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1. Introduction

The investigation of centrally extended mappings in rings under certain conditions plays an
increasingly important role in ring theory. The work of Bell and Daif [1] introduced the notion of
centrally extended derivation as follows: Let Ω be a ring with centerZ(Ω). A mapD of Ω is said to be
a centrally extended derivation (CE-derivation) if, for all v, u ∈ Ω,D(v+u)−D(v)−D(u) ∈ Z(Ω), and
D(vu) − D(v)u − vD(u) ∈ Z(Ω). Moreover, they discussed the existence of such a map, which is not
a derivation, as well as providing some findings regarding commutativity. Thenceforth, considerable
findings about various types of maps have been discovered; for example, see [2–5].

The study of when multiplicative maps will be additive goes back to 1948, when Rickart [6] proved
that any bijective and multiplicative mapping over a Boolean ring onto any arbitrary ring is additive.
In 1969, the work of Martindale [7] was significant to generalize Rickart’s main theorem when he
demonstrated that every multiplicative isomorphism on a ring with a non-trivial idempotent is additive.

Inspired by Martindale’s pioneering work, Daif [8] proved that a multiplicative derivation is additive
under the existence of certain conditions on a ring.

Later on, the additivity of n−multiplicative maps on associative rings satisfying Martindale’s
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conditions was proved by Wang [9]. In 2016 [10], Ferreira and Ferreira undertook a detailed study of a
similar problem but within the framework of alternative rings. Inspired by these previous findings, [11]
brilliantly proved the additivity of n−multiplicative isomorphisms and n−multiplicative derivations
over Jordan rings. A great deal of work has been done in [12] and [13] concerning multiplicative left
centralizer and multiplicative generalized derivations. Motivated by the role that centrally extended
derivations play in the field of ring theory, we herein raised a question: When are multiplicative
generalized CE-derivations additive?

The idea of a multiplicative generalized CE-derivation (MGCE-derivation) of a ringΩ is introduced
in this note. This concept is defined as a mapping G ofΩ intoΩ so that G(vu)−G(v)u−vD(u) ∈ Z(Ω),
∀ v, u ∈ Ω, whereD : Ω→ Ω is a CE-derivation. In other words, the maps G andD can be expressed
as G(vu) = G(v)u + vD(u) + δ(v, u) and D(vu) = D(v)u + vD(u) + σ(v, u), where δ(v, u) and σ(v, u)
are elements in Z(Ω) and related with the mappings G and D, respectively. For any ring Ω, a map
G : Ω→ Ω is called centrally extended additive (CE-additive) so that G(v + u) −G(v) −G(u) ∈ Z(Ω),
∀ v, u ∈ Ω.

In this paper, we aim to find the answer to the following question: “Under what conditions does
a multiplicative generalized CE-derivation become a centrally extended additive?” We will give a
response to this query under appropriate circumstances.

2. Preliminaries

Throughout this paper, let Ω be a ring that does not necessarily have a unity, and let f ∈ Ω be an
idempotent element such that f , 1, f , 0. Formally, we will set f1 = f and f2 = 1 − f . The Peirce
decomposition of Ω concerning the idempotent f can be expressed as Ω = f1Ω f1 ⊕ f1Ω f2 ⊕ f2Ω f1 ⊕

f2Ω f2. By letting Ωi j = fiΩ f j: i, j = 1, 2, we could write Ω = Ω11 ⊕ Ω12 ⊕ Ω21 ⊕ Ω22 (For further
information, see Jacobson 1964 [14], Page 49). An element within the subring Ωi j will be indicated by
ri j. If λ = λ11 + λ12 + λ21 + λ22 ∈ Z(Ω), where fλ = λ f , then λ12 = λ21 = 0. Hence, we can conclude
thatZ(Ω) ⊆ Ω11 ⊕Ω22. Additionally, we denote byZii the subring Ωii ∩Z(Ω).

Applying the definition of D, we observe that D(0) = σ(0, 0) ∈ Z(Ω). But D(0)Ω is an ideal
contained in the center of Ω. Since fD(0) ∈ Z(Ω), and σ(0, 0) = σ11(0, 0) + σ22(0, 0), we have
fD(0) = σ11(0, 0) ∈ Z11, and this provides σ22(0, 0) ∈ Z22. Similarly, G(0)Ω is an ideal contained in
the center of Ω, and δ11(0, 0) ∈ Z11, and δ22(0, 0) ∈ Z22.

