

AIMS Mathematics, 9(11): 33254–33262. DOI: 10.3934/math.20241586 Received: 12 August 2024 Revised: 30 October 2024 Accepted: 14 November 2024 Published: 21 November 2024

https://www.aimspress.com/journal/Math

Research article

On centrally extended mappings that are centrally extended additive

M. S. Tammam El-Sayiad¹ and Munerah Almulhem^{2,*}

- ¹ Department of Mathematics and Computer Science, Faculty of Science, Beni-Suef University, Beni-Suef City 62111, Egypt
- ² Department of Mathematics, College of Science and Humanities, Imam Abdulrahman Bin Faisal University, Jubail 35811, Saudi Arabia
- * Correspondence: Email: malmulhim@iau.edu.sa.

Abstract: This paper aims to establish the following: Let Ω be a ring that satisfies some conditions and has an idempotent element $f \neq 0, 1$. We intend to show that if G is any suitable multiplicative generalized CE-derivation of Ω , then G is a centrally extended additive.

Keywords: ring; idempotent element; peirce decomposition; derivations; generalized derivation; centrally extended derivations

Mathematics Subject Classification: 16N60, 16U80, 16W25

1. Introduction

The investigation of centrally extended mappings in rings under certain conditions plays an increasingly important role in ring theory. The work of Bell and Daif [1] introduced the notion of centrally extended derivation as follows: Let Ω be a ring with center $\mathcal{Z}(\Omega)$. A map \mathcal{D} of Ω is said to be a centrally extended derivation (CE-derivation) if, for all $v, u \in \Omega$, $\mathcal{D}(v+u) - \mathcal{D}(v) - \mathcal{D}(u) \in \mathcal{Z}(\Omega)$, and $\mathcal{D}(vu) - \mathcal{D}(v)u - v\mathcal{D}(u) \in \mathcal{Z}(\Omega)$. Moreover, they discussed the existence of such a map, which is not a derivation, as well as providing some findings regarding commutativity. Thenceforth, considerable findings about various types of maps have been discovered; for example, see [2–5].

The study of when multiplicative maps will be additive goes back to 1948, when Rickart [6] proved that any bijective and multiplicative mapping over a Boolean ring onto any arbitrary ring is additive. In 1969, the work of Martindale [7] was significant to generalize Rickart's main theorem when he demonstrated that every multiplicative isomorphism on a ring with a non-trivial idempotent is additive.

Inspired by Martindale's pioneering work, Daif [8] proved that a multiplicative derivation is additive under the existence of certain conditions on a ring.

Later on, the additivity of *n*-multiplicative maps on associative rings satisfying Martindale's

conditions was proved by Wang [9]. In 2016 [10], Ferreira and Ferreira undertook a detailed study of a similar problem but within the framework of alternative rings. Inspired by these previous findings, [11] brilliantly proved the additivity of n-multiplicative isomorphisms and n-multiplicative derivations over Jordan rings. A great deal of work has been done in [12] and [13] concerning multiplicative left centralizer and multiplicative generalized derivations. Motivated by the role that centrally extended derivations play in the field of ring theory, we herein raised a question: When are multiplicative generalized CE-derivations additive?

The idea of a multiplicative generalized CE-derivation (MGCE-derivation) of a ring Ω is introduced in this note. This concept is defined as a mapping G of Ω into Ω so that $G(vu) - G(v)u - v\mathcal{D}(u) \in \mathcal{Z}(\Omega)$, $\forall v, u \in \Omega$, where $\mathcal{D} : \Omega \to \Omega$ is a CE-derivation. In other words, the maps G and \mathcal{D} can be expressed as $G(vu) = G(v)u + v\mathcal{D}(u) + \delta(v, u)$ and $\mathcal{D}(vu) = \mathcal{D}(v)u + v\mathcal{D}(u) + \sigma(v, u)$, where $\delta(v, u)$ and $\sigma(v, u)$ are elements in $\mathcal{Z}(\Omega)$ and related with the mappings G and \mathcal{D} , respectively. For any ring Ω , a map $G : \Omega \to \Omega$ is called centrally extended additive (CE-additive) so that $G(v + u) - G(v) - G(u) \in \mathcal{Z}(\Omega)$, $\forall v, u \in \Omega$.

In this paper, we aim to find the answer to the following question: "Under what conditions does a multiplicative generalized CE-derivation become a centrally extended additive?" We will give a response to this query under appropriate circumstances.

2. Preliminaries

Throughout this paper, let Ω be a ring that does not necessarily have a unity, and let $f \in \Omega$ be an idempotent element such that $f \neq 1, f \neq 0$. Formally, we will set $f_1 = f$ and $f_2 = 1 - f$. The Peirce decomposition of Ω concerning the idempotent f can be expressed as $\Omega = f_1\Omega f_1 \oplus f_1\Omega f_2 \oplus f_2\Omega f_1 \oplus f_2\Omega f_2$. By letting $\Omega_{ij} = f_i\Omega f_j$: i, j = 1, 2, we could write $\Omega = \Omega_{11} \oplus \Omega_{12} \oplus \Omega_{21} \oplus \Omega_{22}$ (For further information, see Jacobson 1964 [14], Page 49). An element within the subring Ω_{ij} will be indicated by r_{ij} . If $\lambda = \lambda_{11} + \lambda_{12} + \lambda_{21} + \lambda_{22} \in \mathbb{Z}(\Omega)$, where $f\lambda = \lambda f$, then $\lambda_{12} = \lambda_{21} = 0$. Hence, we can conclude that $\mathbb{Z}(\Omega) \subseteq \Omega_{11} \oplus \Omega_{22}$. Additionally, we denote by \mathbb{Z}_{ii} the subring $\Omega_{ii} \cap \mathbb{Z}(\Omega)$.

Applying the definition of \mathcal{D} , we observe that $\mathcal{D}(0) = \sigma(0,0) \in \mathcal{Z}(\Omega)$. But $\mathcal{D}(0)\Omega$ is an ideal contained in the center of Ω . Since $f\mathcal{D}(0) \in \mathcal{Z}(\Omega)$, and $\sigma(0,0) = \sigma_{11}(0,0) + \sigma_{22}(0,0)$, we have $f\mathcal{D}(0) = \sigma_{11}(0,0) \in \mathcal{Z}_{11}$, and this provides $\sigma_{22}(0,0) \in \mathcal{Z}_{22}$. Similarly, $G(0)\Omega$ is an ideal contained in the center of Ω , and $\delta_{11}(0,0) \in \mathcal{Z}_{11}$, and $\delta_{22}(0,0) \in \mathcal{Z}_{22}$.

