

AIMS Mathematics, 9(11): 33254–33262. DOI: 10.3934/[math.20241586](https://dx.doi.org/ 10.3934/math.20241586) Received: 12 August 2024 Revised: 30 October 2024 Accepted: 14 November 2024 Published: 21 November 2024

https://[www.aimspress.com](https://www.aimspress.com/journal/Math)/journal/Math

Research article

On centrally extended mappings that are centrally extended additive

M. S. Tammam El-Sayiad¹ and Munerah Almulhem^{2,*}

- ¹ Department of Mathematics and Computer Science, Faculty of Science, Beni-Suef University, Beni-Suef City 62111, Egypt
- ² Department of Mathematics, College of Science and Humanities, Imam Abdulrahman Bin Faisal University, Jubail 35811, Saudi Arabia
- * Correspondence: Email: malmulhim@iau.edu.sa.

Abstract: This paper aims to establish the following: Let Ω be a ring that satisfies some conditions and has an idempotent element $f \neq 0, 1$. We intend to show that if *G* is any suitable multiplicative generalized CE-derivation of $Ω$, then *G* is a centrally extended additive.

Keywords: ring; idempotent element; peirce decomposition; derivations; generalized derivation; centrally extended derivations

Mathematics Subject Classification: 16N60, 16U80, 16W25

1. Introduction

The investigation of centrally extended mappings in rings under certain conditions plays an increasingly important role in ring theory. The work of Bell and Daif [\[1\]](#page-8-0) introduced the notion of centrally extended derivation as follows: Let Ω be a ring with center $\mathcal{Z}(\Omega)$. A map $\mathcal D$ of Ω is said to be a centrally extended derivation (CE-derivation) if, for all $v, u \in \Omega$, $\mathcal{D}(v+u) - \mathcal{D}(v) - \mathcal{D}(u) \in \mathcal{Z}(\Omega)$, and $\mathcal{D}(vu) - \mathcal{D}(v)u - v\mathcal{D}(u) \in \mathcal{Z}(\Omega)$. Moreover, they discussed the existence of such a map, which is not a derivation, as well as providing some findings regarding commutativity. Thenceforth, considerable findings about various types of maps have been discovered; for example, see [\[2](#page-8-1)[–5\]](#page-8-2).

The study of when multiplicative maps will be additive goes back to 1948, when Rickart [\[6\]](#page-8-3) proved that any bijective and multiplicative mapping over a Boolean ring onto any arbitrary ring is additive. In 1969, the work of Martindale [\[7\]](#page-8-4) was significant to generalize Rickart's main theorem when he demonstrated that every multiplicative isomorphism on a ring with a non-trivial idempotent is additive.

Inspired by Martindale's pioneering work, Daif [\[8\]](#page-8-5) proved that a multiplicative derivation is additive under the existence of certain conditions on a ring.

Later on, the additivity of *n*−multiplicative maps on associative rings satisfying Martindale's

conditions was proved by Wang [\[9\]](#page-8-6). In 2016 [\[10\]](#page-8-7), Ferreira and Ferreira undertook a detailed study of a similar problem but within the framework of alternative rings. Inspired by these previous findings, [\[11\]](#page-8-8) brilliantly proved the additivity of *n*−multiplicative isomorphisms and *n*−multiplicative derivations over Jordan rings. A great deal of work has been done in [\[12\]](#page-8-9) and [\[13\]](#page-8-10) concerning multiplicative left centralizer and multiplicative generalized derivations. Motivated by the role that centrally extended derivations play in the field of ring theory, we herein raised a question: When are multiplicative generalized CE-derivations additive?

The idea of a multiplicative generalized CE-derivation (MGCE-derivation) of a ring Ω is introduced in this note. This concept is defined as a mapping *G* of Ω into Ω so that $G(vu) - G(v)u - v\mathcal{D}(u) \in \mathcal{Z}(\Omega)$, $\forall v, u \in \Omega$, where $\mathcal{D}: \Omega \to \Omega$ is a CE-derivation. In other words, the maps *G* and \mathcal{D} can be expressed as $G(vu) = G(v)u + vD(u) + \delta(v, u)$ and $D(vu) = D(v)u + vD(u) + \sigma(v, u)$, where $\delta(v, u)$ and $\sigma(v, u)$ are elements in $\mathcal{Z}(\Omega)$ and related with the mappings *G* and *D*, respectively. For any ring Ω , a map $G: \Omega \to \Omega$ is called centrally extended additive (CE-additive) so that $G(v+u) - G(v) - G(u) \in \mathcal{Z}(\Omega)$, $\forall v, u \in \Omega$.

In this paper, we aim to find the answer to the following question: "Under what conditions does a multiplicative generalized CE-derivation become a centrally extended additive?" We will give a response to this query under appropriate circumstances.

2. Preliminaries

Throughout this paper, let Ω be a ring that does not necessarily have a unity, and let $f \in \Omega$ be an idempotent element such that $f \neq 1, f \neq 0$. Formally, we will set $f_1 = f$ and $f_2 = 1 - f$. The Peirce decomposition of Ω concerning the idempotent *f* can be expressed as $\Omega = f_1 \Omega f_1 \oplus f_1 \Omega f_2 \oplus f_2 \Omega f_1 \oplus f_1 \Omega f_2$ *f*₂ Ω *f*₂. By letting $\Omega_{ij} = f_i \Omega f_j$: *i*, *j* = 1, 2, we could write $\Omega = \Omega_{11} \oplus \Omega_{12} \oplus \Omega_{21} \oplus \Omega_{22}$ (For further information, see Jacobson 1964 [14] Page 49). An element within the subring Ω , will be in information, see Jacobson 1964 [\[14\]](#page-8-11), Page 49). An element within the subring Ω_{ij} will be indicated by *r*_{*i*}. If $\lambda = \lambda_{11} + \lambda_{12} + \lambda_{21} + \lambda_{22} \in \mathcal{Z}(\Omega)$, where $f\lambda = \lambda f$, then $\lambda_{12} = \lambda_{21} = 0$. Hence, we can conclude that $\mathcal{Z}(\Omega) \subseteq \Omega_{11} \oplus \Omega_{22}$. Additionally, we denote by \mathcal{Z}_{ii} the subring $\Omega_{ii} \cap \mathcal{Z}(\Omega)$.

