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1. Introduction

The investigation of centrally extended mappings in rings under certain conditions plays an
increasingly important role in ring theory. The work of Bell and Daif [1] introduced the notion of
centrally extended derivation as follows: Let Q be a ring with center Z(€Q). A map D of Q is said to be
a centrally extended derivation (CE-derivation) if, for all v,u € Q, D(v+u) — D) — D(u) € Z(€2), and
Dvu) — DW)u —vD(u) € Z(Q). Moreover, they discussed the existence of such a map, which is not
a derivation, as well as providing some findings regarding commutativity. Thenceforth, considerable
findings about various types of maps have been discovered; for example, see [2-5].

The study of when multiplicative maps will be additive goes back to 1948, when Rickart [6] proved
that any bijective and multiplicative mapping over a Boolean ring onto any arbitrary ring is additive.
In 1969, the work of Martindale [7] was significant to generalize Rickart’s main theorem when he
demonstrated that every multiplicative isomorphism on a ring with a non-trivial idempotent is additive.

Inspired by Martindale’s pioneering work, Daif [8] proved that a multiplicative derivation is additive
under the existence of certain conditions on a ring.

Later on, the additivity of n—multiplicative maps on associative rings satisfying Martindale’s


https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20241586

33255

conditions was proved by Wang [9]. In 2016 [10], Ferreira and Ferreira undertook a detailed study of a
similar problem but within the framework of alternative rings. Inspired by these previous findings, [11]
brilliantly proved the additivity of n—multiplicative isomorphisms and n—multiplicative derivations
over Jordan rings. A great deal of work has been done in [12] and [13] concerning multiplicative left
centralizer and multiplicative generalized derivations. Motivated by the role that centrally extended
derivations play in the field of ring theory, we herein raised a question: When are multiplicative
generalized CE-derivations additive?

The idea of a multiplicative generalized CE-derivation (MGCE-derivation) of a ring € is introduced
in this note. This concept is defined as a mapping G of Q into Q so that G(vi) —G(v)u —vD(u) € Z(L2),
Vv,u € Q, where D : Q — Qis a CE-derivation. In other words, the maps G and D can be expressed
as Gvu) = GWV)u + vO(u) + 6(v,u) and D(vu) = DW)u + vO(u) + o (v, u), where 6(v, u) and o (v, u)
are elements in Z(Q) and related with the mappings G and D, respectively. For any ring €, a map
G : Q — Qs called centrally extended additive (CE-additive) so that G(v + u) — G(v) — G(u) € Z(Q),
Yv,ueQ.

In this paper, we aim to find the answer to the following question: “Under what conditions does
a multiplicative generalized CE-derivation become a centrally extended additive?” We will give a
response to this query under appropriate circumstances.

2. Preliminaries

Throughout this paper, let Q be a ring that does not necessarily have a unity, and let f € Q be an
idempotent element such that f # 1, f # 0. Formally, we will set fj = f and f, = 1 — f. The Peirce
decomposition of € concerning the idempotent f can be expressed as Q = fiQf] & f1Qf, & LQf1 &
£Qf,. By letting Q;; = fiQf;: i,j = 1,2, we could write Q = Q;; & Qp & y; & Qy (For further
information, see Jacobson 1964 [14], Page 49). An element within the subring €);; will be indicated by
rij. f A = A1 + Aip + Ay + A € Z(Q), where fA = Af, then A;, = A,; = 0. Hence, we can conclude
that Z(Q) C Q; & Q,,. Additionally, we denote by Z;; the subring Q; N Z(Q).

Applying the definition of O, we observe that D(0) = 0(0,0) € Z(Q). But D(0)Q is an ideal
contained in the center of Q. Since fD(0) € Z(Q), and ¢(0,0) = 01,(0,0) + 02(0,0), we have
D) = 011(0,0) € Zy, and this provides 0,,(0,0) € Z,,. Similarly, G(0)Q is an ideal contained in
the center of Q, and 6;;(0,0) € Zy1, and 62(0,0) € Z»».