Moreover, D( f ) = D( f 2) = D( f ) f + fD( f ) + φ; φ = σ( f , f ) ∈ Z(Ω). If we express D( f ) =
d11 + d12 + d21 + d22 and apply the two ways of D( f ), then we obtain d22 = φ22 and d11 = −φ11.
Consequently, we have

D( f ) = d12 + d21 − φ11 + φ22. (2.1)

In a similar way, if G : Ω → Ω is a multiplicative generalized CE-derivation related with a CE-
derivation D, then G( f ) = G( f 2) = G( f ) f + fD( f ) + ψ, where ψ = δ( f , f ) ∈ Z(Ω) and it is possible
to write G( f ) = g11 + g12 + g21 + g22. By making use of the values of G( f ) andD( f ), we conclude that
ψ11 = φ11, g22 = ψ22 and g12 = d12, so

G( f ) = g11 + d12 + g21 + ψ22. (2.2)

To finish our task, we will need the following two facts:
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Lemma 2.1. ψii ∈ Zii and φii ∈ Zii, for i ∈ {1, 2}.

Proof. For all r ∈ Ω, by figuring out the two sides of G( f r) = G( f ( f r)), we obtain

G( f )r + δ( f , r) = G( f ) f r + fD( f )r + fσ( f , r) + δ( f , f r). (2.3)

Now using (2.1) and (2.2) in (2.3), we obtain ψr = fσ( f , r) + δ( f , f r) − δ( f , r), where φ11 = ψ11 and
this means

ψr ∈ Ω11 ⊕Ω22. (2.4)

Now, if we rewrite r as r = r11 + r12 + r21 + r22 and using that ψ ∈ Z(Ω), we obtain ψ11r11 =

r11ψ11 and ψ22r22 = r22ψ22, which implies ψ11 ∈ Z(Ω11) and ψ22 ∈ Z(Ω22). And again (2.4) gives
ψ11r12 + ψ22r21 = 0 and r12ψ22 + r21ψ11 = 0, which gives ψ11r12 = ψ22r21 = 0 and r12ψ22 = r21ψ11 = 0,
this means that ψ is a left and right annihilator of the two subrings Ω12 and Ω21. Now for any r ∈ Ω,
ψ11r = ψ11r11 = r11ψ11 = rψ11, which gives ψ11 ∈ Z(Ω). Since ψ22 = ψ − ψ11, ψ22 ∈ Z(Ω). Also, we
obtain φ11 = ψ11 ∈ Z(Ω), and φ22 = (φ − φ11) ∈ Z(Ω). □

To obtain our primary outcome, we presuppose that the ring Ω has an idempotent f and that Ω
satisfies the following requirements:

(L1) αΩ f ⊂ Z(Ω) implies that α ∈ Z(Ω).
(L2) α fΩ(1 − f ) ⊂ Z(Ω) implies that α ∈ Z(Ω).

And G is any multiplicative generalized CE-derivation of Ω related with a CE-derivationD of Ω.
Let us now present some examples of rings that meet the conditions (L1) and (L2), as well as those

that do not meet these requirements.

Example 2.1. Let Ω = M2(C), the ring of 2 × 2 matrices over the field C of complex numbers. Taking

f =
(

1 0
0 0

)
∈ Ω, which is a nontrivial idempotent element. Let α =

(
0 1
0 0

)
∈ Ω. It is clear that

αβ f ∈ Z(Ω), and α fβ(1 − f ) ∈ Z(Ω) for all β ∈ Ω whenever α < Z(Ω). That is, this ring neither
satisfy (L1) nor (L2).

Example 2.2. Let’s take M2(H), the ring of 2 × 2 matrices over the quaternions H. Let f =
(

1 0
0 0

)
and α =

(
a b
c d

)
∈ M2(H). If αΩ f ⊆ Z(Ω), then α must be in the form α =

(
a 0
0 0

)
which means

α ∈ Z(Ω) and if α fΩ(1 − f ) ⊆ Z(Ω), then α must be in the form α =

(
0 0
0 a

)
which means α ∈ Z(Ω).

Thus, if αΩ f ⊆ Z(Ω) or α fΩ(1 − f ) ⊆ Z(Ω) then α ∈ Z(Ω). That is, this ring satisfies both of (L1)
and (L2).

In the subsequent proofs, the following lemma is helpful.