Applying the definition of D, we observe that $\mathcal{D}(0) = \sigma(0,0) \in \mathcal{Z}(\Omega)$. But $\mathcal{D}(0)\Omega$ is an ideal contained in the center of Ω . Since $f\mathcal{D}(0) \in \mathcal{Z}(\Omega)$, and $\sigma(0,0) = \sigma_{11}(0,0) + \sigma_{22}(0,0)$, we have $fD(0) = \sigma_{11}(0,0) \in Z_{11}$, and this provides $\sigma_{22}(0,0) \in Z_{22}$. Similarly, $G(0)\Omega$ is an ideal contained in the center of Ω , and $\delta_{11}(0,0) \in \mathcal{Z}_{11}$, and $\delta_{22}(0,0) \in \mathcal{Z}_{22}$.

Moreover, $\mathcal{D}(f) = \mathcal{D}(f^2) = \mathcal{D}(f)f + f\mathcal{D}(f) + \varphi$; $\varphi = \sigma(f, f) \in \mathcal{Z}(\Omega)$. If we express $\mathcal{D}(f) =$
 ψ due to due to and apply the two ways of $\mathcal{D}(f)$, then we obtain due to and due to the $d_{11} + d_{12} + d_{21} + d_{22}$ and apply the two ways of $\mathcal{D}(f)$, then we obtain $d_{22} = \varphi_{22}$ and $d_{11} = -\varphi_{11}$. Consequently, we have

$$
\mathcal{D}(f) = d_{12} + d_{21} - \varphi_{11} + \varphi_{22}.
$$
 (2.1)

In a similar way, if $G : \Omega \to \Omega$ is a multiplicative generalized CE-derivation related with a CEderivation D, then $G(f) = G(f^2) = G(f)f + fD(f) + \psi$, where $\psi = \delta(f, f) \in \mathcal{Z}(\Omega)$ and it is possible
to write $G(f) = g_{xx} + g_{yy} + g_{zz}$. By making use of the values of $G(f)$ and $D(f)$ we conclude that to write $G(f) = g_{11} + g_{12} + g_{21} + g_{22}$. By making use of the values of $G(f)$ and $\mathcal{D}(f)$, we conclude that $\psi_{11} = \varphi_{11}, g_{22} = \psi_{22}$ and $g_{12} = d_{12}$, so

$$
G(f) = g_{11} + d_{12} + g_{21} + \psi_{22}.
$$
 (2.2)

To finish our task, we will need the following two facts:

Lemma 2.1. $\psi_{ii} \in \mathcal{Z}_{ii}$ and $\varphi_{ii} \in \mathcal{Z}_{ii}$, for $i \in \{1, 2\}$.

Proof. For all $r \in \Omega$, by figuring out the two sides of $G(fr) = G(f(fr))$, we obtain

$$
G(f)r + \delta(f,r) = G(f)fr + f\mathcal{D}(f)r + f\sigma(f,r) + \delta(f,fr).
$$
\n(2.3)

Now using [\(2.1\)](#page-1-0) and [\(2.2\)](#page-1-1) in [\(2.3\)](#page-2-0), we obtain $\psi r = f\sigma(f, r) + \delta(f, fr) - \delta(f, r)$, where $\varphi_{11} = \psi_{11}$ and this means

$$
\psi r \in \Omega_{11} \oplus \Omega_{22}.\tag{2.4}
$$

Now, if we rewrite *r* as $r = r_{11} + r_{12} + r_{21} + r_{22}$ and using that $\psi \in \mathcal{Z}(\Omega)$, we obtain $\psi_{11}r_{11}$ = $r_{11}\psi_{11}$ and $\psi_{22}r_{22} = r_{22}\psi_{22}$, which implies $\psi_{11} \in \mathcal{Z}(\Omega_{11})$ and $\psi_{22} \in \mathcal{Z}(\Omega_{22})$. And again [\(2.4\)](#page-2-1) gives $\psi_{11}r_{12} + \psi_{22}r_{21} = 0$ and $r_{12}\psi_{22} + r_{21}\psi_{11} = 0$, which gives $\psi_{11}r_{12} = \psi_{22}r_{21} = 0$ and $r_{12}\psi_{22} = r_{21}\psi_{11} = 0$, this means that ψ is a left and right annihilator of the two subrings Ω_{12} and Ω_{21} . Now for any $r \in \Omega$, $\psi_{11}r = \psi_{11}r_{11} = r_{11}\psi_{11} = r\psi_{11}$, which gives $\psi_{11} \in \mathcal{Z}(\Omega)$. Since $\psi_{22} = \psi - \psi_{11}$, $\psi_{22} \in \mathcal{Z}(\Omega)$. Also, we obtain $\omega_{11} = \psi_{11} \in \mathcal{Z}(\Omega)$, and $\omega_{22} = (\omega - \omega_{11}) \in \mathcal{Z}(\Omega)$. obtain $\varphi_{11} = \psi_{11} \in \mathcal{Z}(\Omega)$, and $\varphi_{22} = (\varphi - \varphi_{11}) \in \mathcal{Z}(\Omega)$.

To obtain our primary outcome, we presuppose that the ring Ω has an idempotent *f* and that Ω satisfies the following requirements:

 (L_1) $\alpha \Omega f \subset \mathcal{Z}(\Omega)$ implies that $\alpha \in \mathcal{Z}(\Omega)$. (L_2) *α f*Ω(1 − *f*) ⊂ Z (Ω) implies that $\alpha \in Z$ (Ω).

And *G* is any multiplicative generalized CE-derivation of Ω related with a CE-derivation $\mathcal D$ of Ω .

Let us now present some examples of rings that meet the conditions (L_1) and (L_2) , as well as those that do not meet these requirements.

Example 2.1. *Let* $\Omega = M_2(\mathbb{C})$, *the ring of* 2×2 *matrices over the field* \mathbb{C} *of complex numbers. Taking f* = $\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) \in \Omega$, which is a nontrivial idempotent element. Let $\alpha =$ $\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) \in \Omega$. It is clear that $\alpha\beta f \in \mathcal{Z}(\Omega)$, and $\alpha f\beta(1-f) \in \mathcal{Z}(\Omega)$ for all $\beta \in \Omega$ whenever $\alpha \notin \mathcal{Z}(\Omega)$. That is, this ring neither *satisfy* (L_1) *nor* (L_2) .