Moreover, D(f) = D(f?) = D)f + fO) + ¢; ¢ = o(f, f) € Z(Q). If we express D(f) =
diy + dyy + dy + dy and apply the two ways of D(f), then we obtain dy, = ¢ and dyy = —¢y;.
Consequently, we have

D(f) = dp + dri — 11 + @a0. (2.1)

In a similar way, if G : Q — Q is a multiplicative generalized CE-derivation related with a CE-
derivation D, then G(f) = G(f?) = G()f + fD(f) + ¥, where ¢ = 6(f, f) € Z() and it is possible
to write G(f) = g11 + 12 + &21 + &22. By making use of the values of G(f) and D(f), we conclude that
Y11 = @11, 822 = Yo and gip = djs, SO

G(f) = gu +dip + g1 + Y. (2.2)
To finish our task, we will need the following two facts:
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Lemma 2.1. Vi € Zii and Wi € .Zl'l',fOI"i S {1, 2}

Proof. For all r € Q, by figuring out the two sides of G(fr) = G(f(fr)), we obtain

G(Hr+6(f,r) = GNfr+ fOf)r + fo(f.r) +(f, fr). (2.3)

Now using (2.1) and (2.2) in (2.3), we obtain ¥r = fo(f,r) + o(f, fr) — 6(f,r), where ¢;; = ¢ and
this means

Yr € Qi & Q. (2.4)

Now, if we rewrite r as r = ry + rjp + rp; + rp and using that ¥ € Z(Q), we obtain Y1), =
rign and Yopory, = o, which implies ¥y € Z(Qq;) and Y, € Z(€);). And again (2.4) gives
Yiiriz + Yooy = 0 and ripgan + gy = 0, which gives Yy 712 = Yoarar = 0 and rigfay = ray = 0,
this means that ¢ is a left and right annihilator of the two subrings Q;, and Q,;. Now for any r € Q,
Yir =Yy = g = ryy, which gives ¥y € Z(Q). Since Yy = ¥ — Yy, Y € Z(Q). Also, we
obtain o1 =Y € Z(Q), and Y = ((,0 - (,D]]) € Z(Q) O

To obtain our primary outcome, we presuppose that the ring Q2 has an idempotent f and that Q
satisfies the following requirements:

(L)) aQf c Z(Q) implies that @ € Z(Q).
(L) afQ(1 — f) c Z(Q) implies that @ € Z(Q).

And G is any multiplicative generalized CE-derivation of Q related with a CE-derivation D of Q.
Let us now present some examples of rings that meet the conditions (L;) and (L,), as well as those
that do not meet these requirements.

Example 2.1. Let Q = M,(C), the ring of 2 X 2 matrices over the field C of complex numbers. Taking
1 0 1 .

f= 0 0 0 O)eQ.Itzsclearthat

aff € Z(Q), and afp(l — f) € Z(Q) for all B € Q whenever a ¢ Z(Q). That is, this ring neither

satisfy (Ly) nor (L;).

€ Q, which is a nontrivial idempotent element. Let a = (

1
Example 2.2. Let’s take M,(H), the ring of 2 X 2 matrices over the quaternions H. Let f = ( 0 8 )

b

a
anda/—(c d

) € My(H). If aQQf C Z(Q), then a must be in the form a = ( 0) which means

a
00

a € Z(Q)and if afQ(1 — f) C Z(Q), then a must be in the form a = (O 2 which means a € Z(Q).

0
Thus, if aQf C Z(Q) or afQ(1 — f) C Z(Q) then a € Z(Q). That is, this ring satisfies both of (L)
and (L,).

In the subsequent proofs, the following lemma is helpful.

Lemma 2.2. The ideals Qur, Qur;;, Qo, Qu;i, and Q¢ are contained in the center of Q, in which ¢ =
6(f’f) € Z(Q)a 90 = O-(faf) € Z(Q)’ and¢ = SDZZ - 9011 € Z(Q)a Where l € {1’2}
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Proof. Starting with Lemma 2.1, for each ri; € Q;;, we obtain ¥ ri, = riyr;; = 0 € Z(Q) and
using condition (L,), we obtain ry1yy = yry; € Z(Q).