Lemma 2.2. The ideals Ωψ, Ωψii, Ωφ, Ωφii, and Ωφ̄ are contained in the center of Ω, in which ψ =
δ( f , f ) ∈ Z(Ω), φ = σ( f , f ) ∈ Z(Ω), and φ̄ = φ22 − φ11 ∈ Z(Ω), where i ∈ {1, 2}.
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Proof. Starting with Lemma 2.1, for each r11 ∈ Ω11, we obtain ψr11r12 = r11ψr12 = 0 ∈ Z(Ω) and
using condition (L2), we obtain r11ψ = ψr11 ∈ Z(Ω).

Second, assume that D(r22) = c11 + c12 + c21 + c22, and since G( f r22) = G(0) ∈ Z(Ω), using (2.2),
we have G(0) = G( f )r22 + fD(r22) + δ( f , r22) = d12r22 + ψ22r22 + c11 + c12 + δ( f , r22), and this gives
d12r22 + c12 = 0 and ψ22r22 = β − c11, where β = (G(0) − δ( f , r22)) ∈ Z(Ω). Now, using Lemma 2.1,
for any s ∈ Ω, we get ψ22r22s = r22ψ22s22 = ψ22r22s22 = (β − c11)s22 = βs22 = s22β = s22(β − c11) =
s22ψ22r22 = sψ22r22 = sr22ψ22, and this gives r22ψ22 ∈ Z(Ω). And additionally, if s, r ∈ Ω, then
rsψ = r(s11ψ + s22ψ) = rs11ψ + rs22ψ = s11ψr + s22ψr = (s11 + s22)ψr = sψr. The other situations can
be proven similarly. □

Using any fixed element d in Ω, we may construct an example of a CE-derivation, the map Dd :
Ω→ Ω that fulfillsDd(r) − [r, d] ∈ K , where K is an ideal contained in the center of Ω, we may refer
to it as an inner CE-derivation. At this point, with the use of Lemma 2.2 it is apparent that the mapD1

given byD1(s) = [s, d12 − d21] + φ̄ is a CE-derivation, and applying (2.1), we obtain

D1( f ) = d12 + d21 + φ̄ = D( f ). (2.5)

Additionally, given any two fixed elements c and d in Ω, the map G(c,d) : Ω → Ω that satisfies
G(c,d)(r) − cr − rd ∈ N , whereN is an ideal contained in the center of Ω, we may refer to it as an inner
generalized CE-derivation related to the inner CE-derivationDd, which is given byDd − [s, d] ∈ N .

Once more, applying Lemma 2.2, we can show that the map G1 presented by G1(x) = (g11 + g21 −

ψ11)x + x(d12 − d21) + ψ is a generalized CE-derivation related to the inner CE-derivation D1, and
with (2.2), we get,

G1( f ) = g11 + g21 + d12 + ψ22 = G( f ). (2.6)

For the sake of simplicity and without loss of generality, we will now substitute the CE-derivationD
with the CE-derivationΦ = D−D1, which, by using (2.5), arrived us toΦ( f ) = 0 and the multiplicative
generalized CE-derivation G by the multiplicative generalized CE-derivation Ψ = G −G1 with Ψ( f ) =
0, by (2.6). Also, Φ(0) = D(0)−D1(0) = D(0)− φ̄ = θ ∈ Z(Ω) and Ψ(0) = G(0)−G1(0) = G(0)−ψ =
α ∈ Z(Ω). It is easy to show that both θ and α generate a central ideal in Ω.

The following lemmas are necessary for proving our primary theorem:

Lemma 2.3. For any element ai j ∈ Ωi j, there exists bi j ∈ Ωi j and ρii, σii ∈ Zii, i, j ∈ {1, 2}, i , j such
that
(1) Φ(aii) = bii + ρ j j, (2) Φ(ai j) = bi j + ρii + σ j j.

Proof. In order to prove (1), We must prove two distinct cases:
(I) Suppose that a11 ∈ Ω11. Assume that Φ(a11) = b11 + b12 + b21 + b22. Then Φ(a11) = Φ( f a11) =

fΦ(a11) + ρ, ρ ∈ Z(Ω), which gives b21 = 0, ρ11 = 0, and b22 = ρ22 ∈ Z22, so we get Φ(a11) =
b11 + b12 + ρ22. Similarly, Φ(a11) = Φ(a11 f ) = Φ(a11) f + γ, γ ∈ Z(Ω), which means b12 = 0, and we
get Φ(a11) = b11 + δ22.