Example 2.2. Let's take $M_2(\mathbb{H})$, the ring of 2 × 2 matrices over the quaternions \mathbb{H} . Let $f = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ *and* α = $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{H})$. *If* $\alpha \Omega f \subseteq \mathcal{Z}(\Omega)$, *then* α *must be in the form* $\alpha = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$ *which means* $\alpha \in \mathcal{Z}(\Omega)$ and if $\alpha f \Omega(1 - f) \subseteq \mathcal{Z}(\Omega)$, then α must be in the form $\alpha =$ $\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 &$ 0 *a* λ *which means* $\alpha \in \mathcal{Z}(\Omega)$. *Thus, if* $\alpha \Omega f \subseteq \mathcal{Z}(\Omega)$ *or* $\alpha f \Omega(1 - f) \subseteq \mathcal{Z}(\Omega)$ *then* $\alpha \in \mathcal{Z}(\Omega)$ *. That is, this ring satisfies both of* (L_1) *and* (L_2) .

In the subsequent proofs, the following lemma is helpful.

Lemma 2.2. *The ideals* $\Omega \psi$, $\Omega \psi_{ii}$, $\Omega \varphi$, $\Omega \varphi_{ii}$, and $\Omega \bar{\varphi}$ are contained in the center of Ω , in which ψ = $\delta(f, f) \in \mathcal{Z}(\Omega)$, $\varphi = \sigma(f, f) \in \mathcal{Z}(\Omega)$, and $\bar{\varphi} = \varphi_{22} - \varphi_{11} \in \mathcal{Z}(\Omega)$, where $i \in \{1, 2\}$.

Proof. Starting with Lemma [2.1,](#page-2-2) for each $r_{11} \in \Omega_{11}$, we obtain $\psi r_{11} r_{12} = r_{11} \psi r_{12} = 0 \in \mathcal{Z}(\Omega)$ and using condition (L_2) , we obtain $r_{11}\psi = \psi r_{11} \in \mathcal{Z}(\Omega)$.

Second, assume that $\mathcal{D}(r_{22}) = c_{11} + c_{12} + c_{21} + c_{22}$, and since $G(fr_{22}) = G(0) \in \mathcal{Z}(\Omega)$, using [\(2.2\)](#page-1-1), we have $G(0) = G(f)r_{22} + f\mathcal{D}(r_{22}) + \delta(f, r_{22}) = d_{12}r_{22} + \psi_{22}r_{22} + c_{11} + c_{12} + \delta(f, r_{22})$, and this gives $d_{12}r_{22} + c_{12} = 0$ and $\psi_{22}r_{22} = \beta - c_{11}$, where $\beta = (G(0) - \delta(f, r_{22})) \in \mathcal{Z}(\Omega)$. Now, using Lemma [2.1,](#page-2-2) for any *s* ∈ Ω, we get $ψ_{22}r_{22}s = r_{22}ψ_{22}s_{22} = ψ_{22}r_{22}s_{22} = (β - c_{11})s_{22} = βs_{22} = s_{22}β = s_{22}(β - c_{11}) =$ $s_{22}\psi_{22}r_{22} = s\psi_{22}r_{22} = s r_{22}\psi_{22}$, and this gives $r_{22}\psi_{22} \in \mathcal{Z}(\Omega)$. And additionally, if $s, r \in \Omega$, then $rs\psi = r(s_{11}\psi + s_{22}\psi) = rs_{11}\psi + rs_{22}\psi = s_{11}\psi r + s_{22}\psi r = (s_{11} + s_{22})\psi r = s\psi r$. The other situations can be proven similarly. be proven similarly.

Using any fixed element *d* in Ω , we may construct an example of a CE-derivation, the map \mathcal{D}_d : $\Omega \to \Omega$ that fulfills $\mathcal{D}_d(r) - [r, d] \in \mathcal{K}$, where K is an ideal contained in the center of Ω , we may refer to it as an inner CE-derivation. At this point, with the use of Lemma [2.2](#page-2-3) it is apparent that the map \mathcal{D}_1 given by $\mathcal{D}_1(s) = [s, d_{12} - d_{21}] + \bar{\varphi}$ is a CE-derivation, and applying [\(2.1\)](#page-1-0), we obtain

$$
\mathcal{D}_1(f) = d_{12} + d_{21} + \bar{\varphi} = \mathcal{D}(f). \tag{2.5}
$$

Additionally, given any two fixed elements *c* and *d* in Ω , the map $G_{(c,d)}$: $\Omega \to \Omega$ that satisfies $G_{(c,d)}(r) - cr - rd \in \mathcal{N}$, where N is an ideal contained in the center of Ω , we may refer to it as an inner generalized CE-derivation related to the inner CE-derivation \mathcal{D}_d , which is given by \mathcal{D}_d − [*s*, *d*] ∈ N.

Once more, applying Lemma [2.2,](#page-2-3) we can show that the map G_1 presented by $G_1(x) = (g_{11} + g_{21} - g_{21})$ ψ_{11})*x* + *x*(d_{12} – d_{21}) + ψ is a generalized CE-derivation related to the inner CE-derivation \mathcal{D}_1 , and with (2.2) , we get,

$$
G_1(f) = g_{11} + g_{21} + d_{12} + \psi_{22} = G(f). \tag{2.6}
$$

For the sake of simplicity and without loss of generality, we will now substitute the CE-derivation D with the CE-derivation $\Phi = \mathcal{D} - \mathcal{D}_1$, which, by using [\(2.5\)](#page-3-0), arrived us to $\Phi(f) = 0$ and the multiplicative generalized CE-derivation *G* by the multiplicative generalized CE-derivation $\Psi = G - G_1$ with $\Psi(f) =$ 0, by [\(2.6\)](#page-3-1). Also, $Φ(0) = D(0) - D_1(0) = D(0) - φ = θ ∈ Z(Ω)$ and $Ψ(0) = G(0) - G_1(0) = G(0) - ψ =$ $\alpha \in \mathcal{Z}(\Omega)$. It is easy to show that both θ and α generate a central ideal in Ω .

The following lemmas are necessary for proving our primary theorem:

Lemma 2.3. For any element $a_{ij} \in \Omega_{ij}$, there exists $b_{ij} \in \Omega_{ij}$ and $\rho_{ii}, \sigma_{ii} \in \mathcal{Z}_{ii}$, $i, j \in \{1, 2\}$, $i \neq j$ such *that*

(1) $\Phi(a_{ii}) = b_{ii} + \rho_{ji}$, (2) $\Phi(a_{ij}) = b_{ij} + \rho_{ii} + \sigma_{ji}$.