Second, assume that D(ry;) = ¢ + €12 + 21 + €22, and since G(fry) = G(0) € Z(Q), using (2.2),
we have G(O) = G(f)l”zz + fZ)(l"zz) + 6(f, I’zz) = dppryn + Yookyy + 11 +C1p + 6(f, 7"22), and this gives
diary + c12 = 0 and Y1 = B — ¢y, Where B = (G(0) — 6(f, rn)) € Z(€). Now, using Lemma 2.1,
for any s € Q, we get Yorrans = rpnsyn = Yanrnsy) = (B—ci1)sn = Bsn = spf = sp(B-cyy) =
SoWnryn = SYnryn = Srpdin, and this gives rpn, € Z(Q). And additionally, if s,r € Q, then
rsy = r(sp + spi) = rsp + rsol = st + sor = (511 + Sxo)Yr = syr. The other situations can
be proven similarly. O

Using any fixed element d in QQ, we may construct an example of a CE-derivation, the map D, :
Q — Q that fulfills D,(r) — [r,d] € K, where K is an ideal contained in the center of (2, we may refer
to it as an inner CE-derivation. At this point, with the use of Lemma 2.2 it is apparent that the map D,
given by Dq(s) = [s,d 2 — d»1] + § is a CE-derivation, and applying (2.1), we obtain

Di(f) =dip +dy + = D(f). (2.5)

Additionally, given any two fixed elements ¢ and d in Q, the map G4 : Q — Q that satisfies
Gca)(r) —cr—rd € N, where N is an ideal contained in the center of ), we may refer to it as an inner
generalized CE-derivation related to the inner CE-derivation 9,, which is given by D, — [s,d] € N.

Once more, applying Lemma 2.2, we can show that the map G, presented by G(x) = (g1 + g21 —
Y11)x + x(dy, — dyy) + ¥ is a generalized CE-derivation related to the inner CE-derivation 9, and
with (2.2), we get,

Gi(f) =gn + g +din+¥n = G(f). (2.6)

For the sake of simplicity and without loss of generality, we will now substitute the CE-derivation
with the CE-derivation ® = D -9, which, by using (2.5), arrived us to ®(f) = 0 and the multiplicative
generalized CE-derivation G by the multiplicative generalized CE-derivation ¥ = G — G| with 'Y(f) =
0, by (2.6). Also, ®(0) = D(0)—D;(0) = D) - = 0 € Z(Q) and ¥(0) = G(0)-G,(0) = GO)—y =
a € Z(Q). It is easy to show that both 6 and @ generate a central ideal in Q.

The following lemmas are necessary for proving our primary theorem:

Lemma 2.3. For any element a;; € ;;, there exists b;; € Q;; and p;;, i € Zji, i, j €{1,2}, i # jsuch
that
(1) ®(a;i) = bii + pjjs (2) @(a;j) = bij + pii + T j;.

Proof. In order to prove (1), We must prove two distinct cases:

(I) Suppose that a € Qll~ Assume that d)(an) = b[l + b12 + bz] + b22. Then CI)(a“) = d)(fall) =
fO(ay) +p, p € Z(Q), which gives by; = 0, p;; = 0, and by, = pxp € Lo, s0 we get P(ay;) =
by + b1y + pap. Similarly, ®(a;y) = O(ay f) = O(an)f +7v, ¥y € Z(), which means b, = 0, and we
get ®(ayy) = by + 62.

(H) Assume that ay € Q). Write q)(azz) = b“ + b12 + b21 + bzz, so 6 = q)(f(lzz) = b11 + b12 +
Y1, Y1 € Z(Q), so byy + by, = 6 — vy, € Z(Q), which means b;; = 0 and b;; € ;. Likewise,
0 = ®(axnf) = by + by + Y2, y2 € Z(Q), s0 by + by = 0 —y, € Z(Q), so that b,; = 0, and thus
®(ay) = by + by, where by € Zy;.

Also, the proof of (2) has two separable cases:
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(I) Assume that (I)(Cllz) = by + bip + by + by, so that f(I)(Cllz) = by + by,. Also, we have (D(Cllz) =
O(fayp) = by + by + 0, 0 € Z(Q), which gives f®(aj;) = by + b, + 01;. Comparing the two
values of f®(aj,), we obtain oy = 0 and o = 0, € Zx, and we obtain O(a;,) = by + by + 0.
Now 0 = ®(a,f) = Olap)f +u, u € Z(Q), hence, O(ayp)f = (6 —u) = n € Z(Q). This provides
®(ap)f = by + byy = n € Z(Q), which means by; = 0 and by, = 1 € Zi1. So we arrive at
O(ajz) = bip +1my1 + 00

(IT) Assume that ®(a,;) = by + b1a + byy + by, so that D(ayy) f = by + by Also, we have ®(ay) =
®(ay f) = by + by + k, k € Z(Q), which gives ®(ay;)f = by + by + «1;. Comparing the two

expressions of ®@(ay;)f, we get k1 = 0, k = ko € Ly, and we obtain @(ay;) = byy + by + koo
Now 0 = ®(fas) = fO(ay) +v, v € Z(Q), hence fDP(ay) = (0 —v) = ¢ € Z(Q), and this gives
f®(ay) = ¢ € Z(Q), which means by = {11 € Z;1, and we have ®(ay;) = by + {11 + K2». O

Lemma 2.4. For any element a;; € Qq, we have Y(ay,) = byy + ¢y, for some by, € Q and ¢, € Zys.