(II) Assume that a22 ∈ Ω22. Write Φ(a22) = b11 + b12 + b21 + b22, so θ = Φ( f a22) = b11 + b12 +

γ1, γ1 ∈ Z(Ω), so b11 + b12 = θ − γ1 ∈ Z(Ω), which means b12 = 0 and b11 ∈ Z11. Likewise,
θ = Φ(a22 f ) = b11 + b21 + γ2, γ2 ∈ Z(Ω), so b11 + b21 = θ − γ2 ∈ Z(Ω), so that b21 = 0, and thus
Φ(a22) = b11 + b22, where b11 ∈ Z11.

Also, the proof of (2) has two separable cases:
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(I) Assume that Φ(a12) = b11 + b12 + b21 + b22, so that fΦ(a12) = b11 + b12. Also, we have Φ(a12) =
Φ( f a12) = b11 + b12 + σ, σ ∈ Z(Ω), which gives fΦ(a12) = b11 + b12 + σ11. Comparing the two
values of fΦ(a12), we obtain σ11 = 0 and σ = σ22 ∈ Z22, and we obtain Φ(a12) = b11 + b12 + σ22.

Now θ = Φ(a12 f ) = Φ(a12) f + µ, µ ∈ Z(Ω), hence, Φ(a12) f = (θ − µ) = η ∈ Z(Ω). This provides
Φ(a12) f = b11 + b21 = η ∈ Z(Ω), which means b21 = 0 and b11 = η11 ∈ Z11. So we arrive at
Φ(a12) = b12 + η11 + σ22.

(II) Assume that Φ(a21) = b11 + b12 + b21 + b22, so that Φ(a21) f = b11 + b21. Also, we have Φ(a21) =
Φ(a21 f ) = b11 + b21 + κ, κ ∈ Z(Ω), which gives Φ(a21) f = b11 + b21 + κ11. Comparing the two
expressions of Φ(a21) f , we get κ11 = 0, κ = κ22 ∈ Z22, and we obtain Φ(a21) = b11 + b21 + κ22.

Now θ = Φ( f a21) = fΦ(a21) + ν, ν ∈ Z(Ω), hence fΦ(a21) = (θ − ν) = ζ ∈ Z(Ω), and this gives
fΦ(a21) = ζ ∈ Z(Ω), which means b11 = ζ11 ∈ Z11, and we have Φ(a21) = b21 + ζ11 + κ22. □

Lemma 2.4. For any element a11 ∈ Ω11, we have Ψ(a11) = b11 +φ22 for some b11 ∈ Ω11 and φ22 ∈ Z22.

Proof. Since Ψ(rs) = Ψ(r)s + rΦ(s) + γ, for each r, s ∈ Ω and γ ∈ Z(Ω), it consequently concludes
that, for each a11 ∈ Ω11 we have Ψ(a11) = Ψ( f a11) = fΦ(a11) + γ1, γ1 ∈ Z(Ω) because Ψ( f ) = 0, and
by Lemma 2.3 Φ(Ω11) ⊂ Ω11 + Z(Ω) and Z(Ω) ⊂ Ω11 + Ω22, so we have that Ψ |Ω11⊂ Ω11 + Z(Ω).
Now assume that Ψ(a11) = b11 + φ, φ ∈ Z(Ω). Then Ψ(a11) = Ψ(a11 f ) = Ψ(a11) f + γ2, γ2 ∈ Z(Ω),
which gives Ψ(a11) − Ψ(a11) f = b11 + φ − b11 − φ11 ∈ Z(Ω). We conclude that φ22 ∈ Z22 and
Ψ(a11) = b11+φ = b11+φ11+φ22 = c11+φ22 with c11 = b11+φ11 ∈ Ω11 and φ22 ∈ Z22, as required. □

Lemma 2.5. For any a12 ∈ Ω12, Ψ(a12) = b12+ϑ11+ϑ22 for some b12 ∈ Ω12, ϑ11 ∈ Z11 and ϑ22 ∈ Z22.