Proof. In order to prove (1), We must prove two distinct cases:

(I) Suppose that $a_{11} \in \Omega_{11}$. Assume that $\Phi(a_{11}) = b_{11} + b_{12} + b_{21} + b_{22}$. Then $\Phi(a_{11}) = \Phi(f a_{11}) =$ $f\Phi(a_{11}) + \rho$, $\rho \in \mathcal{Z}(\Omega)$, which gives $b_{21} = 0$, $\rho_{11} = 0$, and $b_{22} = \rho_{22} \in \mathcal{Z}_{22}$, so we get $\Phi(a_{11}) =$ $b_{11} + b_{12} + \rho_{22}$. Similarly, $\Phi(a_{11}) = \Phi(a_{11}f) = \Phi(a_{11})f + \gamma$, $\gamma \in \mathcal{Z}(\Omega)$, which means $b_{12} = 0$, and we get $\Phi(a_{11}) = b_{11} + \delta_{22}$.

(II) Assume that $a_{22} \in \Omega_{22}$. Write $\Phi(a_{22}) = b_{11} + b_{12} + b_{21} + b_{22}$, so $\theta = \Phi(f a_{22}) = b_{11} + b_{12} + b_{22}$ γ_1 , $\gamma_1 \in \mathcal{Z}(\Omega)$, so $b_{11} + b_{12} = \theta - \gamma_1 \in \mathcal{Z}(\Omega)$, which means $b_{12} = 0$ and $b_{11} \in \mathcal{Z}_{11}$. Likewise, $\theta = \Phi(a_{22} f) = b_{11} + b_{21} + \gamma_2$, $\gamma_2 \in \mathcal{Z}(\Omega)$, so $b_{11} + b_{21} = \theta - \gamma_2 \in \mathcal{Z}(\Omega)$, so that $b_{21} = 0$, and thus $\Phi(a_{22}) = b_{11} + b_{22}$, where $b_{11} \in \mathcal{Z}_{11}$.

Also, the proof of (2) has two separable cases:

(I) Assume that $\Phi(a_{12}) = b_{11} + b_{12} + b_{21} + b_{22}$, so that $f\Phi(a_{12}) = b_{11} + b_{12}$. Also, we have $\Phi(a_{12}) = b_{11} + b_{12} + b_{21} + b_{22}$ $Φ(f a₁₂) = b₁₁ + b₁₂ + σ$, $σ ∈ Τ(Ω)$, which gives $fΦ(a₁₂) = b₁₁ + b₁₂ + σ₁₁$. Comparing the two values of $f\Phi(a_{12})$, we obtain $\sigma_{11} = 0$ and $\sigma = \sigma_{22} \in \mathcal{Z}_{22}$, and we obtain $\Phi(a_{12}) = b_{11} + b_{12} + \sigma_{22}$. Now $\theta = \Phi(a_{12}f) = \Phi(a_{12})f + \mu$, $\mu \in \mathcal{Z}(\Omega)$, hence, $\Phi(a_{12})f = (\theta - \mu) = \eta \in \mathcal{Z}(\Omega)$. This provides $\Phi(a_{12})f = b_{11} + b_{21} = \eta \in \mathcal{Z}(\Omega)$, which means $b_{21} = 0$ and $b_{11} = \eta_{11} \in \mathcal{Z}_{11}$. So we arrive at $\Phi(a_{12}) = b_{12} + \eta_{11} + \sigma_{22}.$

(II) Assume that $\Phi(a_{21}) = b_{11} + b_{12} + b_{21} + b_{22}$, so that $\Phi(a_{21})f = b_{11} + b_{21}$. Also, we have $\Phi(a_{21}) =$ $Φ(a_{21} f) = b_{11} + b_{21} + \kappa$, $\kappa \in \mathcal{Z}(\Omega)$, which gives $Φ(a_{21}) f = b_{11} + b_{21} + \kappa_{11}$. Comparing the two expressions of $\Phi(a_{21})f$, we get $\kappa_{11} = 0$, $\kappa = \kappa_{22} \in \mathcal{Z}_{22}$, and we obtain $\Phi(a_{21}) = b_{11} + b_{21} + \kappa_{22}$. Now $\theta = \Phi(f a_{21}) = f \Phi(a_{21}) + v$, $v \in \mathcal{Z}(\Omega)$, hence $f \Phi(a_{21}) = (\theta - v) = \zeta \in \mathcal{Z}(\Omega)$, and this gives $f \Phi(a_{21}) = \zeta \in \mathcal{Z}(\Omega)$, which means $b_{11} = \zeta_{11} \in \mathcal{Z}_{11}$, and we have $\Phi(a_{21}) = b_{21} + \zeta_{11} + k_{22}$. $f\Phi(a_{21}) = \zeta \in \mathcal{Z}(\Omega)$, which means $b_{11} = \zeta_{11} \in \mathcal{Z}_{11}$, and we have $\Phi(a_{21}) = b_{21} + \zeta_{11} + \kappa_{22}$.

Lemma 2.4. *For any element* $a_{11} \in \Omega_{11}$ *, we have* $\Psi(a_{11}) = b_{11} + \varphi_{22}$ *for some* $b_{11} \in \Omega_{11}$ *and* $\varphi_{22} \in \mathcal{Z}_{22}$ *.*