Proof. Since Y(rs) = Y(r)s + r®(s) + y, for each r, s € Q and y € Z(Q), it consequently concludes
that, for each a;; € Q;; we have Y(ay;) = Y(fai) = f®(a1) + v1, y1 € Z(Q) because Y(f) = 0, and
by Lemma 2.3 ®(Q;,) € Q;; + Z(Q) and Z(Q) € Q; + Qy, so we have that ¥ |g,,C Q;; + Z(Q).
Now assume that W(a;1) = by + ¢, ¢ € Z(Q). Then ¥(ay,) = ¥(ai1 f) = Y(an)f + vz, v € Z(Q),
which gives W(a;;) — Y(a)f = by + ¢ — by — ¢11 € Z(Q). We conclude that ¢, € Z» and
‘I’(all) = b]l +@ = b11 + @11 t+Y0n =Cl1ten with C11 = bll +¢11 € Qll and Yy € Zzz, as required. O

Lemma 2.5. For any ap; € Qo, \P(Cllz) = b+ +1922f0r some by € Q1,, U € Z]] and 9y, € Z22-

Proof. If aj;p € Qy,, then Y(ay) = Y(fan) = fO(ap) +v, ¥ € Z(Q) so by Lemma 2.3, Y(a;,) =
by + 011 + Y = by + 7, for some by, € Q5 and 617, ? € .Z(Q) Also, \P(O) = “P(Cl]zf) = \P(Cllz)f +
ap®@(f) + v, y1 € Z(Q) so Y(app)f € Z(Q) and this gives ¥, € Z;; and since ¥ € Z(€2) we obtain
P € Zzz. So ﬁnally, we arrived at ‘P(alz) = b12 + 91 + 0. O

Lemma 2.6. For any ap; € Q21, we have ‘I’(a21) = b]l + b21 + sz,for some bll S QU, b21 S QZI and
0 € Zo.

Pl’OOf. Assume that \P(Clm) = b]l + b12 + b21 + bgz, for ar| € QZI‘ Then \P(agl) = \P(Clmf) = ‘I‘(a21)f +
0, 6 € Z(Q), which gives b1, = 0, 6y = 0, and by, = 6 = 6 € Z(Q). So we have ¥(ay) =
W(ax)f + 60 = by + by + 0y, 0 € Z(Q). O

Lemma 2.7. For any element t € (Qq; + Qz1), Y(t) = b1y + byy + 022, for some by € Qqy, by € Qyy
and 6, € .Z22.

P}’OOf: Assuming that r € (Qll + 921) and Y(r) = by + b1a + by + byy. Then V() = Y(a; +ay) =
lP[((lll + a21)f] = lI”((lll + a21)f +0, 0 € .Z(.Q) This gives b12 =0,and by, = 5 = 0 € .Z22 and we
arrive at Y(¢) = b11 + byy + 0. O

Lemma 2.8. V¥ is CE-additive on €.

Proof. 1f ayy,byy € Qq, then W(ay; + byy) = Y(f(an + b)) = fO(an + byy) + o0y = O[f(an +
bi)] = O(f)ai + b)) + 0y =D(a; +byy) + 0oy =Da) +DPbyy) + 03 = fOan) + fODb) +o4 =
‘P(fau) + \I’(fbll) + 05 = ‘P(Cl]l) + \P(bll) + 05, where 01,072,03,04 and 05 € Z(Q) O

Lemma 2.9. Ifa;, € Qq, and ay, € Qyy, then we obtain Y(ay, + ay1) — Y(ay) — P(az) € Z(Q).
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Pl"OOf. For any wy, € an and h12 S Q]z, n= 1, 2 we own {‘P(d]] + a21) - ‘“P(Cl]]) - ‘I’(a21)}h12w1n = 0,

which means

{P(ai +ax)—¥lan) — Y(az)thi, = {0}.

