j j

l lW D
l

l

lj j l

l j W D

l

lj lx t
W Dl j

l

lj l
W D x tl j

l

lj W D x tj

u x t x t u x t x t

x t u x t x t

L K x t u x t x t

L K x t u x t x t

L K x t u x t

   

 
 

 
 

 

  

   

   

   



=



= =



=
= =



== =

==

=

=

=

=

=



 





 ( )

( )( )
( ) ( )

( )

( ) ( )

( ) ( )

1

, ,
1 1

1 1

1 1

,

, ,

, ,

, , .

j j

l

l

l

lj l
x t

l j

l

lj j j l

l j

l

lj j j l

l j

x t

Lu x t

Lu x t x t

F x t x t

 
   

 

 



=



=
= =



= =



= =

=

=

=








           (3.9)
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Thus, the approximate solution ( ),nu x t

 

is acquired by 

( ) ( ) ( )
1 1

, , , .
n l

n lj j j l

l j

u x t F x t x t 
= =

=
                         (3.10) 

Theorem 3.4. Suppose u  is the exact solution to (1.4) and (1.5), ,n nu P u=  in which nP  is the 

orthogonal projection of ( )W D  to   ,l l
Span 


 then 

( ) ( ), , ,    1, 2,..., .n l l l lLu x t F x t l n= =
                              (3.11) 

Proof: 

( )

( ) ( )

, , , ,

, , , , , ,    1, 2,..., .

n l l n l n l n l

n l l l l l l l

Lu x t Lu u L P u

u P u Lu Lu x t F x t l n

  

  

= = =

= = = = = =   
(3.12) 

From (3.7) and (3.10), 

( ) ( ) ( ) ( ) ( )
1 1 1 1 1

, , , , , .
n l n l l

n lj j j l lj lk j j k

l j l j k

u x t F x t x t F x t x t    
= = = = =

= =           (3.13) 

Let ( )
1

, .l lj

l

j j

j

C F x t
=

=  Then, 

1 11 1 21 2 22 1 31 2 32 3 33

1 1 2 2 3

1 1

1 2 2 3 3 3

1 1 1 1

3

, ,( )

k

l

lk k

n n n n nn

n n k

l

n

k j

l

n

l l

n

l

n n n n

n n

k l

l k l l k l j

l kj

l

k j l

u

C F

C

C C C C C C

C C C C

x t C



           

       

     


= =

= = = = = =

= + + + + +

+ + + + + +

  
= =    =

   

=

     

            (3.14) 

where ( )
1

, .
n k

l kl kj j j

k l j

C F x t 
= =

=   

According to Theorem 3.4, 

( ) ( )
1

( , ) , , , 1,2, , ,
n

n j j l j

l

l j j jLu x t C L x t F x t j n
=

= = =             (3.15) 

where functions ,L F  and l  are defined in (1.4) and (3.1), respectively. 

In short, the main steps of the approach presented in this article are as follows: 

1) From Eq (3.15), ,  1, 2,...,lC l n=  can be obtained. 
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2) By substituting the above ,  1, 2,...,lC l n=  into Eq (3.14), the numerical solution of Eqs (1.4) and 

(1.5) can be obtained. 

The above calculation steps show that the current numerical algorithm bypasses the GSO 

procedure used in [31] (the GSO step is required only for proof, not for numerical calculations) 

Therefore, compared with [31], this method has higher precision and less computation time [43,46]. 

This approach can solve some model problems efficiently and can obtain the global approximate 

solution with high precision. 

4. Convergence analysis 

( ),nu x t  and ( ),u x t  are respectively approximate and exact solutions to Eqs (1.4) and (1.5). 

Set 
( )

( )
,

max , .
C x t D

u u x t


 Similar to [43], the coming theorem can be found. 

Theorem 4.1. Suppose ( )u W D . Then, 

1) 
( )

0,n W D
u u− →  n→ . Furthermore, 

( )n W D
u u−  decreases monotonously with n . 