Proof. Since $\Psi(rs) = \Psi(r)s + r\Phi(s) + \gamma$, for each $r, s \in \Omega$ and $\gamma \in \mathcal{Z}(\Omega)$, it consequently concludes that, for each $a_{11} \in \Omega_{11}$ we have $\Psi(a_{11}) = \Psi(f a_{11}) = f \Phi(a_{11}) + \gamma_1$, $\gamma_1 \in \mathcal{Z}(\Omega)$ because $\Psi(f) = 0$, and by Lemma [2.3](#page-3-2) $\Phi(\Omega_{11}) \subset \Omega_{11} + \mathcal{Z}(\Omega)$ and $\mathcal{Z}(\Omega) \subset \Omega_{11} + \Omega_{22}$, so we have that $\Psi|_{\Omega_{11}} \subset \Omega_{11} + \mathcal{Z}(\Omega)$. Now assume that $\Psi(a_{11}) = b_{11} + \varphi$, $\varphi \in \mathcal{Z}(\Omega)$. Then $\Psi(a_{11}) = \Psi(a_{11}f) = \Psi(a_{11})f + \gamma_2$, $\gamma_2 \in \mathcal{Z}(\Omega)$, which gives $\Psi(a_{11}) - \Psi(a_{11})f = b_{11} + \varphi - b_{11} - \varphi_{11} \in \mathcal{Z}(\Omega)$. We conclude that $\varphi_{22} \in \mathcal{Z}_{22}$ and $\Psi(a_{11}) = b_{11} + \varphi = b_{11} + \varphi_{11} + \varphi_{22} = c_{11} + \varphi_{22}$ with $c_{11} = b_{11} + \varphi_{11} \in \Omega_{11}$ and $\varphi_{22} \in \mathcal{Z}_{22}$, as required. \Box

Lemma 2.5. *For any a*₁₂ $\in \Omega_{12}$, $\Psi(a_{12}) = b_{12} + \vartheta_{11} + \vartheta_{22}$ *for some* $b_{12} \in \Omega_{12}$, $\vartheta_{11} \in \mathcal{Z}_{11}$ *and* $\vartheta_{22} \in \mathcal{Z}_{22}$.

Proof. If $a_{12} \in \Omega_{12}$, then $\Psi(a_{12}) = \Psi(f a_{12}) = f \Phi(a_{12}) + \gamma$, $\gamma \in \mathcal{Z}(\Omega)$ so by Lemma [2.3,](#page-3-2) $\Psi(a_{12}) =$ $b_{12} + \delta_{11} + \gamma = b_{12} + \vartheta$, for some $b_{12} \in \Omega_{12}$ and δ_{11} , $\vartheta \in \mathcal{Z}(\Omega)$. Also, $\Psi(0) = \Psi(a_{12}f) = \Psi(a_{12})f + \mathcal{Z}(\Omega)$ $a_{12}\Phi(f) + \gamma_1$, $\gamma_1 \in \mathcal{Z}(\Omega)$ so $\Psi(a_{12})f \in \mathcal{Z}(\Omega)$ and this gives $\vartheta_{11} \in \mathcal{Z}_{11}$ and since $\vartheta \in \mathcal{Z}(\Omega)$ we obtain $\vartheta_{22} \in \mathcal{Z}_{22}$. So finally, we arrived at $\Psi(a_{12}) = b_{12} + \vartheta_{11} + \vartheta_{22}$.

Lemma 2.6. *For any* $a_{21} \in \Omega_{21}$, *we have* $\Psi(a_{21}) = b_{11} + b_{21} + \theta_{22}$, *for some* $b_{11} \in \Omega_{11}$, $b_{21} \in \Omega_{21}$ *and* $\theta_{22} \in \mathcal{Z}_{22}$.

Proof. Assume that $\Psi(a_{21}) = b_{11} + b_{12} + b_{21} + b_{22}$, for $a_{21} \in \Omega_{21}$. Then $\Psi(a_{21}) = \Psi(a_{21}f) = \Psi(a_{21})f +$ θ , $\theta \in \mathcal{Z}(\Omega)$, which gives $b_{12} = 0$, $\theta_{11} = 0$, and $b_{22} = \theta_{22} = \theta \in \mathcal{Z}(\Omega)$. So we have $\Psi(a_{21}) =$ $\Psi(a_{21})f + \theta_{22} = b_{11} + b_{21} + \theta_{22}, \ \theta_{22} \in \mathcal{Z}(\Omega).$

Lemma 2.7. *For any element t* \in $(\Omega_{11} + \Omega_{21})$, $\Psi(t) = b_{11} + b_{21} + \delta_{22}$, *for some* $b_{11} \in \Omega_{11}$, $b_{21} \in \Omega_{21}$ *and* $\delta_{22} \in \mathcal{Z}_{22}$.

Proof. Assuming that $t \in (\Omega_{11} + \Omega_{21})$ and $\Psi(t) = b_{11} + b_{12} + b_{21} + b_{22}$. Then $\Psi(t) = \Psi(a_{11} + a_{21}) =$ $Ψ[(a_{11} + a_{21})f] = Ψ(a_{11} + a_{21})f + δ$, $δ ∈ ζ(Ω)$. This gives $b_{12} = 0$, and $b_{22} = δ = δ_{22} ∈ Ζ_{22}$ and we arrive at $Ψ(t) = b_{11} + b_{21} + δ_{22}$. arrive at $\Psi(t) = b_{11} + b_{21} + \delta_{22}$.

Lemma 2.8. Ψ *is CE-additive on* $Ω₁₁$.

Proof. If $a_{11}, b_{11} \in \Omega_{11}$, then $\Psi(a_{11} + b_{11}) = \Psi(f(a_{11} + b_{11})) = f\Phi(a_{11} + b_{11}) + \sigma_1 = \Phi[f(a_{11} + b_{11}) + \sigma_1]$ *b*₁₁)] − Φ(*f*)(*a*₁₁ + *b*₁₁) + σ_2 = Φ(*a*₁₁ + *b*₁₁) + σ_2 = Φ(*a*₁₁) + Φ(*b*₁₁) + σ_3 = *f*Φ(*a*₁₁) + *f*Φ(*b*₁₁) + σ_4 = Ψ(*f*_{a+1}) + Ψ(*f*_{b+1}) + σ_5 = Ψ(*a*₁₁) + Ψ(*b*₁₁) + $\Psi(f a_{11}) + \Psi(f b_{11}) + \sigma_5 = \Psi(a_{11}) + \Psi(b_{11}) + \sigma_5$, where $\sigma_1, \sigma_2, \sigma_3, \sigma_4$ and $\sigma_5 \in \mathcal{Z}(\Omega)$.

Lemma 2.9. *If* $a_{11} \in \Omega_{11}$ *and* $a_{21} \in \Omega_{21}$ *, then we obtain* $Ψ(a_{11} + a_{21}) - Ψ(a_{11}) - Ψ(a_{21}) \in \mathcal{Z}(\Omega)$.