Moreover, $\mathcal{D}(f) = \mathcal{D}(f^2) = \mathcal{D}(f)f + f\mathcal{D}(f) + \varphi$; $\varphi = \sigma(f, f) \in \mathbb{Z}(\Omega)$. If we express $\mathcal{D}(f) = d_{11} + d_{12} + d_{21} + d_{22}$ and apply the two ways of $\mathcal{D}(f)$, then we obtain $d_{22} = \varphi_{22}$ and $d_{11} = -\varphi_{11}$. Consequently, we have

$$\mathcal{D}(f) = d_{12} + d_{21} - \varphi_{11} + \varphi_{22}. \tag{2.1}$$

In a similar way, if $G : \Omega \to \Omega$ is a multiplicative generalized CE-derivation related with a CEderivation \mathcal{D} , then $G(f) = G(f^2) = G(f)f + f\mathcal{D}(f) + \psi$, where $\psi = \delta(f, f) \in \mathbb{Z}(\Omega)$ and it is possible to write $G(f) = g_{11} + g_{12} + g_{21} + g_{22}$. By making use of the values of G(f) and $\mathcal{D}(f)$, we conclude that $\psi_{11} = \varphi_{11}, g_{22} = \psi_{22}$ and $g_{12} = d_{12}$, so

$$G(f) = g_{11} + d_{12} + g_{21} + \psi_{22}.$$
(2.2)

To finish our task, we will need the following two facts:

AIMS Mathematics

Volume 9, Issue 11, 33254-33262.

Lemma 2.1. $\psi_{ii} \in \mathbb{Z}_{ii}$ and $\varphi_{ii} \in \mathbb{Z}_{ii}$, for $i \in \{1, 2\}$.

Proof. For all $r \in \Omega$, by figuring out the two sides of G(fr) = G(f(fr)), we obtain

$$G(f)r + \delta(f,r) = G(f)fr + f\mathcal{D}(f)r + f\sigma(f,r) + \delta(f,fr).$$
(2.3)

Now using (2.1) and (2.2) in (2.3), we obtain $\psi r = f\sigma(f, r) + \delta(f, fr) - \delta(f, r)$, where $\varphi_{11} = \psi_{11}$ and this means

$$\psi r \in \Omega_{11} \oplus \Omega_{22}. \tag{2.4}$$

Now, if we rewrite r as $r = r_{11} + r_{12} + r_{21} + r_{22}$ and using that $\psi \in \mathcal{Z}(\Omega)$, we obtain $\psi_{11}r_{11} = r_{11}\psi_{11}$ and $\psi_{22}r_{22} = r_{22}\psi_{22}$, which implies $\psi_{11} \in \mathcal{Z}(\Omega_{11})$ and $\psi_{22} \in \mathcal{Z}(\Omega_{22})$. And again (2.4) gives $\psi_{11}r_{12} + \psi_{22}r_{21} = 0$ and $r_{12}\psi_{22} + r_{21}\psi_{11} = 0$, which gives $\psi_{11}r_{12} = \psi_{22}r_{21} = 0$ and $r_{12}\psi_{22} = r_{21}\psi_{11} = 0$, this means that ψ is a left and right annihilator of the two subrings Ω_{12} and Ω_{21} . Now for any $r \in \Omega$, $\psi_{11}r = \psi_{11}r_{11} = r_{11}\psi_{11} = r\psi_{11}$, which gives $\psi_{11} \in \mathcal{Z}(\Omega)$. Since $\psi_{22} = \psi - \psi_{11}, \psi_{22} \in \mathcal{Z}(\Omega)$. Also, we obtain $\varphi_{11} = \psi_{11} \in \mathcal{Z}(\Omega)$, and $\varphi_{22} = (\varphi - \varphi_{11}) \in \mathcal{Z}(\Omega)$.

To obtain our primary outcome, we presuppose that the ring Ω has an idempotent f and that Ω satisfies the following requirements:

 $(L_1) \alpha \Omega f \subset \mathcal{Z}(\Omega) \text{ implies that } \alpha \in \mathcal{Z}(\Omega).$ (L_2) $\alpha f \Omega(1 - f) \subset \mathcal{Z}(\Omega) \text{ implies that } \alpha \in \mathcal{Z}(\Omega).$

And G is any multiplicative generalized CE-derivation of Ω related with a CE-derivation \mathcal{D} of Ω .

Let us now present some examples of rings that meet the conditions (L_1) and (L_2) , as well as those that do not meet these requirements.

Example 2.1. Let $\Omega = M_2(\mathbb{C})$, the ring of 2×2 matrices over the field \mathbb{C} of complex numbers. Taking $f = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in \Omega$, which is a nontrivial idempotent element. Let $\alpha = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in \Omega$. It is clear that $\alpha\beta f \in \mathcal{Z}(\Omega)$, and $\alpha f\beta(1-f) \in \mathcal{Z}(\Omega)$ for all $\beta \in \Omega$ whenever $\alpha \notin \mathcal{Z}(\Omega)$. That is, this ring neither satisfy (L_1) nor (L_2) .

Example 2.2. Let's take $M_2(\mathbb{H})$, the ring of 2×2 matrices over the quaternions \mathbb{H} . Let $f = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{H})$. If $\alpha \Omega f \subseteq \mathcal{Z}(\Omega)$, then α must be in the form $\alpha = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$ which means $\alpha \in \mathcal{Z}(\Omega)$ and if $\alpha f \Omega(1 - f) \subseteq \mathcal{Z}(\Omega)$, then α must be in the form $\alpha = \begin{pmatrix} 0 & 0 \\ 0 & a \end{pmatrix}$ which means $\alpha \in \mathcal{Z}(\Omega)$. Thus, if $\alpha \Omega f \subseteq \mathcal{Z}(\Omega)$ or $\alpha f \Omega(1 - f) \subseteq \mathcal{Z}(\Omega)$ then $\alpha \in \mathcal{Z}(\Omega)$. That is, this ring satisfies both of (L_1) and (L_2) .