Proof. If a12 ∈ Ω12, then Ψ(a12) = Ψ( f a12) = fΦ(a12) + γ, γ ∈ Z(Ω) so by Lemma 2.3, Ψ(a12) =
b12 + δ11 + γ = b12 + ϑ, for some b12 ∈ Ω12 and δ11, ϑ ∈ Z(Ω). Also, Ψ(0) = Ψ(a12 f ) = Ψ(a12) f +
a12Φ( f ) + γ1, γ1 ∈ Z(Ω) so Ψ(a12) f ∈ Z(Ω) and this gives ϑ11 ∈ Z11 and since ϑ ∈ Z(Ω) we obtain
ϑ22 ∈ Z22. So finally, we arrived at Ψ(a12) = b12 + ϑ11 + ϑ22. □

Lemma 2.6. For any a21 ∈ Ω21, we have Ψ(a21) = b11 + b21 + θ22, for some b11 ∈ Ω11, b21 ∈ Ω21 and
θ22 ∈ Z22.

Proof. Assume that Ψ(a21) = b11 + b12 + b21 + b22, for a21 ∈ Ω21. Then Ψ(a21) = Ψ(a21 f ) = Ψ(a21) f +
θ, θ ∈ Z(Ω), which gives b12 = 0, θ11 = 0, and b22 = θ22 = θ ∈ Z(Ω). So we have Ψ(a21) =
Ψ(a21) f + θ22 = b11 + b21 + θ22, θ22 ∈ Z(Ω). □

Lemma 2.7. For any element t ∈ (Ω11 + Ω21), Ψ(t) = b11 + b21 + δ22, for some b11 ∈ Ω11, b21 ∈ Ω21

and δ22 ∈ Z22.

Proof. Assuming that t ∈ (Ω11 + Ω21) and Ψ(t) = b11 + b12 + b21 + b22. Then Ψ(t) = Ψ(a11 + a21) =
Ψ[(a11 + a21) f ] = Ψ(a11 + a21) f + δ, δ ∈ Z(Ω). This gives b12 = 0, and b22 = δ = δ22 ∈ Z22 and we
arrive at Ψ(t) = b11 + b21 + δ22. □

Lemma 2.8. Ψ is CE-additive on Ω11.

Proof. If a11, b11 ∈ Ω11, then Ψ(a11 + b11) = Ψ( f (a11 + b11)) = fΦ(a11 + b11) + σ1 = Φ[ f (a11 +

b11)] − Φ( f )(a11 + b11) + σ2 = Φ(a11 + b11) + σ2 = Φ(a11) + Φ(b11) + σ3 = fΦ(a11) + fΦ(b11) + σ4 =

Ψ( f a11) + Ψ( f b11) + σ5 = Ψ(a11) + Ψ(b11) + σ5, where σ1, σ2, σ3, σ4 and σ5 ∈ Z(Ω). □

Lemma 2.9. If a11 ∈ Ω11 and a21 ∈ Ω21, then we obtain Ψ(a11 + a21) − Ψ(a11) − Ψ(a21) ∈ Z(Ω).
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Proof. For any w1n ∈ Ω1n and h12 ∈ Ω12, n = 1, 2 we own {Ψ(a11 + a21) − Ψ(a11) − Ψ(a21)}h12w1n = 0,
which means

{Ψ(a11 + a21) − Ψ(a11) − Ψ(a21)}h12Ω1n = {0}. (2.7)

Now, for any w2n ∈ Ω2n and h12 ∈ Ω12, n = 1, 2, we have got

Ψ(a11 + a21)h12w2n = Ψ((a11 + a21)h12w2n) − (a11 + a21)Φ(h12w2n) + η1

= Ψ[(a11h12 + a21)(w2n + h12w2n)] − (a11 + a21)Φ(h12w2n) + η1

= Ψ(a11h12 + a21)(w2n + h12w2n)
+(a11h12 + a21)Φ(w2n + h12w2n) − (a11 + a21)Φ(h12w2n) + η2

= Γ2 + Γ1, η1, η2 ∈ Z(Ω), (2.8)

where we assume that Γ1 = (a11h12 + a21)Φ(w2n + h12w2n) − (a11 + a21)Φ(h12w2n) + η2 and Γ2 =

Ψ(a11h12 + a21)(w2n + h12w2n).
Now, let us calculate the terms Γ1 and Γ2:

Γ1 = (a11h12 + a21)Φ(w2n + h12w2n) − (a11 + a21)Φ(h12w2n) + η2

= a11h12Φ(w2n + h12w2n) + a21Φ(w2n + h12w2n) − (a11 + a21)Φ(h12w2n) + η2

= Ψ(a11h12(w2n + h12w2n)) − Ψ(a11h12)(w2n + h12w2n) + Ψ(a21(w2n + h12w2n))
−Ψ(a21)(w2n + h12w2n) − a11Φ(h12w2n) − a21Φ(h12w2n) + η3