Proof. For any $w_{1n} \in \Omega_{1n}$ and $h_{12} \in \Omega_{12}$, $n = 1, 2$ we own $\{\Psi(a_{11} + a_{21}) - \Psi(a_{11}) - \Psi(a_{21})\}h_{12}w_{1n} = 0$, which means

$$
\{\Psi(a_{11} + a_{21}) - \Psi(a_{11}) - \Psi(a_{21})\}h_{12}\Omega_{1n} = \{0\}.\tag{2.7}
$$

Now, for any $w_{2n} \in \Omega_{2n}$ and $h_{12} \in \Omega_{12}$, $n = 1, 2$, we have got

$$
\Psi(a_{11} + a_{21})h_{12}w_{2n} = \Psi((a_{11} + a_{21})h_{12}w_{2n}) - (a_{11} + a_{21})\Phi(h_{12}w_{2n}) + \eta_1
$$

\n
$$
= \Psi[(a_{11}h_{12} + a_{21})(w_{2n} + h_{12}w_{2n})] - (a_{11} + a_{21})\Phi(h_{12}w_{2n}) + \eta_1
$$

\n
$$
= \Psi(a_{11}h_{12} + a_{21})(w_{2n} + h_{12}w_{2n})
$$

\n
$$
+ (a_{11}h_{12} + a_{21})\Phi(w_{2n} + h_{12}w_{2n}) - (a_{11} + a_{21})\Phi(h_{12}w_{2n}) + \eta_2
$$

\n
$$
= \Gamma_2 + \Gamma_1, \quad \eta_1, \quad \eta_2 \in \mathcal{Z}(\Omega), \tag{2.8}
$$

where we assume that $\Gamma_1 = (a_{11}h_{12} + a_{21})\Phi(w_{2n} + h_{12}w_{2n}) - (a_{11} + a_{21})\Phi(h_{12}w_{2n}) + \eta_2$ and $\Gamma_2 =$ $\Psi(a_{11}h_{12} + a_{21})(w_{2n} + h_{12}w_{2n}).$

Now, let us calculate the terms Γ_1 and Γ_2 :

$$
\Gamma_{1} = (a_{11}h_{12} + a_{21})\Phi(w_{2n} + h_{12}w_{2n}) - (a_{11} + a_{21})\Phi(h_{12}w_{2n}) + \eta_{2}
$$
\n
$$
= a_{11}h_{12}\Phi(w_{2n} + h_{12}w_{2n}) + a_{21}\Phi(w_{2n} + h_{12}w_{2n}) - (a_{11} + a_{21})\Phi(h_{12}w_{2n}) + \eta_{2}
$$
\n
$$
= \Psi(a_{11}h_{12}(w_{2n} + h_{12}w_{2n})) - \Psi(a_{11}h_{12})(w_{2n} + h_{12}w_{2n}) + \Psi(a_{21}(w_{2n} + h_{12}w_{2n}))
$$
\n
$$
- \Psi(a_{21})(w_{2n} + h_{12}w_{2n}) - a_{11}\Phi(h_{12}w_{2n}) - a_{21}\Phi(h_{12}w_{2n}) + \eta_{3}
$$
\n
$$
= \{\Psi(a_{11}h_{12}w_{2n}) - \Psi(a_{11}h_{12})w_{2n} - a_{11}h_{12}\Phi(w_{2n})\} + a_{11}h_{12}\Phi(w_{2n})
$$
\n
$$
+ \{\Psi(a_{21}h_{12}w_{2n}) - \Psi(a_{21})h_{12}w_{2n} - a_{21}\Phi(h_{12}w_{2n})\} - a_{11}\Phi(h_{12}w_{2n})
$$
\n
$$
- \Psi(a_{11}h_{12})h_{12}w_{2n} - \Psi(a_{21})w_{2n} + \eta_{3}
$$
\n
$$
= a_{11}h_{12}\Phi(w_{2n}) - a_{11}\Phi(h_{12}w_{2n}) - \Psi(a_{11}h_{12})h_{12}w_{2n} - \Psi(a_{21})w_{2n} + \eta_{4}
$$
\n
$$
= -a_{11}\Phi(h_{12})w_{2n} - \Psi(a_{11}h_{12})h_{12}w_{2n} - \Psi(a_{21}w_{2n}) + a_{21}\Phi(w_{2n}) + \eta_{5}
$$
\n
$$
= -a_{11}\Phi(h_{12})w_{2n} + a_{21}\Phi(w_{2n}) + \eta_{6}, \quad \text
$$

where η_3, η_4, η_5 and $\eta_6 \in \mathcal{Z}(\Omega)$, so that we obtain

$$
\Gamma_1 = -a_{11}\Phi(h_{12})w_{2n} + a_{21}\Phi(w_{2n}) + \eta_6. \tag{2.10}
$$

Also, for Γ_2 we have:

$$
\Gamma_2 = \Psi(a_{11}h_{12} + a_{21})(w_{2n} + h_{12}w_{2n}) = \Psi(a_{11}h_{12} + a_{21})w_{2n} + \Psi(a_{11}h_{12} + a_{21})h_{12}w_{2n}
$$

\n
$$
= \Psi((a_{11}h_{12} + a_{21})w_{2n}) - (a_{11}h_{12} + a_{21})\Phi(w_{2n}) + \Psi((a_{11}h_{12} + a_{21})h_{12}w_{2n})
$$

\n
$$
- (a_{11}h_{12} + a_{21})\Phi(h_{12}w_{2n}) + \eta_7
$$

\n
$$
= \Psi(a_{11}h_{12}w_{2n}) + \Psi(a_{21}h_{12}w_{2n}) - a_{11}h_{12}\Phi(w_{2n}) - a_{21}\Phi(w_{2n}) - a_{11}h_{12}\Phi(h_{12}w_{2n})
$$

\n
$$
- a_{21}\Phi(h_{12}w_{2n}) + \eta_7
$$

\n
$$
= \Psi(a_{11}h_{12})w_{2n} + \Psi(a_{21})h_{12}w_{2n} - a_{11}h_{12}\Phi(h_{12}w_{2n}) - a_{21}\Phi(w_{2n}) + \eta_8
$$

\n
$$
= \Psi(a_{11})h_{12}w_{2n} + a_{11}\Phi(h_{12})w_{2n} + \Psi(a_{21})h_{12}w_{2n} - a_{21}\Phi(w_{2n}) + \eta_9,
$$