2) 0
i ki k

n

i k i k

C

uu

x t x t

++ 
− →

  
, n→ ; 0,1k = ; 0,1, 2i = ; 0,1, 2.i k+ =  

Proof: 1) From (3.8) and (3.10), 

( ) ( ) ( ) ( )

( ) ( )

( )

( )

( )
1

1

1

1

1 1

, , .

, , , ,

W D

W D

l n l

lj j j l lj j j l

l j l j

l

j

n W D

ljlj

l n j

F x t x t F x t x tu u

F x t x t 

   


= = =

= =

=



+

− =

=

− 



 



          (4.1) 

Thus, 

( )
0, .n W D

u u n− → →                                 (4.2) 

Furthermore, 

( ) ( )

( )

2

2

( )
1 1 ( )

2

1 1

, ,

, .

l

j jln ljW D
l n j W D

lj

l n

j

j

l

j

u u x t F x t

F x t

 





= + =



= + =

− =

 
=  

 



 

                       (4.3) 

Clearly, 
( )n W D

u u−  decreases monotonically with n . 

2) With reference to the properties of RK ( ), , ,K x t   in [44], 
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( , )( , ) ( , , , )
( , ) ( , ), ,

i ki k i k

n
ni k i k i k

u x tu x t K x t
u u

x t x t x t

 
   

++ + 
− = −

     
              (4.4) 

According to (2.9), Definitions 2.1 and 2.2, and expressions (2.4) and (2.5) of ( )1 ,K t   and

( )2 ,K x  , there are normal numbers , 1, 2, ,5lC l =  such that  

( )

( , , , )
.

i k

li k

W D

K x t
C

x t

 +


 
                          (4.5) 

To all ( , ) ,x t D  

( )

( )

( )

( , )( , ) ( , , , )
( , ) ( , ),

( , , , )

.

i ki k i k

n
ni k i k i k

i k

n i kW D

W D

l n W D

u x tu x t K x t
u u

x t x t x t

K x t
u u

x t

C u u

 
   

 

++ +

+

 
− = −

     


 −

 

 −

            

(4.6) 

Hence, 

0, ; 0,1; 0,1,2; 0,1,2.
i ki k

n

i k i k

C

uu
n k i i k

x t x t

++ 
− → → = = + =

   
             (4.7) 

5. Numerical results 

Numerical experiments verify the effectiveness and reliability for the presented approach in this 

section. All numerical calculations were performed using Mathematica 13.0 software. D  is 

separated into 1 2m m  grids with steps 11/ m and 21/ m  in the x  and t  directions. Here, 

1 2, .m m 
 

Example 5.1. Consider Eqs (1.1) and (1.2) under the following conditions [30]: 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2

2 2

, 0,  , 3 / 2,

1, cos ,    0, 0,    ,0 ,

, sin cos .

c x t d x t x

u t t u t u x x

f x t t x t x

 = =  −


= − = =


= − − −                     (5.1) 

The exact solution is 

( ) ( )2, cos .u x t x t= −                                    (5.2) 

According to steps 1) and 2) in Section 3, 50 50
 
points that are the same as [30] are selected 

on D , the absolute errors of the proposed method and [30] are shown in Tables 1–3. As can be seen 

from the tables, the accuracy for the proposed approach is high, and the results obtained using the 

proposed approach are better than [30]. 

Subsequently, root-mean-square errors for ( ),u x t  are given in Table 4, which verifies that the 
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proposed method can achieve a smaller error with a larger step size, and the accuracy increases with 

the decrease of step size. 

