This paper aims to establish the following: Let $ \Omega $ be a ring that satisfies some conditions and has an idempotent element $ f\neq 0, 1 $. We intend to show that if $ G $ is any suitable multiplicative generalized CE-derivation of $ \Omega $, then $ G $ is a centrally extended additive.
Citation: M. S. Tammam El-Sayiad, Munerah Almulhem. On centrally extended mappings that are centrally extended additive[J]. AIMS Mathematics, 2024, 9(11): 33254-33262. doi: 10.3934/math.20241586
This paper aims to establish the following: Let $ \Omega $ be a ring that satisfies some conditions and has an idempotent element $ f\neq 0, 1 $. We intend to show that if $ G $ is any suitable multiplicative generalized CE-derivation of $ \Omega $, then $ G $ is a centrally extended additive.
[1] | H. E. Bell, M. N. Daif, On centrally-extended maps on rings, Beitr. Algebra Geom., 57 (2016), 129–136. https://doi.org/10.1007/s13366-015-0244-8 doi: 10.1007/s13366-015-0244-8 |
[2] | S. F. El-Deken, M. M. El-Soufi, On centrally extended reverse and generalized reverse derivations, Indian J. Pure Appl. Math., 51 (2020), 1165–1180. https://doi.org/10.1007/s13226-020-0456-y doi: 10.1007/s13226-020-0456-y |
[3] | S. F. El-Deken, H. Nabiel, Centrally-extended generalized $\ast$-derivations on rings with involution, Beitr. Algebra Geom., 60 (2019), 217–224. https://doi.org/10.1007/s13366-018-0415-5 doi: 10.1007/s13366-018-0415-5 |
[4] | M. M. Muthana, Z. S. Alkhamisi, On centrally-extended multiplicative (generalized)-$(\alpha, \beta)$-derivations in semiprime rings, Hacet J. Math. Stat., 49 (2020), 578–585. |
[5] | M. S. Tammam El-Sayiad, A. Ageeb, A. M. Khaled, What is the action of a multiplicative centrally-extended derivation on a ring?, Georgian Math. J., 29 (2022), 607–613. https://doi.org/10.1515/gmj-2022-2164 doi: 10.1515/gmj-2022-2164 |
[6] | C. E. Rickart, One-to-one mappings of rings and lattices, Bull. Amer. Math. Soc., 54 (1948), 758–764. |
[7] | W. S. Martindale, When are multiplicative mappings additive?, Proc. Amer. Math. Soc., 21 (1969), 695–698. https://doi.org/10.1090/S0002-9939-1969-0240129-7 doi: 10.1090/S0002-9939-1969-0240129-7 |
[8] | M. N. Daif, When is a multiplicative derivation additive?, Int. J. Math. Math. Sci., 14 (1991), 275743. https://doi.org/10.1155/S0161171291000844 doi: 10.1155/S0161171291000844 |
[9] | Y. Wang, The additivity of multiplicative maps on rings, Commun. Algebra, 37 (2009), 2351–2356. https://doi.org/10.1080/00927870802623369 doi: 10.1080/00927870802623369 |
[10] | J. C. M. Ferreira, B. L. M. Ferreira, Additivity of n-multiplicative maps on alternating rings, Commun. Algebra, 44 (2016), 1557–1568. https://doi.org/10.1080/00927872.2015.1027364 doi: 10.1080/00927872.2015.1027364 |
[11] | B. L. M. Ferreira, H. Guzzo, R. N. Ferreira, An approach between the multiplicative and additive structure of a Jordan ring, Bull. Iran. Math. Soc., 47 (2021), 961–975. https://doi.org/10.1007/s41980-020-00423-4 doi: 10.1007/s41980-020-00423-4 |
[12] | M. N. Daif, M. S. Tammam El-Sayiad, Multiplicative generalized derivations which are additive, East-West J. Math., 9 (2007), 1–10. |
[13] | M. S. Tammam El-Sayiad, M. N. Daif, V. De Filippis, Multiplicativity of left centralizers forcing additivity, Bol. Soc. Paran. Mat., 32 (2014), 61–69. https://doi.org/10.5269/bspm.v32i1.17274 doi: 10.5269/bspm.v32i1.17274 |
[14] | N. Jacobson, Structure of rings, Colloquium Publications, 1964. |