\nby Lemma 2.3, where η_7 , η_8 , and $\eta_9 \in \mathcal{Z}(\Omega)$. (2.11)

So, we obtain

$$
\Gamma_2 = \Psi(a_{11})h_{12}w_{2n} + a_{11}\Phi(h_{12})w_{2n} + \Psi(a_{21})h_{12}w_{2n} - a_{21}\Phi(w_{2n}) + \eta_9.
$$
 (2.12)

Now, coming back to [\(2.10\)](#page-5-0) and using [\(2.12\)](#page-6-0) to collect the values of Γ_1 and Γ_2 and substituting in [\(2.8\)](#page-5-1), we get $Ψ(a_{11} + a_{21})h_{12}w_{2n} = Ψ(a_{11})h_{12}w_{2n} + Ψ(a_{21})h_{12}w_{2n} + η_{10}$, $η_{10} ∈ Z(Ω)$ which gives { $Ψ(a_{11} + a_{21})−$ $Ψ(a_{11}) – Ψ(a_{21})$ *}* $h_{12}w_{2n} ∈ Z(Ω)$ and so we obtain

$$
\{\Psi(a_{11} + a_{21}) - \Psi(a_{11}) - \Psi(a_{21})\}h_{12}\Omega_{2n} \subset \mathcal{Z}(\Omega). \tag{2.13}
$$

From [\(2.7\)](#page-5-2) and [\(2.13\)](#page-6-1) we obtain $\{\Psi(a_{11} + a_{21}) - \Psi(a_{11}) - \Psi(a_{21})\}h_{12}\Omega \subset \mathcal{Z}(\Omega)$. Using condition (*L*₁) we have {Ψ(*a*₁₁ + *a*₂₁) − Ψ(*a*₁₁) − Ψ(*a*₂₁)}Ω₁₂ ⊂ *Z*(Ω). Using condition (*L*₂), we obtain Ψ(*a*₁₁ + *a*₂₁) − Ψ(*a*₁₁) − Ψ(*a*₁₁) ∈ *Z*(Ω). $\Psi(a_{11}) - \Psi(a_{21}) \in \mathcal{Z}(\Omega).$

Lemma 2.10. Ψ *is CE-additive on* Ω_{21} .

Proof. For any $a_{21}, b_{21} \in \Omega_{21}$, $y_{12} \in \Omega_{12}$ and $y_{2n} \in \Omega_{2n}$ we have

$$
Ψ(a21 + b21)y12y2n = Ψ((a21 + b21)y12y2n) – (a21 + b21)Φ(y12y2n) + π1\n= Ψ(a21y12y2n + b21y12y2n) – (a21 + b21)Φ(y12y2n) + π1\n= Ψ((a21y12 + b21)(y2n + y12y2n)) – (a21 + b21)Φ(y12y2n) + π1\n= Ψ(a21y12 + b21)(y2n + y12y2n) + (a21y12 + b21)Φ(y2n + y12y2n)\n- (a21 + b21)Φ(y12y2n) + π2\n= Ψ(a21y12 + b21)y2n + Ψ(a21y12 + b21)y12y2n + a21y12Φ(y2n + y12y2n)\n+ b21Φ(y2n + y12y2n) – a21Φ(y12y2n) – b21Φ(y12y2n) + π2\n= �
$$

where $\pi_i \in \mathcal{Z}(\Omega)$, $i \in \{1, 2, 3, 4\}$. So we have

$$
[\Psi(a_{21} + b_{21}) - \Psi(a_{21}) - \Psi(b_{21})]\Omega_{12}\Omega_{2n} \subset \mathcal{Z}(\Omega). \tag{2.15}
$$

Also, it is clear that

$$
[\Psi(a_{21} + b_{21}) - \Psi(a_{21}) - \Psi(b_{21})] \Omega_{12} \Omega_{1n} \subset \mathcal{Z}(\Omega), \tag{2.16}
$$

where *n* = 1, 2. From [\(2.15\)](#page-6-2) and [\(2.16\)](#page-6-3) we obtain $[\Psi(a_{21} + b_{21}) - \Psi(a_{21}) - \Psi(b_{21})]\Omega_{12}\Omega \subset \mathcal{Z}(\Omega)$. By condition (*L*₁) we have $[\Psi(a_{21} + b_{21}) - \Psi(a_{21}) - \Psi(b_{21})]\Omega_{12} \subset \mathcal{Z}(\Omega)$. Using condition (*L*₂), we obtain $\Psi(a_{21} + b_{21}) - \Psi(a_{21}) - \Psi(b_{21}) \in \mathcal{Z}(\Omega)$. $Ψ(a_{21} + b_{21}) - Ψ(a_{21}) - Ψ(b_{21}) \in Z(\Omega).$

Lemma 2.11. Ψ *is CE-additive on* $\Omega_{11} + \Omega_{21} = \Omega f$.

Proof. If a_{11} , $b_{11} \in \Omega_{11}$ and a_{21} , $b_{21} \in \Omega_{21}$, then Lemmas [2.8,](#page-4-1) [2.9](#page-4-2) and [2.10](#page-6-4) give

$$
\Psi((a_{11} + a_{21}) + (b_{11} + b_{21})) = \Psi((a_{11} + b_{11}) + (a_{21} + b_{21}))
$$

\n
$$
= \Psi(a_{11} + b_{11}) + \Psi(a_{21} + b_{21}) + \phi_1
$$

\n
$$
= \Psi(a_{11}) + \Psi(b_{11}) + \Psi(a_{21}) + \Psi(b_{21}) + \phi_2
$$

\n
$$
= (\Psi(a_{11}) + \Psi(a_{21})) + (\Psi(b_{11}) + \Psi(b_{21})) + \phi_2
$$

\n
$$
= \Psi(a_{11} + a_{21}) + \Psi(b_{11} + b_{21}) + \phi_3,
$$

where $\phi_i \in \mathcal{Z}(\Omega)$, $i \in \{1, 2, 3\}$. Thus, Ψ is CE-additive on $\Omega_{11} + \Omega_{21}$, as required. □

3. Results

We can now prove our primary result.