In the subsequent proofs, the following lemma is helpful.

Lemma 2.2. The ideals $\Omega \psi$, $\Omega \psi_{ii}$, $\Omega \varphi$, $\Omega \varphi_{ii}$, and $\Omega \bar{\varphi}$ are contained in the center of Ω , in which $\psi = \delta(f, f) \in \mathcal{Z}(\Omega)$, $\varphi = \sigma(f, f) \in \mathcal{Z}(\Omega)$, and $\bar{\varphi} = \varphi_{22} - \varphi_{11} \in \mathcal{Z}(\Omega)$, where $i \in \{1, 2\}$.

AIMS Mathematics

Proof. Starting with Lemma 2.1, for each $r_{11} \in \Omega_{11}$, we obtain $\psi r_{11}r_{12} = r_{11}\psi r_{12} = 0 \in \mathbb{Z}(\Omega)$ and using condition (L_2) , we obtain $r_{11}\psi = \psi r_{11} \in \mathbb{Z}(\Omega)$.

Second, assume that $\mathcal{D}(r_{22}) = c_{11} + c_{12} + c_{21} + c_{22}$, and since $G(fr_{22}) = G(0) \in \mathbb{Z}(\Omega)$, using (2.2), we have $G(0) = G(f)r_{22} + f\mathcal{D}(r_{22}) + \delta(f, r_{22}) = d_{12}r_{22} + \psi_{22}r_{22} + c_{11} + c_{12} + \delta(f, r_{22})$, and this gives $d_{12}r_{22} + c_{12} = 0$ and $\psi_{22}r_{22} = \beta - c_{11}$, where $\beta = (G(0) - \delta(f, r_{22})) \in \mathbb{Z}(\Omega)$. Now, using Lemma 2.1, for any $s \in \Omega$, we get $\psi_{22}r_{22}s = r_{22}\psi_{22}s_{22} = \psi_{22}r_{22}s_{22} = (\beta - c_{11})s_{22} = \beta s_{22} = s_{22}\beta = s_{22}(\beta - c_{11}) =$ $s_{22}\psi_{22}r_{22} = s\psi_{22}r_{22} = sr_{22}\psi_{22}$, and this gives $r_{22}\psi_{22} \in \mathbb{Z}(\Omega)$. And additionally, if $s, r \in \Omega$, then $rs\psi = r(s_{11}\psi + s_{22}\psi) = rs_{11}\psi + rs_{22}\psi = s_{11}\psi r + s_{22}\psi r = (s_{11} + s_{22})\psi r = s\psi r$. The other situations can be proven similarly.

Using any fixed element d in Ω , we may construct an example of a CE-derivation, the map \mathcal{D}_d : $\Omega \to \Omega$ that fulfills $\mathcal{D}_d(r) - [r, d] \in \mathcal{K}$, where \mathcal{K} is an ideal contained in the center of Ω , we may refer to it as an inner CE-derivation. At this point, with the use of Lemma 2.2 it is apparent that the map \mathcal{D}_1 given by $\mathcal{D}_1(s) = [s, d_{12} - d_{21}] + \bar{\varphi}$ is a CE-derivation, and applying (2.1), we obtain

$$\mathcal{D}_1(f) = d_{12} + d_{21} + \bar{\varphi} = \mathcal{D}(f).$$
(2.5)

Additionally, given any two fixed elements *c* and *d* in Ω , the map $G_{(c,d)} : \Omega \to \Omega$ that satisfies $G_{(c,d)}(r) - cr - rd \in \mathcal{N}$, where \mathcal{N} is an ideal contained in the center of Ω , we may refer to it as an inner generalized CE-derivation related to the inner CE-derivation \mathcal{D}_d , which is given by $\mathcal{D}_d - [s, d] \in \mathcal{N}$.

Once more, applying Lemma 2.2, we can show that the map G_1 presented by $G_1(x) = (g_{11} + g_{21} - \psi_{11})x + x(d_{12} - d_{21}) + \psi$ is a generalized CE-derivation related to the inner CE-derivation \mathcal{D}_1 , and with (2.2), we get,

$$G_1(f) = g_{11} + g_{21} + d_{12} + \psi_{22} = G(f).$$
(2.6)

For the sake of simplicity and without loss of generality, we will now substitute the CE-derivation \mathcal{D} with the CE-derivation $\Phi = \mathcal{D} - \mathcal{D}_1$, which, by using (2.5), arrived us to $\Phi(f) = 0$ and the multiplicative generalized CE-derivation *G* by the multiplicative generalized CE-derivation $\Psi = G - G_1$ with $\Psi(f) =$ 0, by (2.6). Also, $\Phi(0) = \mathcal{D}(0) - \mathcal{D}_1(0) = \mathcal{D}(0) - \bar{\varphi} = \theta \in \mathcal{Z}(\Omega)$ and $\Psi(0) = G(0) - G_1(0) = G(0) - \psi =$ $\alpha \in \mathcal{Z}(\Omega)$. It is easy to show that both θ and α generate a central ideal in Ω .

The following lemmas are necessary for proving our primary theorem:

Lemma 2.3. For any element $a_{ij} \in \Omega_{ij}$, there exists $b_{ij} \in \Omega_{ij}$ and $\rho_{ii}, \sigma_{ii} \in \mathbb{Z}_{ii}$, $i, j \in \{1, 2\}$, $i \neq j$ such that

(1) $\Phi(a_{ii}) = b_{ii} + \rho_{jj}$, (2) $\Phi(a_{ij}) = b_{ij} + \rho_{ii} + \sigma_{jj}$.