= {Ψ(a11h12w2n) − Ψ(a11h12)w2n − a11h12Φ(w2n)} + a11h12Φ(w2n)
+{Ψ(a21h12w2n) − Ψ(a21)h12w2n − a21Φ(h12w2n)} − a11Φ(h12w2n)
−Ψ(a11h12)h12w2n − Ψ(a21)w2n + η3

= a11h12Φ(w2n) − a11Φ(h12w2n) − Ψ(a11h12)h12w2n − Ψ(a21)w2n + η4

= −a11Φ(h12)w2n − Ψ(a11h12)h12w2n − Ψ(a21w2n) + a21Φ(w2n) + η5

= −a11Φ(h12)w2n + a21Φ(w2n) + η6, by Lemma 2.5, (2.9)

where η3, η4, η5 and η6 ∈ Z(Ω), so that we obtain

Γ1 = −a11Φ(h12)w2n + a21Φ(w2n) + η6. (2.10)

Also, for Γ2 we have:

Γ2 = Ψ(a11h12 + a21)(w2n + h12w2n) = Ψ(a11h12 + a21)w2n + Ψ(a11h12 + a21)h12w2n

= Ψ((a11h12 + a21)w2n) − (a11h12 + a21)Φ(w2n) + Ψ((a11h12 + a21)h12w2n)
−(a11h12 + a21)Φ(h12w2n) + η7

= Ψ(a11h12w2n) + Ψ(a21h12w2n) − a11h12Φ(w2n) − a21Φ(w2n) − a11h12Φ(h12w2n)
−a21Φ(h12w2n) + η7

= Ψ(a11h12)w2n + Ψ(a21)h12w2n − a11h12Φ(h12w2n) − a21Φ(w2n) + η8

= Ψ(a11)h12w2n + a11Φ(h12)w2n + Ψ(a21)h12w2n − a21Φ(w2n) + η9,

by Lemma 2.3, where η7, η8, and η9 ∈ Z(Ω). (2.11)
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So, we obtain

Γ2 = Ψ(a11)h12w2n + a11Φ(h12)w2n + Ψ(a21)h12w2n − a21Φ(w2n) + η9. (2.12)

Now, coming back to (2.10) and using (2.12) to collect the values of Γ1 and Γ2 and substituting in (2.8),
we getΨ(a11+a21)h12w2n = Ψ(a11)h12w2n+Ψ(a21)h12w2n+η10, η10 ∈ Z(Ω) which gives {Ψ(a11+a21)−
Ψ(a11) − Ψ(a21)}h12w2n ∈ Z(Ω) and so we obtain

{Ψ(a11 + a21) − Ψ(a11) − Ψ(a21)}h12Ω2n ⊂ Z(Ω). (2.13)

From (2.7) and (2.13) we obtain {Ψ(a11 + a21) − Ψ(a11) − Ψ(a21)}h12Ω ⊂ Z(Ω). Using condition (L1)
we have {Ψ(a11 + a21) − Ψ(a11) − Ψ(a21)}Ω12 ⊂ Z(Ω). Using condition (L2), we obtain Ψ(a11 + a21) −
Ψ(a11) − Ψ(a21) ∈ Z(Ω). □

Lemma 2.10. Ψ is CE-additive on Ω21.

Proof. For any a21, b21 ∈ Ω21, y12 ∈ Ω12 and y2n ∈ Ω2n we have

Ψ(a21 + b21)y12y2n = Ψ((a21 + b21)y12y2n) − (a21 + b21)Φ(y12y2n) + π1

= Ψ(a21y12y2n + b21y12y2n) − (a21 + b21)Φ(y12y2n) + π1

= Ψ((a21y12 + b21)(y2n + y12y2n)) − (a21 + b21)Φ(y12y2n) + π1

= Ψ(a21y12 + b21)(y2n + y12y2n) + (a21y12 + b21)Φ(y2n + y12y2n)
−(a21 + b21)Φ(y12y2n) + π2

= Ψ(a21y12 + b21)y2n + Ψ(a21y12 + b21)y12y2n + a21y12Φ(y2n + y12y2n)
+b21Φ(y2n + y12y2n) − a21Φ(y12y2n) − b21Φ(y12y2n) + π2

= Ψ(a21y12y2n) − (a21y12 + b21)Φ(y2n) + Ψ(b21y12y2n) − (a21y12 + b21)Φ(y12y2n)
+Φ(a21y12y2n) − Φ(a21y12)(y2n + y12y2n)
+Φ(b21y12y2n) − Φ(b21)(y2n + y12y2n) − a21Φ(y12y2n) − b21Φ(y12y2n) + π3