Now, for any wy, € Q,, and h; € Q,, n = 1,2, we have got

Y(ay + az)hiawa,

V(a1 + ax)hiawa,) — (arn + ax)@(hiawa,) + 1
= Yl(aihiy + a)(wan + hiawa,)] = (@11 + a21)@(hipwa,) + my
= W(ayhp + ax)(wa, + hiawa,)

+aithiy + ax)@(wa, + hiowa,) — (an + a2)@(hiawa,) + m2
= I+, m, me Z(Q),

2.7)

(2.8)

where we assume that Iy = (Clllhlz + a21)CI)(wz,1 + h12W2n) - (aU + 6121)(1)(]’11214/2”) +m and I, =
W(aiihiz + az))(wa, + hiawy,).
Now, let us calculate the terms I'; and I';:

F1:

(anhia + ax)@(wa, + hipwa,) — (anr + ax)P(hiowa,) + 12

arhp®@wy, + hiawan) + a1 @(wo, + hiaway) — (a1 + a)P@(hiawa,) + 12
W(aihia(wa, + hiawz,)) — Ylaihi)(wa, + hiawa,) + W(a (wa, + hiaway))
—W(az)(wan + hiawan) — a1 @(hiowa,) — a1 @(hipwa,) + 13

{W(aithiawa,) — Y(aihi))wa, — arthp®wa,)} + aihn®@(w,)
+HW(az1hiwan) — Y(a2)hiawa, — a2 @(hiawan)} — ar @(hiawa,)
—W(aihi)hiawa, — ¥(az)wa, + 03

anhip®@wa,) — ay ®©(hiawa,) — Y(ahi)hipwa, — Y(aa)wa, + n4

—a O(h)wa, — Y(anhi)hiawa, — Plaaiwa,) + a1 @(wa,) + 15

—ay O(hi)wy, + a1 ®(wy,) + 176, by Lemma 2.5,

where 7173, 14, 175 and 1 € Z(Q), so that we obtain

It = —a; 1 ©(hig)wa, + ay O(wy,) + 1.

Also, for I'; we have:

FZZ

AIMS Mathematics

W(aihy + ax))(wan + hiawa,) = W(aihia + ax)wa, + W(ahia + ax)hiawa,
W((ar1hiz + ax)wan) — (a11hia + a2)@(wa,) + P((ari1hiz + az)hiawan)
—(ai1hiz + ax))@(hiowy,) + 17

W(ayihiawa,) + Y(a2hiawa,) — arthin®(wy,) — ay @(wa,) — arhp ®hiaws,)
—ay O(h1awa,) + 17

Y(aihi)wa, + ¥Y(aa)hiowy, — a1thin®@(hiawa,) — a ®(wa,) + 1s
W(ai)hiawa, + an®(hi)wa, + Y(az)hiawa, — a1 ®(wa,) + 1o,

by Lemma 2.3, where 17, ng, and n9 € Z(Q).

(2.9)

(2.10)

(2.11)

Volume 9, Issue 11, 33254-33262.
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So, we obtain
I = W(ai)hiawa, + an®(hi)wa, + ¥Y(az)hiows, — az @(wy,) + 1. (2.12)

Now, coming back to (2.10) and using (2.12) to collect the values of I'; and I'; and substituting in (2.8),
we get Y(ay +ax)hiawy, = Y(ai)hiowa, +¥(ax)hiawa, +m10, 1m0 € Z(Q) which gives {¥(a +a) -
W(a) — P(as ) hiawa, € Z(Q) and so we obtain

{P(an + ax) —¥(an) — ¥Y(az)}thixQ,, € Z(Q). (2.13)

From (2.7) and (2.13) we obtain {¥(a; + ay;) — Y(a;1) — P(az1)}h2QQ € Z(). Using condition (L)
we have {W(ay; + a21) — Y(ay) — Y(a21)}Q1, € Z(Q). Using condition (L,), we obtain W(a, + az) —
W(a) —¥Ylaxn) € Z(Q). o

Lemma 2.10. ¥ is CE-additive on €;.