Proof. In order to prove (1), We must prove two distinct cases:

(I) Suppose that $a_{11} \in \Omega_{11}$. Assume that $\Phi(a_{11}) = b_{11} + b_{12} + b_{21} + b_{22}$. Then $\Phi(a_{11}) = \Phi(fa_{11}) = f\Phi(a_{11}) + \rho$, $\rho \in \mathcal{Z}(\Omega)$, which gives $b_{21} = 0$, $\rho_{11} = 0$, and $b_{22} = \rho_{22} \in \mathcal{Z}_{22}$, so we get $\Phi(a_{11}) = b_{11} + b_{12} + \rho_{22}$. Similarly, $\Phi(a_{11}) = \Phi(a_{11}f) = \Phi(a_{11})f + \gamma$, $\gamma \in \mathcal{Z}(\Omega)$, which means $b_{12} = 0$, and we get $\Phi(a_{11}) = b_{11} + \delta_{22}$.

(II) Assume that $a_{22} \in \Omega_{22}$. Write $\Phi(a_{22}) = b_{11} + b_{12} + b_{21} + b_{22}$, so $\theta = \Phi(fa_{22}) = b_{11} + b_{12} + \gamma_1$, $\gamma_1 \in \mathcal{Z}(\Omega)$, so $b_{11} + b_{12} = \theta - \gamma_1 \in \mathcal{Z}(\Omega)$, which means $b_{12} = 0$ and $b_{11} \in \mathcal{Z}_{11}$. Likewise, $\theta = \Phi(a_{22}f) = b_{11} + b_{21} + \gamma_2$, $\gamma_2 \in \mathcal{Z}(\Omega)$, so $b_{11} + b_{21} = \theta - \gamma_2 \in \mathcal{Z}(\Omega)$, so that $b_{21} = 0$, and thus $\Phi(a_{22}) = b_{11} + b_{22}$, where $b_{11} \in \mathcal{Z}_{11}$.

Also, the proof of (2) has two separable cases:

AIMS Mathematics

(I) Assume that $\Phi(a_{12}) = b_{11} + b_{12} + b_{21} + b_{22}$, so that $f\Phi(a_{12}) = b_{11} + b_{12}$. Also, we have $\Phi(a_{12}) = \Phi(fa_{12}) = b_{11} + b_{12} + \sigma$, $\sigma \in \mathcal{Z}(\Omega)$, which gives $f\Phi(a_{12}) = b_{11} + b_{12} + \sigma_{11}$. Comparing the two values of $f\Phi(a_{12})$, we obtain $\sigma_{11} = 0$ and $\sigma = \sigma_{22} \in \mathcal{Z}_{22}$, and we obtain $\Phi(a_{12}) = b_{11} + b_{12} + \sigma_{22}$. Now $\theta = \Phi(a_{12}f) = \Phi(a_{12})f + \mu$, $\mu \in \mathcal{Z}(\Omega)$, hence, $\Phi(a_{12})f = (\theta - \mu) = \eta \in \mathcal{Z}(\Omega)$. This provides $\Phi(a_{12})f = b_{11} + b_{21} = \eta \in \mathcal{Z}(\Omega)$, which means $b_{21} = 0$ and $b_{11} = \eta_{11} \in \mathcal{Z}_{11}$. So we arrive at $\Phi(a_{12}) = b_{12} + \eta_{11} + \sigma_{22}$.

(II) Assume that $\Phi(a_{21}) = b_{11} + b_{12} + b_{21} + b_{22}$, so that $\Phi(a_{21})f = b_{11} + b_{21}$. Also, we have $\Phi(a_{21}) = \Phi(a_{21}f) = b_{11} + b_{21} + \kappa, \ \kappa \in \mathcal{Z}(\Omega)$, which gives $\Phi(a_{21})f = b_{11} + b_{21} + \kappa_{11}$. Comparing the two expressions of $\Phi(a_{21})f$, we get $\kappa_{11} = 0$, $\kappa = \kappa_{22} \in \mathcal{Z}_{22}$, and we obtain $\Phi(a_{21}) = b_{11} + b_{21} + \kappa_{22}$. Now $\theta = \Phi(fa_{21}) = f\Phi(a_{21}) + \nu$, $\nu \in \mathcal{Z}(\Omega)$, hence $f\Phi(a_{21}) = (\theta - \nu) = \zeta \in \mathcal{Z}(\Omega)$, and this gives $f\Phi(a_{21}) = \zeta \in \mathcal{Z}(\Omega)$, which means $b_{11} = \zeta_{11} \in \mathcal{Z}_{11}$, and we have $\Phi(a_{21}) = b_{21} + \zeta_{11} + \kappa_{22}$.

Lemma 2.4. For any element $a_{11} \in \Omega_{11}$, we have $\Psi(a_{11}) = b_{11} + \varphi_{22}$ for some $b_{11} \in \Omega_{11}$ and $\varphi_{22} \in \mathbb{Z}_{22}$.

Proof. Since $\Psi(rs) = \Psi(r)s + r\Phi(s) + \gamma$, for each $r, s \in \Omega$ and $\gamma \in Z(\Omega)$, it consequently concludes that, for each $a_{11} \in \Omega_{11}$ we have $\Psi(a_{11}) = \Psi(fa_{11}) = f\Phi(a_{11}) + \gamma_1$, $\gamma_1 \in Z(\Omega)$ because $\Psi(f) = 0$, and by Lemma 2.3 $\Phi(\Omega_{11}) \subset \Omega_{11} + Z(\Omega)$ and $Z(\Omega) \subset \Omega_{11} + \Omega_{22}$, so we have that $\Psi \mid_{\Omega_{11}} \subset \Omega_{11} + Z(\Omega)$. Now assume that $\Psi(a_{11}) = b_{11} + \varphi$, $\varphi \in Z(\Omega)$. Then $\Psi(a_{11}) = \Psi(a_{11}f) = \Psi(a_{11})f + \gamma_2$, $\gamma_2 \in Z(\Omega)$, which gives $\Psi(a_{11}) - \Psi(a_{11})f = b_{11} + \varphi - b_{11} - \varphi_{11} \in Z(\Omega)$. We conclude that $\varphi_{22} \in Z_{22}$ and $\Psi(a_{11}) = b_{11} + \varphi = b_{11} + \varphi_{11} + \varphi_{22} = c_{11} + \varphi_{22}$ with $c_{11} = b_{11} + \varphi_{11} \in \Omega_{11}$ and $\varphi_{22} \in Z_{22}$, as required. \Box

Lemma 2.5. For any $a_{12} \in \Omega_{12}$, $\Psi(a_{12}) = b_{12} + \vartheta_{11} + \vartheta_{22}$ for some $b_{12} \in \Omega_{12}$, $\vartheta_{11} \in \mathbb{Z}_{11}$ and $\vartheta_{22} \in \mathbb{Z}_{22}$.