Table 1. Absolute errors with the proposed method (PM) and [30] for 1 2 50m m= =  and 

1.2 =  in Example 5.1. 

x  
0.1t =  0.5t =  1.0t =  

[30] PM [30] PM [30] PM 

0.2  4.214500E-6 8.19791E-7 1.264265E-4 2.66663E-6 6.186622E-4 3.99230E-6 

0.4  1.683760E-5 9.79366E-7 5.044576E-4 3.58987E-6 2.424003E-3 5.75924E-6 

0.6  3.786940E-5 7.15178E-7 1.125615E-3 3.25967E-6 4.742281E-3 6.25942E-6 

0.8  6.729740E-5 3.11357E-7 1.797010E-3 2.09928E-6 6.271795E-3 5.01380E-6 

1.0  9.311570E-5 0 2.060472E-3 0 6.707507E-3 0 

Table 2. Absolute errors with the proposed method (PM) and [30] for 1 2 50m m= =  and 

1.4 =  in Example 5.1. 

x  
0.1t =  0.5t =  1.0t =  

[30] PM [30] PM [30] PM 

0.2  4.212000E-6 1.14526E-6 1.262725E-4 2.44965E-6 6.147080E-4 2.67096E-6 

0.4  1.683260E-5 1.39628E-6 5.030643E-4 3.03668E-6 2.256320E-3 3.47873E-6 

0.6  3.786180E-5 1.04843E-6 1.081010E-3 2.45192E-6 4.044128E-3 3.71983E-6 

0.8  6.703560E-5 4.65691E-7 1.614415E-3 1.38966E-6 5.201407E-3 2.99390E-6 

1.0  8.856190E-5 0 1.817044E-3 0 5.555100E-3 0 

Table 3. Absolute errors with the proposed method (PM) and [30] for 1 2 50m m= =  and 

1.6 =  in Example 5.1. 

x  
0.1t =  0.5t =  1.0t =  

[30] PM [30] PM [30] PM 

0.2  4.209500E-6 1.98759E-6 1.260839E-4 1.71001E-6 5.968458E-4 3.74175E-6 

0.4  1.682760E-5 2.56234E-6 4.941251E-4 2.03502E-6 2.000868E-3 6.47819E-6 

0.6  3.784650E-5 2.08248E-6 1.002314E-3 2.08562E-6 3.397228E-3 6.72774E-6 

0.8  6.588950E-5 1.00788E-6 1.430260E-3 1.62926E-6 4.305544E-3 4.38889E-6 

1.0  8.337810E-5 0 1.590903E-3 0 4.595036E-3 0 

Table 4. Root-mean-square errors for ( ),u x t  with the proposed method in Example 5.1. 

1 2m m
 

1.2 =  1.4 =  1.6 =  

5 5  2.96508E-5 5.79045E-5 1.42992E-4 

10 10  1.09202E-5 1.60912E-5 3.68855E-5 

20 20  3.95733E-6 4.67874E-6 9.92730E-6 

30 30  1.97875E-6 2.20781E-6 4.38702E-6 

40 40  1.24741E-6 1.06673E-6 2.40257E-6 

In addition, errors 20 20 30 30 40 40, , : 1.2, 1.4, 1.6u u u u u u     − − − = = =  are shown in 

Figures 1–3, respectively, which proves that the presented approach provides high-precision global 
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approximate solutions. 

 

( ) 1.2a  =
                   

( ) 1.4b  =
                   

( ) 1.6c  =
 

Figure 1. Errors 20 20 :u u − 1.2, 1.4, 1.6  = = =  in Example 5.1. 

 

( ) 1.2a  =
                   

( ) 1.4b  =
                   

( ) 1.6c  =
 

Figure 2. Errors 30 30 :u u − 1.2, 1.4, 1.6  = = =  in Example 5.1. 

 

( ) 1.2a  =
                   

( ) 1.4b  =
                   

( ) 1.6c  =
 

Figure 3. Errors 40 40 :u u − 1.2, 1.4, 1.6  = = =  in Example 5.1. 
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6. Conclusions and discussion 

The approach proposed in this paper is successfully applied to space FDEs. Based on RK space, 

this method improves the method [31,45], avoids the GSO process [31], and obtains a simpler RK 

than [45]. This approach can improve accuracy and greatly reduce run time. Numerical results verify 

that the approach has high computational accuracy, and the error to the approximate solution tends to 

monotonously decrease. According to [46], in which the RK method is extended from 

one-dimensional to two-dimensional, the proposed approach in this paper is applicable to 

two-dimensional FDEs, which will be discussed in a later article. 
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