Theorem 3.1. *Suppose that* Ω *is a ring with a nontrivial idempotent f that satisfies requirements* (L_1) *and* (*L*2). *If* ^Ψ *is any multiplicative generalized CE-derivation of* ^Ω*, then* ^Ψ *is CE-additive.*

Proof. Suppose that Ψ is any multiplicative generalized CE-derivation of Ω, i.e., $\Psi(ab) = \Psi(a)b$ + $a\Phi(b) + v$, for every $a, b \in \Omega$ and $v \in \mathcal{Z}(\Omega)$ and some CE-derivation Φ of Ω . Consider $\Psi(a) + \Psi(b)$, where *a* and $b \in \Omega$. Take an element *h* in $\Omega f = \Omega_{11} + \Omega_{21}$. Thus, *ah* and $bh \in \Omega f$. Using Lemma [2.11,](#page-7-0) we obtain $(Ψ(a) + Ψ(b))h = Ψ(ah) + Ψ(bh) – (a + b)Φ(h) + ν₁ = Ψ(ah + bh) – (a + b)Φ(h) + ν₂ =$ $Ψ((a + b)h) – (a + b)Φ(h) + ν₂ = Ψ(a + b)h + (a + b)Φ(h) – (a + b)Φ(h) + ν₃ = Ψ(a + b)h + ν₃$ where $v_i \in \mathcal{Z}(\Omega)$, $i \in \{1, 2, 3\}$. Thus, $(\Psi(a) + \Psi(b))h - \Psi(a + b)h \in \mathcal{Z}(\Omega)$. Since *h* is an arbitrary element in Ωf , we obtain $(\Psi(a) + \Psi(b) - \Psi(a+b))\Omega f \in \mathcal{Z}(\Omega)$. Under condition (L_1) , we obtain $Ψ(a + b) – Ψ(a) – Ψ(b) ∈ Z(Ω)$. It demonstrates that the multiplicative generalized CE-derivations Ψ and *G* are a CE-additive and G are a CE-additive.

Now, we are in a position to raise the following open problem. "Under what conditions does an MCE-derivation (or MGCE-derivation) become a centrally extended additive over an alternative ring?"

4. Conclusions

We showed that if *G* is an appropriate multiplicative generalized CE-derivation of a ring Ω , then *G* is CE-additive.

Author contributions

M. S. Tammam: conceptualization, methodology, validation, formal analysis, investigation, data curation, writing–original draft preparation, writing–review and editing, supervision; M. Almulhem: validation, formal analysis, writing–review and editing, supervision. All authors have read and agreed to the published version of the manuscript.

Conflict of interest

The authors declare no conflicts of interest.

References

- 1. H. E. Bell, M. N. Daif, On centrally-extended maps on rings, *Beitr. Algebra Geom.*, 57 (2016), 129–136. https://doi.org/10.1007/[s13366-015-0244-8](https://dx.doi.org/https://doi.org/10.1007/s13366-015-0244-8)
- 2. S. F. El-Deken, M. M. El-Soufi, On centrally extended reverse and generalized reverse derivations, *Indian J. Pure Appl. Math.*, 51 (2020), 1165–1180. https://doi.org/10.1007/[s13226-020-0456-y](https://dx.doi.org/https://doi.org/10.1007/s13226-020-0456-y)
- 3. S. F. El-Deken, H. Nabiel, Centrally-extended generalized ∗-derivations on rings with involution, *Beitr. Algebra Geom.*, 60 (2019), 217–224. https://doi.org/10.1007/[s13366-018-0415-5](https://dx.doi.org/https://doi.org/10.1007/s13366-018-0415-5)
- 4. M. M. Muthana, Z. S. Alkhamisi, On centrally-extended multiplicative (generalized)- (α, β) derivations in semiprime rings, *Hacet J. Math. Stat.*, 49 (2020), 578–585.
- 5. M. S. Tammam El-Sayiad, A. Ageeb, A. M. Khaled, What is the action of a multiplicative centrally-extended derivation on a ring?, *Georgian Math. J.*, 29 (2022), 607–613. https://doi.org/10.1515/[gmj-2022-2164](https://dx.doi.org/https://doi.org/10.1515/gmj-2022-2164)
- 6. C. E. Rickart, One-to-one mappings of rings and lattices, *Bull. Amer. Math. Soc.*, 54 (1948), 758–764.
- 7. W. S. Martindale, When are multiplicative mappings additive?, *Proc. Amer. Math. Soc.*, 21 (1969), 695–698. https://doi.org/10.1090/[S0002-9939-1969-0240129-7](https://dx.doi.org/https://doi.org/10.1090/S0002-9939-1969-0240129-7)
- 8. M. N. Daif, When is a multiplicative derivation additive?, *Int. J. Math. Math. Sci.*, 14 (1991), 275743. https://doi.org/10.1155/[S0161171291000844](https://dx.doi.org/https://doi.org/10.1155/S0161171291000844)
- 9. Y. Wang, The additivity of multiplicative maps on rings, *Commun. Algebra*, 37 (2009), 2351–2356. https://doi.org/10.1080/[00927870802623369](https://dx.doi.org/https://doi.org/10.1080/00927870802623369)
- 10. J. C. M. Ferreira, B. L. M. Ferreira, Additivity of n-multiplicative maps on alternating rings, *Commun. Algebra*, 44 (2016), 1557–1568. https://doi.org/10.1080/[00927872.2015.1027364](https://dx.doi.org/https://doi.org/10.1080/00927872.2015.1027364)
- 11. B. L. M. Ferreira, H. Guzzo, R. N. Ferreira, An approach between the multiplicative and additive structure of a Jordan ring, *Bull. Iran. Math. Soc.*, 47 (2021), 961–975. https://doi.org/10.1007/[s41980-020-00423-4](https://dx.doi.org/https://doi.org/10.1007/s41980-020-00423-4)
- 12. M. N. Daif, M. S. Tammam El-Sayiad, Multiplicative generalized derivations which are additive, *East-West J. Math.*, 9 (2007), 1–10.
- 13. M. S. Tammam El-Sayiad, M. N. Daif, V. De Filippis, Multiplicativity of left centralizers forcing additivity, *Bol. Soc. Paran. Mat.*, 32 (2014), 61–69. https://doi.org/10.5269/[bspm.v32i1.17274](https://dx.doi.org/https://doi.org/10.5269/bspm.v32i1.17274)
- 14. N. Jacobson, *Structure of rings*, Colloquium Publications, 1964.

© 2024 the Authors, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://[creativecommons.org](https://creativecommons.org/licenses/by/4.0)/licenses/by/4.0)