Proof. If $a_{12} \in \Omega_{12}$, then $\Psi(a_{12}) = \Psi(fa_{12}) = f\Phi(a_{12}) + \gamma$, $\gamma \in \mathcal{Z}(\Omega)$ so by Lemma 2.3, $\Psi(a_{12}) = b_{12} + \delta_{11} + \gamma = b_{12} + \vartheta$, for some $b_{12} \in \Omega_{12}$ and δ_{11} , $\vartheta \in \mathcal{Z}(\Omega)$. Also, $\Psi(0) = \Psi(a_{12}f) = \Psi(a_{12})f + a_{12}\Phi(f) + \gamma_1$, $\gamma_1 \in \mathcal{Z}(\Omega)$ so $\Psi(a_{12})f \in \mathcal{Z}(\Omega)$ and this gives $\vartheta_{11} \in \mathcal{Z}_{11}$ and since $\vartheta \in \mathcal{Z}(\Omega)$ we obtain $\vartheta_{22} \in \mathcal{Z}_{22}$. So finally, we arrived at $\Psi(a_{12}) = b_{12} + \vartheta_{11} + \vartheta_{22}$.

Lemma 2.6. For any $a_{21} \in \Omega_{21}$, we have $\Psi(a_{21}) = b_{11} + b_{21} + \theta_{22}$, for some $b_{11} \in \Omega_{11}$, $b_{21} \in \Omega_{21}$ and $\theta_{22} \in \mathbb{Z}_{22}$.

Proof. Assume that $\Psi(a_{21}) = b_{11} + b_{12} + b_{21} + b_{22}$, for $a_{21} \in \Omega_{21}$. Then $\Psi(a_{21}) = \Psi(a_{21}f) = \Psi(a_{21})f + \theta$, $\theta \in \mathcal{Z}(\Omega)$, which gives $b_{12} = 0$, $\theta_{11} = 0$, and $b_{22} = \theta_{22} = \theta \in \mathcal{Z}(\Omega)$. So we have $\Psi(a_{21}) = \Psi(a_{21})f + \theta_{22} = b_{11} + b_{21} + \theta_{22}$, $\theta_{22} \in \mathcal{Z}(\Omega)$.

Lemma 2.7. For any element $t \in (\Omega_{11} + \Omega_{21})$, $\Psi(t) = b_{11} + b_{21} + \delta_{22}$, for some $b_{11} \in \Omega_{11}$, $b_{21} \in \Omega_{21}$ and $\delta_{22} \in \mathbb{Z}_{22}$.

Proof. Assuming that $t \in (\Omega_{11} + \Omega_{21})$ and $\Psi(t) = b_{11} + b_{12} + b_{21} + b_{22}$. Then $\Psi(t) = \Psi(a_{11} + a_{21}) = \Psi(a_{11} + a_{21})f = \Psi(a_{11} + a_{21})f + \delta$, $\delta \in \mathbb{Z}(\Omega)$. This gives $b_{12} = 0$, and $b_{22} = \delta = \delta_{22} \in \mathbb{Z}_{22}$ and we arrive at $\Psi(t) = b_{11} + b_{21} + \delta_{22}$.

Lemma 2.8. Ψ *is CE-additive on* Ω_{11} .

Proof. If $a_{11}, b_{11} \in \Omega_{11}$, then $\Psi(a_{11} + b_{11}) = \Psi(f(a_{11} + b_{11})) = f\Phi(a_{11} + b_{11}) + \sigma_1 = \Phi[f(a_{11} + b_{11})] - \Phi(f)(a_{11} + b_{11}) + \sigma_2 = \Phi(a_{11} + b_{11}) + \sigma_2 = \Phi(a_{11}) + \Phi(b_{11}) + \sigma_3 = f\Phi(a_{11}) + f\Phi(b_{11}) + \sigma_4 = \Psi(fa_{11}) + \Psi(fb_{11}) + \sigma_5 = \Psi(a_{11}) + \Psi(b_{11}) + \sigma_5$, where $\sigma_1, \sigma_2, \sigma_3, \sigma_4$ and $\sigma_5 \in \mathcal{Z}(\Omega)$.

Lemma 2.9. If $a_{11} \in \Omega_{11}$ and $a_{21} \in \Omega_{21}$, then we obtain $\Psi(a_{11} + a_{21}) - \Psi(a_{11}) - \Psi(a_{21}) \in \mathbb{Z}(\Omega)$.

AIMS Mathematics

Volume 9, Issue 11, 33254–33262.

Proof. For any $w_{1n} \in \Omega_{1n}$ and $h_{12} \in \Omega_{12}$, n = 1, 2 we own $\{\Psi(a_{11} + a_{21}) - \Psi(a_{11}) - \Psi(a_{21})\}h_{12}w_{1n} = 0$, which means

$$\{\Psi(a_{11} + a_{21}) - \Psi(a_{11}) - \Psi(a_{21})\}h_{12}\Omega_{1n} = \{0\}.$$
(2.7)

Now, for any $w_{2n} \in \Omega_{2n}$ and $h_{12} \in \Omega_{12}$, n = 1, 2, we have got

$$\begin{aligned} \Psi(a_{11} + a_{21})h_{12}w_{2n} &= \Psi((a_{11} + a_{21})h_{12}w_{2n}) - (a_{11} + a_{21})\Phi(h_{12}w_{2n}) + \eta_1 \\ &= \Psi[(a_{11}h_{12} + a_{21})(w_{2n} + h_{12}w_{2n})] - (a_{11} + a_{21})\Phi(h_{12}w_{2n}) + \eta_1 \\ &= \Psi(a_{11}h_{12} + a_{21})(w_{2n} + h_{12}w_{2n}) \\ &+ (a_{11}h_{12} + a_{21})\Phi(w_{2n} + h_{12}w_{2n}) - (a_{11} + a_{21})\Phi(h_{12}w_{2n}) + \eta_2 \\ &= \Gamma_2 + \Gamma_1, \quad \eta_1, \quad \eta_2 \in \mathcal{Z}(\Omega), \end{aligned}$$
(2.8)

where we assume that $\Gamma_1 = (a_{11}h_{12} + a_{21})\Phi(w_{2n} + h_{12}w_{2n}) - (a_{11} + a_{21})\Phi(h_{12}w_{2n}) + \eta_2$ and $\Gamma_2 = \Psi(a_{11}h_{12} + a_{21})(w_{2n} + h_{12}w_{2n})$.