= {Ψ(a21y12y2n) − a21Φ(y12y2n)} + {Ψ(b21y12y2n) − b21Φ(y12y2n)}
−{a21y12Φ(y12y2n) + Φ(a21y12)y12y2n} + {Φ(a21y12y2n) − Φ(a21y12)y2n

−a21y12Φ(y2n)} + {Φ(b21y12y2n) − Φ(b21)y12y2n − b21Φ(y12y2n)}
−{b21Φ(y2n) + Φ(b21)y2n} + π3

= Ψ(a21)y12y2n + Ψ(b21)y12y2n + π4, (2.14)

where πi ∈ Z(Ω), i ∈ {1, 2, 3, 4}. So we have

[Ψ(a21 + b21) − Ψ(a21) − Ψ(b21)]Ω12Ω2n ⊂ Z(Ω). (2.15)

Also, it is clear that
[Ψ(a21 + b21) − Ψ(a21) − Ψ(b21)]Ω12Ω1n ⊂ Z(Ω), (2.16)

where n = 1, 2. From (2.15) and (2.16) we obtain [Ψ(a21 + b21) − Ψ(a21) − Ψ(b21)]Ω12Ω ⊂ Z(Ω). By
condition (L1) we have [Ψ(a21 + b21) − Ψ(a21) − Ψ(b21)]Ω12 ⊂ Z(Ω). Using condition (L2), we obtain
Ψ(a21 + b21) − Ψ(a21) − Ψ(b21) ∈ Z(Ω). □
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Lemma 2.11. Ψ is CE-additive on Ω11 + Ω21 = Ω f .

Proof. If a11, b11 ∈ Ω11 and a21, b21 ∈ Ω21, then Lemmas 2.8, 2.9 and 2.10 give

Ψ((a11 + a21) + (b11 + b21)) = Ψ((a11 + b11) + (a21 + b21))
= Ψ(a11 + b11) + Ψ(a21 + b21) + ϕ1

= Ψ(a11) + Ψ(b11) + Ψ(a21) + Ψ(b21) + ϕ2

= (Ψ(a11) + Ψ(a21)) + (Ψ(b11) + Ψ(b21)) + ϕ2

= Ψ(a11 + a21) + Ψ(b11 + b21) + ϕ3,

where ϕi ∈ Z(Ω), i ∈ {1, 2, 3}. Thus, Ψ is CE-additive on Ω11 + Ω21, as required. □

3. Results

We can now prove our primary result.

Theorem 3.1. Suppose that Ω is a ring with a nontrivial idempotent f that satisfies requirements (L1)
and (L2). If Ψ is any multiplicative generalized CE-derivation of Ω, then Ψ is CE-additive.

Proof. Suppose that Ψ is any multiplicative generalized CE-derivation of Ω, i.e., Ψ(ab) = Ψ(a)b +
aΦ(b) + ν, for every a, b ∈ Ω and ν ∈ Z(Ω) and some CE-derivation Φ of Ω. Consider Ψ(a) + Ψ(b),
where a and b ∈ Ω. Take an element h in Ω f = Ω11 +Ω21. Thus, ah and bh ∈ Ω f . Using Lemma 2.11,
we obtain (Ψ(a) + Ψ(b))h = Ψ(ah) + Ψ(bh) − (a + b)Φ(h) + ν1 = Ψ(ah + bh) − (a + b)Φ(h) + ν2 =

Ψ((a + b)h) − (a + b)Φ(h) + ν2 = Ψ(a + b)h + (a + b)Φ(h) − (a + b)Φ(h) + ν3 = Ψ(a + b)h + ν3,

where νi ∈ Z(Ω), i ∈ {1, 2, 3}. Thus, (Ψ(a) + Ψ(b))h − Ψ(a + b)h ∈ Z(Ω). Since h is an arbitrary
element in Ω f , we obtain (Ψ(a) + Ψ(b) − Ψ(a + b))Ω f ∈ Z(Ω). Under condition (L1), we obtain
Ψ(a + b) − Ψ(a) − Ψ(b) ∈ Z(Ω). It demonstrates that the multiplicative generalized CE-derivations Ψ
and G are a CE-additive. □

Now, we are in a position to raise the following open problem. “Under what conditions does an
MCE-derivation (or MGCE-derivation) become a centrally extended additive over an alternative ring?”