Pl’OOf. For any api, l’)21 € 921,)’12 S Q]z and Yon € an we have

W(az1 + ban)yiayan = Y((a21 + b21)y12y2,) — (@21 + b2)@(y12y20) + 71

= W(aayi2yan + baiyizyan) — (@21 + ba)@(y12y2.) + 7

= Y((aauyiz + ba1) 2 + y12y20)) — (@21 + ba1)@(y12y2,) + 73

= W(aauyiz + b2) o + y12y2u) + (@21y12 + b21)@(Y2s + Y12Y20)
—(a21 + D) @(y12y20) + 72

= YW(aayi2 + ba)ya, + Y(a2iyi2 + ba)yi2yan + a21y12@02n + y12Y20)
+b21D(y2, + Y12Y20) — a21P(V12Y20) = D21 @ (Y12Y20) + 72

= W(aaynyam) — (@yi2 + ba)@(y2,) + Y(ba1yi2y2) — (@ay12 + ba1)@(y12y24)
+®(azy12y20) — ©(a21y12)(yan + Y12Y20)
+@(b21y12Y20) — ©(b21)(Y2n + Y12Y20) — @21 P(V12Y24) — D21 P (V12y20) + 73

= {Y(aa1y12y2) — a1 @(yi2yan)} + (¥ (b21y12520) — b21 @(y12y2n)}
—{a21y12@(y12y24) + Pl@21y12)y12Y20} + {P(@21Y12Y20) — P(@21Y12)Y2n
=21 Y12P(y20)} + {P(b21y12Y20) — ©(D21)y12Y20 — D21 DP(V12Y20)}
—{021D(y2n) + P(D21)y2n} + 73

= W(aa)ynywm + ¥(ba)yi2yon + ma, (2.14)

where ; € Z(Q), i € {1,2,3,4}. So we have
[W(az + bay) — ¥(azr) — ¥(b21)]1Q2120, € Z(Q). (2.15)

Also, it 18 clear that
[W(azi + by1) — ¥(az) — ¥(b21)]1Q12Q1, € Z(Q), (2.16)

where n = 1,2. From (2.15) and (2.16) we obtain [WW(ay; + b1) — W(az1) — W(021)]Q1,Q € Z(Q). By
condition (L;) we have [W(ay; + ba1) — Y(az) — P(b21)]Q12 € Z(2). Using condition (L,), we obtain
W(az + by) —¥(az) —¥(by) € Z(Q). o
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Lemma 2.11. ¥ is CE-additive on Q1 + Q;; = Qf.

Proof. If ayy, byy € Q1 and ayy, by € 5y, then Lemmas 2.8, 2.9 and 2.10 give

W((ar +axr) + (b1 + ba1)) W((ar + b11) + (a2 + ba21))

= W(an + b)) +W(aa + bar) + ¢

= W(an) +¥Y(bu) + Y(an) + Y(b21) + ¢

= (W(an) +¥Y(a2) + (Y1) + ¥(ba1)) + 2

= W(ai +az)+¥ (b + by) + ¢,

where ¢; € Z(Q), i € {1,2,3}. Thus, ¥ is CE-additive on Q; + €, as required. O
3. Results

We can now prove our primary result.

Theorem 3.1. Suppose that Q is a ring with a nontrivial idempotent f that satisfies requirements (L;)
and (Ly). If ¥ is any multiplicative generalized CE-derivation of , then ¥ is CE-additive.

Proof. Suppose that ¥ is any multiplicative generalized CE-derivation of Q, i.e., W(ab) = ¥(a)b +
a®(b) + v, for every a,b € Q and v € Z(Q2) and some CE-derivation ®@ of Q. Consider ¥(a) + ¥ (b),
where a and b € Q. Take an element /2 in Qf = Q;; + Qy. Thus, ah and bh € Qf. Using Lemma 2.11,
we obtain (W(a) + WY(b))h = Y(ah) + Y(bh) — (a + b)®(h) + vi = Y(ah + bh) — (a + b)D(h) + v, =
Y((a + b)h) — (a + b)D(h) + v, = Y(a + b)h + (a + b)D(h) — (a + b)D(h) + v3 = Y(a + b)h + v3,
where v; € Z(Q), i € {1,2,3}. Thus, (¥(a) + Y(b))h — ¥Y(a + b)h € Z(€). Since h is an arbitrary
element in Qf, we obtain (W(a) + ¥(b) — Y(a + b))Qf € Z(Q). Under condition (L;), we obtain
Y(a + b) —Y(a) — Y (b) € Z(Q). It demonstrates that the multiplicative generalized CE-derivations ¥
and G are a CE-additive. O

Now, we are in a position to raise the following open problem. “Under what conditions does an
MCE-derivation (or MGCE-derivation) become a centrally extended additive over an alternative ring?”

4. Conclusions

We showed that if G is an appropriate multiplicative generalized CE-derivation of a ring €, then G
is CE-additive.
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