Now, let us calculate the terms Γ_1 and Γ_2 :

$$\begin{aligned}
 \Gamma_1 &= (a_{11}h_{12} + a_{21})\Phi(w_{2n} + h_{12}w_{2n}) - (a_{11} + a_{21})\Phi(h_{12}w_{2n}) + \eta_2 \\
 &= a_{11}h_{12}\Phi(w_{2n} + h_{12}w_{2n}) + a_{21}\Phi(w_{2n} + h_{12}w_{2n}) - (a_{11} + a_{21})\Phi(h_{12}w_{2n}) + \eta_2 \\
 &= \Psi(a_{11}h_{12}(w_{2n} + h_{12}w_{2n})) - \Psi(a_{11}h_{12})(w_{2n} + h_{12}w_{2n}) + \Psi(a_{21}(w_{2n} + h_{12}w_{2n}))) \\
 &-\Psi(a_{21})(w_{2n} + h_{12}w_{2n}) - a_{11}\Phi(h_{12}w_{2n}) - a_{21}\Phi(h_{12}w_{2n}) + \eta_3 \\
 &= \{\Psi(a_{11}h_{12}w_{2n}) - \Psi(a_{11}h_{12})w_{2n} - a_{11}h_{12}\Phi(w_{2n})\} + a_{11}h_{12}\Phi(w_{2n}) \\
 &+ \{\Psi(a_{21}h_{12}w_{2n}) - \Psi(a_{21})h_{12}w_{2n} - a_{21}\Phi(h_{12}w_{2n})\} - a_{11}\Phi(h_{12}w_{2n}) \\
 &-\Psi(a_{11}h_{12})h_{12}w_{2n} - \Psi(a_{21})w_{2n} + \eta_3 \\
 &= a_{11}h_{12}\Phi(w_{2n}) - a_{11}\Phi(h_{12}w_{2n}) - \Psi(a_{11}h_{12})h_{12}w_{2n} - \Psi(a_{21})w_{2n} + \eta_4 \\
 &= -a_{11}\Phi(h_{12})w_{2n} - \Psi(a_{11}h_{12})h_{12}w_{2n} - \Psi(a_{21}w_{2n}) + a_{21}\Phi(w_{2n}) + \eta_5 \\
 &= -a_{11}\Phi(h_{12})w_{2n} + a_{21}\Phi(w_{2n}) + \eta_6, \text{ by Lemma 2.5,}$$
 (2.9)

where η_3, η_4, η_5 and $\eta_6 \in \mathcal{Z}(\Omega)$, so that we obtain

$$\Gamma_1 = -a_{11}\Phi(h_{12})w_{2n} + a_{21}\Phi(w_{2n}) + \eta_6.$$
(2.10)

Also, for Γ_2 we have:

$$\begin{split} \Gamma_{2} &= \Psi(a_{11}h_{12} + a_{21})(w_{2n} + h_{12}w_{2n}) = \Psi(a_{11}h_{12} + a_{21})w_{2n} + \Psi(a_{11}h_{12} + a_{21})h_{12}w_{2n} \\ &= \Psi((a_{11}h_{12} + a_{21})w_{2n}) - (a_{11}h_{12} + a_{21})\Phi(w_{2n}) + \Psi((a_{11}h_{12} + a_{21})h_{12}w_{2n}) \\ &- (a_{11}h_{12} + a_{21})\Phi(h_{12}w_{2n}) + \eta_{7} \\ &= \Psi(a_{11}h_{12}w_{2n}) + \Psi(a_{21}h_{12}w_{2n}) - a_{11}h_{12}\Phi(w_{2n}) - a_{21}\Phi(w_{2n}) - a_{11}h_{12}\Phi(h_{12}w_{2n}) \\ &- a_{21}\Phi(h_{12}w_{2n}) + \eta_{7} \\ &= \Psi(a_{11}h_{12})w_{2n} + \Psi(a_{21})h_{12}w_{2n} - a_{11}h_{12}\Phi(h_{12}w_{2n}) - a_{21}\Phi(w_{2n}) + \eta_{8} \\ &= \Psi(a_{11})h_{12}w_{2n} + a_{11}\Phi(h_{12})w_{2n} + \Psi(a_{21})h_{12}w_{2n} - a_{21}\Phi(w_{2n}) + \eta_{9}, \\ &\text{by Lemma 2.3, where } \eta_{7}, \eta_{8}, \text{ and } \eta_{9} \in \mathcal{Z}(\Omega). \end{split}$$

AIMS Mathematics

Volume 9, Issue 11, 33254-33262.

So, we obtain

$$\Gamma_2 = \Psi(a_{11})h_{12}w_{2n} + a_{11}\Phi(h_{12})w_{2n} + \Psi(a_{21})h_{12}w_{2n} - a_{21}\Phi(w_{2n}) + \eta_9.$$
(2.12)

Now, coming back to (2.10) and using (2.12) to collect the values of Γ_1 and Γ_2 and substituting in (2.8), we get $\Psi(a_{11}+a_{21})h_{12}w_{2n} = \Psi(a_{11})h_{12}w_{2n} + \Psi(a_{21})h_{12}w_{2n} + \eta_{10}$, $\eta_{10} \in \mathbb{Z}(\Omega)$ which gives $\{\Psi(a_{11}+a_{21}) - \Psi(a_{11}) - \Psi(a_{21})\}h_{12}w_{2n} \in \mathbb{Z}(\Omega)$ and so we obtain

$$\{\Psi(a_{11} + a_{21}) - \Psi(a_{11}) - \Psi(a_{21})\}h_{12}\Omega_{2n} \subset \mathcal{Z}(\Omega).$$
(2.13)

From (2.7) and (2.13) we obtain $\{\Psi(a_{11} + a_{21}) - \Psi(a_{11}) - \Psi(a_{21})\}h_{12}\Omega \subset \mathcal{Z}(\Omega)$. Using condition (L_1) we have $\{\Psi(a_{11} + a_{21}) - \Psi(a_{11}) - \Psi(a_{21})\}\Omega_{12} \subset \mathcal{Z}(\Omega)$. Using condition (L_2) , we obtain $\Psi(a_{11} + a_{21}) - \Psi(a_{11}) - \Psi(a_{21}) \in \mathcal{Z}(\Omega)$.