4. Conclusions

We showed that if G is an appropriate multiplicative generalized CE-derivation of a ring Ω, then G
is CE-additive.

Author contributions

M. S. Tammam: conceptualization, methodology, validation, formal analysis, investigation, data
curation, writing–original draft preparation, writing–review and editing, supervision; M. Almulhem:
validation, formal analysis, writing–review and editing, supervision. All authors have read and agreed
to the published version of the manuscript.

AIMS Mathematics Volume 9, Issue 11, 33254–33262.



33262

Conflict of interest

The authors declare no conflicts of interest.

References

1. H. E. Bell, M. N. Daif, On centrally-extended maps on rings, Beitr. Algebra Geom., 57 (2016),
129–136. https://doi.org/10.1007/s13366-015-0244-8

2. S. F. El-Deken, M. M. El-Soufi, On centrally extended reverse and generalized reverse derivations,
Indian J. Pure Appl. Math., 51 (2020), 1165–1180. https://doi.org/10.1007/s13226-020-0456-y

3. S. F. El-Deken, H. Nabiel, Centrally-extended generalized ∗-derivations on rings with involution,
Beitr. Algebra Geom., 60 (2019), 217–224. https://doi.org/10.1007/s13366-018-0415-5

4. M. M. Muthana, Z. S. Alkhamisi, On centrally-extended multiplicative (generalized)-(α, β)-
derivations in semiprime rings, Hacet J. Math. Stat., 49 (2020), 578–585.

5. M. S. Tammam El-Sayiad, A. Ageeb, A. M. Khaled, What is the action of a multiplicative
centrally-extended derivation on a ring?, Georgian Math. J., 29 (2022), 607–613.
https://doi.org/10.1515/gmj-2022-2164

6. C. E. Rickart, One-to-one mappings of rings and lattices, Bull. Amer. Math. Soc., 54 (1948),
758–764.

7. W. S. Martindale, When are multiplicative mappings additive?, Proc. Amer. Math. Soc., 21 (1969),
695–698. https://doi.org/10.1090/S0002-9939-1969-0240129-7

8. M. N. Daif, When is a multiplicative derivation additive?, Int. J. Math. Math. Sci., 14 (1991),
275743. https://doi.org/10.1155/S0161171291000844

9. Y. Wang, The additivity of multiplicative maps on rings, Commun. Algebra, 37 (2009), 2351–2356.
https://doi.org/10.1080/00927870802623369

10. J. C. M. Ferreira, B. L. M. Ferreira, Additivity of n-multiplicative maps on alternating rings,
Commun. Algebra, 44 (2016), 1557–1568. https://doi.org/10.1080/00927872.2015.1027364

11. B. L. M. Ferreira, H. Guzzo, R. N. Ferreira, An approach between the multiplicative
and additive structure of a Jordan ring, Bull. Iran. Math. Soc., 47 (2021), 961–975.
https://doi.org/10.1007/s41980-020-00423-4

12. M. N. Daif, M. S. Tammam El-Sayiad, Multiplicative generalized derivations which are additive,
East-West J. Math., 9 (2007), 1–10.

13. M. S. Tammam El-Sayiad, M. N. Daif, V. De Filippis, Multiplicativity of left centralizers forcing
additivity, Bol. Soc. Paran. Mat., 32 (2014), 61–69. https://doi.org/10.5269/bspm.v32i1.17274

14. N. Jacobson, Structure of rings, Colloquium Publications, 1964.

© 2024 the Authors, licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 11, 33254–33262.

https://dx.doi.org/https://doi.org/10.1007/s13366-015-0244-8
https://dx.doi.org/https://doi.org/10.1007/s13226-020-0456-y
https://dx.doi.org/https://doi.org/10.1007/s13366-018-0415-5
https://dx.doi.org/https://doi.org/10.1515/gmj-2022-2164
https://dx.doi.org/https://doi.org/10.1090/S0002-9939-1969-0240129-7
https://dx.doi.org/https://doi.org/10.1155/S0161171291000844
https://dx.doi.org/https://doi.org/10.1080/00927870802623369
https://dx.doi.org/https://doi.org/10.1080/00927872.2015.1027364
https://dx.doi.org/https://doi.org/10.1007/s41980-020-00423-4
https://dx.doi.org/https://doi.org/10.5269/bspm.v32i1.17274
https://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Results
	Conclusions