Lemma 2.10. Ψ *is CE-additive on* Ω_{21} .

Proof. For any $a_{21}, b_{21} \in \Omega_{21}, y_{12} \in \Omega_{12}$ and $y_{2n} \in \Omega_{2n}$ we have

$$\begin{split} & \Psi(a_{21} + b_{21})y_{12}y_{2n} = \Psi((a_{21} + b_{21})y_{12}y_{2n}) - (a_{21} + b_{21})\Phi(y_{12}y_{2n}) + \pi_{1} \\ &= \Psi(a_{21}y_{12}y_{2n} + b_{21}y_{12}y_{2n}) - (a_{21} + b_{21})\Phi(y_{12}y_{2n}) + \pi_{1} \\ &= \Psi((a_{21}y_{12} + b_{21})(y_{2n} + y_{12}y_{2n})) - (a_{21} + b_{21})\Phi(y_{12}y_{2n}) + \pi_{1} \\ &= \Psi(a_{21}y_{12} + b_{21})(y_{2n} + y_{12}y_{2n}) + (a_{21}y_{12} + b_{21})\Phi(y_{2n} + y_{12}y_{2n}) \\ &- (a_{21} + b_{21})\Phi(y_{12}y_{2n}) + \pi_{2} \\ &= \Psi(a_{21}y_{12} + b_{21})y_{2n} + \Psi(a_{21}y_{12} + b_{21})y_{12}y_{2n} + a_{21}y_{12}\Phi(y_{2n} + y_{12}y_{2n}) \\ &+ b_{21}\Phi(y_{2n} + y_{12}y_{2n}) - a_{21}\Phi(y_{12}y_{2n}) - b_{21}\Phi(y_{12}y_{2n}) + \pi_{2} \\ &= \Psi(a_{21}y_{12}y_{2n}) - (a_{21}y_{12} + b_{21})\Phi(y_{2n}) + \Psi(b_{21}y_{12}y_{2n}) - (a_{21}y_{12} + b_{21})\Phi(y_{12}y_{2n}) \\ &+ \Phi(a_{21}y_{12}y_{2n}) - (a_{21}y_{12} + b_{21})\Phi(y_{2n}) + \Psi(b_{21}y_{12}y_{2n}) - (a_{21}y_{12} + b_{21})\Phi(y_{12}y_{2n}) \\ &+ \Phi(a_{21}y_{12}y_{2n}) - \Phi(b_{21})(y_{2n} + y_{12}y_{2n}) \\ &+ \Phi(b_{21}y_{12}y_{2n}) - \Phi(b_{21})(y_{2n} + y_{12}y_{2n}) - a_{21}\Phi(y_{12}y_{2n}) - b_{21}\Phi(y_{12}y_{2n}) + \pi_{3} \\ &= \{\Psi(a_{21}y_{12}y_{2n}) - a_{21}\Phi(y_{12}y_{2n})\} + \{\Psi(b_{21}y_{12}y_{2n}) - b_{21}\Phi(y_{12}y_{2n})\} \\ &- \{a_{21}y_{12}\Phi(y_{12}y_{2n}) + \Phi(a_{21}y_{12})y_{12}y_{2n} + \{\Phi(a_{21}y_{12}y_{2n}) - \Phi(a_{21}y_{12})y_{2n} - a_{21}y_{12}\Phi(y_{12}y_{2n})\} + \{\Phi(b_{21}y_{12}y_{2n}) - b_{21}\Phi(y_{12}y_{2n})\} \\ &- \{b_{21}\Phi(y_{2n})\} + \{\Phi(b_{21}y_{12}y_{2n}) - \Phi(b_{21})y_{12}y_{2n} - b_{21}\Phi(y_{12}y_{2n})\} \\ &- \{b_{21}\Phi(y_{2n}) + \Phi(b_{21})y_{2n}\} + \pi_{3} \\ &= \Psi(a_{21})y_{12}y_{2n} + \Psi(b_{21})y_{12}y_{2n} + \pi_{4}, \end{split}$$

where $\pi_i \in \mathcal{Z}(\Omega)$, $i \in \{1, 2, 3, 4\}$. So we have

$$[\Psi(a_{21} + b_{21}) - \Psi(a_{21}) - \Psi(b_{21})]\Omega_{12}\Omega_{2n} \subset \mathcal{Z}(\Omega).$$
(2.15)

Also, it is clear that

$$[\Psi(a_{21} + b_{21}) - \Psi(a_{21}) - \Psi(b_{21})]\Omega_{12}\Omega_{1n} \subset \mathcal{Z}(\Omega),$$
(2.16)

where n = 1, 2. From (2.15) and (2.16) we obtain $[\Psi(a_{21} + b_{21}) - \Psi(a_{21}) - \Psi(b_{21})]\Omega_{12}\Omega \subset \mathcal{Z}(\Omega)$. By condition (L_1) we have $[\Psi(a_{21} + b_{21}) - \Psi(a_{21}) - \Psi(b_{21})]\Omega_{12} \subset \mathcal{Z}(\Omega)$. Using condition (L_2) , we obtain $\Psi(a_{21} + b_{21}) - \Psi(a_{21}) - \Psi(b_{21}) \in \mathcal{Z}(\Omega)$.

AIMS Mathematics

Volume 9, Issue 11, 33254–33262.

Proof. If $a_{11}, b_{11} \in \Omega_{11}$ and $a_{21}, b_{21} \in \Omega_{21}$, then Lemmas 2.8, 2.9 and 2.10 give

$$\Psi((a_{11} + a_{21}) + (b_{11} + b_{21})) = \Psi((a_{11} + b_{11}) + (a_{21} + b_{21}))$$

= $\Psi(a_{11} + b_{11}) + \Psi(a_{21} + b_{21}) + \phi_1$
= $\Psi(a_{11}) + \Psi(b_{11}) + \Psi(a_{21}) + \Psi(b_{21}) + \phi_2$
= $(\Psi(a_{11}) + \Psi(a_{21})) + (\Psi(b_{11}) + \Psi(b_{21})) + \phi_2$
= $\Psi(a_{11} + a_{21}) + \Psi(b_{11} + b_{21}) + \phi_3$,

where $\phi_i \in \mathcal{Z}(\Omega)$, $i \in \{1, 2, 3\}$. Thus, Ψ is CE-additive on $\Omega_{11} + \Omega_{21}$, as required.

3. Results

We can now prove our primary result.

Theorem 3.1. Suppose that Ω is a ring with a nontrivial idempotent f that satisfies requirements (L_1) and (L_2) . If Ψ is any multiplicative generalized CE-derivation of Ω , then Ψ is CE-additive.

Proof. Suppose that Ψ is any multiplicative generalized CE-derivation of Ω , i.e., $\Psi(ab) = \Psi(a)b + a\Phi(b) + v$, for every $a, b \in \Omega$ and $v \in Z(\Omega)$ and some CE-derivation Φ of Ω . Consider $\Psi(a) + \Psi(b)$, where a and $b \in \Omega$. Take an element h in $\Omega f = \Omega_{11} + \Omega_{21}$. Thus, ah and $bh \in \Omega f$. Using Lemma 2.11, we obtain $(\Psi(a) + \Psi(b))h = \Psi(ah) + \Psi(bh) - (a + b)\Phi(h) + v_1 = \Psi(ah + bh) - (a + b)\Phi(h) + v_2 = \Psi((a + b)h) - (a + b)\Phi(h) + v_2 = \Psi((a + b)h) - (a + b)\Phi(h) + v_2 = \Psi(a + b)h + (a + b)\Phi(h) - (a + b)\Phi(h) + v_3 = \Psi(a + b)h + v_3$, where $v_i \in Z(\Omega)$, $i \in \{1, 2, 3\}$. Thus, $(\Psi(a) + \Psi(b))h - \Psi(a + b)h \in Z(\Omega)$. Since h is an arbitrary element in Ωf , we obtain $(\Psi(a) + \Psi(b) - \Psi(a + b))\Omega f \in Z(\Omega)$. Under condition (L_1) , we obtain $\Psi(a + b) - \Psi(a) - \Psi(b) \in Z(\Omega)$. It demonstrates that the multiplicative generalized CE-derivations Ψ and G are a CE-additive.

Now, we are in a position to raise the following open problem. "Under what conditions does an MCE-derivation (or MGCE-derivation) become a centrally extended additive over an alternative ring?"

4. Conclusions

We showed that if G is an appropriate multiplicative generalized CE-derivation of a ring Ω , then G is CE-additive.

Author contributions

M. S. Tammam: conceptualization, methodology, validation, formal analysis, investigation, data curation, writing–original draft preparation, writing–review and editing, supervision; M. Almulhem: validation, formal analysis, writing–review and editing, supervision. All authors have read and agreed to the published version of the manuscript.

Conflict of interest

The authors declare no conflicts of interest.

References

- 1. H. E. Bell, M. N. Daif, On centrally-extended maps on rings, *Beitr. Algebra Geom.*, **57** (2016), 129–136. https://doi.org/10.1007/s13366-015-0244-8
- 2. S. F. El-Deken, M. M. El-Soufi, On centrally extended reverse and generalized reverse derivations, *Indian J. Pure Appl. Math.*, **51** (2020), 1165–1180. https://doi.org/10.1007/s13226-020-0456-y
- 3. S. F. El-Deken, H. Nabiel, Centrally-extended generalized *-derivations on rings with involution, *Beitr. Algebra Geom.*, **60** (2019), 217–224. https://doi.org/10.1007/s13366-018-0415-5
- 4. M. M. Muthana, Z. S. Alkhamisi, On centrally-extended multiplicative (generalized)- (α,β) -derivations in semiprime rings, *Hacet J. Math. Stat.*, **49** (2020), 578–585.
- M. S. Tammam El-Sayiad, A. Ageeb, A. M. Khaled, What is the action of a multiplicative centrally-extended derivation on a ring?, *Georgian Math. J.*, 29 (2022), 607–613. https://doi.org/10.1515/gmj-2022-2164
- 6. C. E. Rickart, One-to-one mappings of rings and lattices, *Bull. Amer. Math. Soc.*, **54** (1948), 758–764.
- 7. W. S. Martindale, When are multiplicative mappings additive?, *Proc. Amer. Math. Soc.*, **21** (1969), 695–698. https://doi.org/10.1090/S0002-9939-1969-0240129-7
- 8. M. N. Daif, When is a multiplicative derivation additive?, *Int. J. Math. Math. Sci.*, **14** (1991), 275743. https://doi.org/10.1155/S0161171291000844
- 9. Y. Wang, The additivity of multiplicative maps on rings, *Commun. Algebra*, **37** (2009), 2351–2356. https://doi.org/10.1080/00927870802623369
- 10. J. C. M. Ferreira, B. L. M. Ferreira, Additivity of n-multiplicative maps on alternating rings, *Commun. Algebra*, 44 (2016), 1557–1568. https://doi.org/10.1080/00927872.2015.1027364
- 11. B. L. M. Ferreira, H. Guzzo, R. N. Ferreira, An approach between the multiplicative and additive structure of a Jordan ring, *Bull. Iran. Math. Soc.*, 47 (2021), 961–975. https://doi.org/10.1007/s41980-020-00423-4
- 12. M. N. Daif, M. S. Tammam El-Sayiad, Multiplicative generalized derivations which are additive, *East-West J. Math.*, **9** (2007), 1–10.
- 13. M. S. Tammam El-Sayiad, M. N. Daif, V. De Filippis, Multiplicativity of left centralizers forcing additivity, *Bol. Soc. Paran. Mat.*, **32** (2014), 61–69. https://doi.org/10.5269/bspm.v32i1.17274
- 14. N. Jacobson, Structure of rings, Colloquium Publications, 1964.

© 2024 the Authors, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics